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Spectra and strong decays of cc and bb states
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An outline is given for the description of heavy-quark —antiquark systems by means of a set of coupled
Schrodinger equations in which permanently confined two-fermion channels are coupled to free two-boson
channels. Only two-particle decays satisfying the Okubo-Zweig-Iizuka rule are taken into account. Within
this context the equations make a simple determination of the spectra and decay parameters possible. A
comparison with the data is presented.

I. INTRODUCTION

In this paper we present a simple potential mod-
el for the simultaneous study of the spectra and
the fast two-particle decays of heavy-quark-anti-
quark systems. It is understood that all "fast
decays" satisfy the Okubo-Zweig-Iizuka (OZI)
rule. '

The basic idea is that under certain circum-
stances one can write down equations which de-
scribe physical situations to a fair degree of ac-
curacy and which are exactly solvable despite the
fact that they involve the interplay of several free
and bound channels. For convenience let us-re-
strict our attention to charmonlum.

In the first place, of course, if charmonium
were to be.considered as a system of two heavy
quarks which move nonrelativistically with re-
spect to each other and which are bound by har-
monic forces, then the spectrum would be just the
isotropic-harmonic- oscillator spectrum and the
wave functions would be elementary functions.

Suppose that the forces between the quarks were
as simple as that; then obviously modifications
are still necessary to. account for the large width
of the resonant states which occur as soon as the
threshold for DD production is passed. We want
to point out that this can be done within the context
of nonrelativistic Schrodinger equations and that
exact solvability can be retained. It should be
clear that when unapproximated solutions of a
potential problem of this kind can be found, many
technical difficulties resulting from large coup-
ling strengths, the proximity of thresholds and
resonances, and the necessity of carrying out
high- order approximations do, not appear.

In order to obtain the proper conditions for such
a favorable situation one important assumption
must be made: When a resonant charmonium state
decays in accordance with the QZI rule, then two-
particle final states like DD, DD~+DD*, or EE
will occur, while the appearing charmed bosons
are to be considered as nothing else than the ori-
ginal charmed quarks which for the occasion are

"dressed" with light quarks of the u, d, or s
variety, together with their counterparts i, 2, or
s. These act as spectators and have no dynamical
influence whatsoever. By thus ignoring an inter-
nal structure of the bosons the 2 particle -4 par-
ticle problem is reduced to a 2 particle -2 parti-
cle problem which can be treated in the usual non-
relativistic way, despite the fact that the two
interacting particles can change their nature fund-
amentally.

I et r be the relative coordinates of the c and c
quarks. We shall assume that at the moment a uu,
dd, or ss pair is created, the newly formed bosons
occupy the positions of the c and c quarks and
thus have r as relative coordinates. The reverse
is considered to be true at the moment of annihila-
tion of a uu, d2, or ss pair. It is not strictly
necessary to make that assumption, but it is not
unreasonable and helps in the construction of
manageable equations.

We shall also make the assumption that the c
and c quark s do not feel each other's presence any
more as soon as they are dressed. That means
that the newly formed bosons do not mutually
interact; they behave as free particles, no matter
how near they are to each other. Also, this as-
sumption is not strictly necessary.

The quark pairs are created out of the vacuum
and have the quantum numbers of the vacuum.
The fact that they borrow neither angular, r momen-
tum nor parity from the neighboring charmed
quarks and that they will be assumed to be created
in an exactly SU+(3)-symmetric way put severe
limitations on the form of the transition "force".
We will allow breaking of SU+(3) symmetry only
in a kinematic sense, namely when it concerns
the thresholds of the DD and EZ channels, etc.

Although the above- mentioned conditions lead
already to reasonably manageable equations, one
final assumption will be made which makes solu-
tion by approximation methods manifestly unneces-
sary. When the transition potential consists of a
6 shell or even a combination of & shells the only
criterion for exact solvability is that the problem
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be completely solvable in the absence of any tran
sitiol. But we know that the harmonic-oscillator
problem as well as the free-particle problem are
exactly solvable. ' The remaining questions are
partly fundamental and partly phenomenological:
How reasonable are harmonic oscillators and &

shells in the study of charmonium'? Certainly,
combinations of 6 shells can be used to approxi-
mate any potential.

If the transition potential is strong enough, it
not only causes bound states to become resonances,
but it also causes a mass shift. In particular,
those bound states which are lying below all
thresholds and thus do not become resonances are
affected and may shift in a way which make it less
obvious that they belong to a harmonic-oscillator
spectrum.

In Sec. II the harmonic oscillator is discussed.
The model is presented in Sec. III, followed by an
account for the specific form of the decay poten-
tial in Sec. IV. Comparison with the data is made
in Secs. V and VI, where also leptonic decays are
considered.
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II. WHY A HARMONIC OSCILLATOR?

Let us first inspect the spectra: The J c = 1

charmonium states are sufficiently equidistant in
order to be interpreted as radial and angular exci-
tations of a system of two heavy quarks which are
bound by harmonic forces. We estimate for the
energy-level separation of the harmonic oscillator
a value of

2m=0. 35 GeV

and for the position of the ground state

M=2m + ~(a) =3.38 GeV.

The comparison of the spectra is depicted in Fig.
1.

The $(3100) bound state does not fit in this
scheme. We will show, however, that this may
be attributed to the considerable influence of the
open charm channels.

It is attractive to treat the bb states in a similar
way. Comparison of corresponding states in cc
and bg states shows thatthe mass splittings in both
spectra are very nearly equal (see Fig. 2).
From this important observation we conclude
that these level splittings are independent of the
heavy-quark masses. This leads us to the intro-
duction of a universal (i.e., independent of the
flavor mass) oscillator frequency &u. lt empha-
sizes that a priori a harmonic-oscillator potential
cannot be ruled out on phenomenological grounds.

Moreover, the harmonic-oscillator potential
for heavy quarks might very well be fundamental

FIG. 1. The spectra of a harxnonic osciQator (2'
=0.35 GeV, ground state at 3.38 GeV) and of charmo-
niurn (Ref. 4).

because various nonperturbative theories do pre-
dict harmonic forces between heavy quarks at
short distances. For instance in nonperturbative
quantum chromodynamics (@CD) the vacuum struc-
ture resulting from instanton solutions leads to a
quark-antiquark potential of the form V(r) -r
(Ref. 5). A similar potential turns up in other
nonperturbative gauge theories.

Of course we noticed the success in describing
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FIG. 2. Corresponding cc and bF states {Ref.4).
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charmonium of semiphenomenological potentials
based on I&erturbative calculations in QCD, and
many of the ideas put forward there are adopted
in the present model. Nevertheless, it is our
opinion that it is worthwhile to study the possi-
bility of harmonic forces in heavy-quark physics.

III. THE MODEL

po ——4 p, wA, (3.i)

where p, = —,'m, is the reduced heavy quark mass
and where R is the position of the g-shell coupling
of confined and free channels. Furthermore, we
define the following quantities: a dimensionless
distance

p=4 p, cup;

a reduced mass matrix

TM, 0'
0 My. '

(3.2)

(3.3)

where M, e(luals p. times I„(the nxn unit matrix)
and where (M&);&

—m;5;&, the diagonal elements
m& (j= 1, . . . , m) being the reduced boson masses
in the free channels; an orbital. angular momen-
tum matrix

Consider a system of n permanently confined
channels in interaction with m free channels. In
order to make the model simultaneously applicable
to (&&, T, . . . , we introduce the invariants u& and

Q =[2M&(E —Vz) jp~]
with positive elements Q&, , an m&&m velocity
matrix

(3.8)

v = v' p ~M& Q,

an n&n radial quantum number matrix s with
(3.4) and (3.8) given by

E=(u(2s+L, + 2)+ C,

(3.io)

(3.11)

I et Q(p) be s, radial (n +m)- component wave
function; then the set of radial Schrodinger equa-
tions to be solved is, with (3.2)-(3.5),

—,'ll+M —,+ ., + v(p)Ip(p)=z()(p).
d L(L+ 1)
dp p

(3.8)

There are 2(n+m) independent solutions. The
physical solutions must satisfy n+ m boundary
conditions at the origin and an additional n bound-
ary conditions at infinity for those components
which belong to the permanently confined channels.
No other boundary conditions are to be imposed
as long as the energy is above all thresholds. In
that case there are m independent physical solu-
tions which can be found in a straightforward way
and lead to an mxm unitary and symmetric S
matrix.

Let us define the following diagonal matrices:
a dimensionless m & m momentum matrix

1, 0

0 L(
(3.4)

e( s, L, +-,';-p, ') and 4( s, I-, + —,'; p-,'), (3.i2)

the n&&n confluent hypergeometric function ma-
trices

with L, and I-& diagonal nxn and m&&m matrices,
respectively, which contain the orbital angular
momenta of the n+m channels.

which are self-evident generalizations of the 4
and 4 functions defined in Ref. 8, similar gen-
eralizations of the spherical Bessel, Neumann,
and Hankel functions

r
V+ V&n

r Vy-
(3.5)

&=Qp.j, (Qp, ), &=Qp, n, (Qp,), a("&=z+av,
(3.i3)represents the potential matrix as it appears in

the set of coupled Schrodinger equations to be
defined below. In (3.5) V, is the potential in the
confined channels

and the nxn matrix
2 CCi

p
2I'c+&. po r(-s) r(L, ~-,') '

Then with (3.8)-(3.14) the expression for the S
matrix becomes

(3.i4)

(3.8)Vc= (~((&p + C)I„.

S=-~'" 4 Z~V'„,+V,. '+i p,

&('
~
4g J~ V„tQV„,B' —iQPO) v . (3.15)

Although this is not manifestly so, the expres-
sion (3.15) is unitary and symmetric.

Since S-I contains the factor V,&O,V,&, the rankwhere V„t is a real nxm matrix, independent of

V) is the diagonal threshold matrix. (V&)&& D&——
is the sum of the rest masses of the bosons in the
jth channel.

The specific form of the off-diagonal term in
(3.5) will be discussed in the next section. We
have chosen, with (3.1) the form

V( t=g 5(p —po)V q ~ (3.7)
po
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of this matrix is smaller than or equal to min(m,
n). This is an important observation because it
means that the maximum number of nontrivial
eigenphase shifts is equal to the number of per-
manently closed channels, if this happens to be
smaller than the number of free channels to which
they are coupled.

When E is smaller than some of the D&, then
the corresponding Q» as defined in (3.9) become
purely imaginary. In order to satisfy additional
boundary conditions at infinity for those compo-
nents of the wave function which belong to the
additional closed channels, the imaginary parts of
these Q&& should be chosen positive. If these
values are substituted in (3.15), then the subma-
trix of S corresponding to the remaining open
channels is again unitary and takes over the func-
tion of the S matrix.

For the study of bound and resonant states it is
important to find the positions of the poles in S.
This matrix is then to be considered as an ana-
lytic function of E. By taking E complex, the
unitarity of S is lost, but not. its symmetry.

IV. THE DECAY MECHANISM

In choosing for the decay potential the specific
form (3.7), we are led by phenomenological and
dimensional arguments. In the first place since
the spectra of cc and bb states are very similar
(see Fig. 2), it is necessary to construct an S
matrix, the singularity structure of which is in-
dependent of p, for p, -. It is easy to check that
this is the case for the form (3.15). Furthermore,
we prefer the quantities which compose V„, (3.7)
to be invariants or dimensionless.

For the case of charmonium decay under the
assumptions as stated before, the form of the

n&&nz matrix V&, t can be determined from the
following diagram':

t,s, J[

where

c harmonium

X„-',--,] '. —

(', s,
'

j two-boson system

I Sf Jf-
C

-L, S, J

jz ——total angular momentum of cu, cd, or
CS =Sy q

j2 ——total angular momentum of cu, cd, or
CS =S2 ~

The matrix elements of V„, can now be com-
puted and turn out to be the following:

l =orbital angular momentum of cc;
s =total spin of cc =0 or 1;
l' = orbital angular momentum of uu, dd, or

SS=1~

s'=total spin of uu, dd, or ss=1;
I& ——orbital angular momentum of cu, cd, or

cs =0;
s& ——total spin of cu, cd, or cs =0 or 1;
l2 ——orbital angular momentum of c'u, cd, or

cd=0;

s, =total spin of 8u, cd, or cs=0 or 1;
L =orbital angular momentum of final bosons;

S=total spin of final bosons;

J= total angular momentum;
\

j'=total angular momentum of uu, dd, or
ss =0;

3 2I+ I(J, I, S, J„(sg, s2) ~ V„g~J, I, s, J,}=(-1) '~"& '2"C~~ Oaf C000

Tl s J —,
'

—,
' s .

1 1 0 ~ ~ 1

S J, .s& s2 S

(4.1)

independent of the channels uu, dd, or ss. Here
the C are Clebsch-Gordan coefficients and the
expressions between square brackets are 9-j
symbols as defined in Ref. 11.

At most, two confining channels are coupled to
the boson channels, of which there are in general
more than two. One therefore finds at most two
nontrivial eigenphase shifts, the cotangents of
which can be found by solving a quadratic equa-
tion.

Poles in the S matrix can be found by looking for
zeros in the expression

det(I —i tanA),

where the phase-shift matrix & is defined by

e2fb,

(4.2)

(4.3)

In the limit g-0 the pole positions approach
the harmonic-oscillator bound states or else go
to infinity. The "physical" poles can be traced
by starting from the bound-state positions and
slowly turning on the coupling constant. This
tr'acing can be done by applying a linear or quad-
ratic Newton method for finding the zeros in ex-
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pression (4.2). It is only here that the use of a
computer is strictly necessary.

The bound states which become resonances cor-
respond to poles whose positions are moved into
the unphysical energy plane in order to satisfy
unitarity. However, the bound states which are
lying below all thresholds can only move on the
real axis and do in fact shift to lower energies.
These shifts can be appreciable.

V. THE DATA

C =4p. . (6.1)

The other parameters &u, po, g, and p are deter-
mined from an overall fit to the charmonium data.

We obtain for the universal frequency

~ = 0.178 GeV. (6.2)

This is very near to the value we already esti-
mated in Sec. II. The invariant &-shell radius

pp = 0.50 (6.3)

is somewhat smaller than the average radius of
the ground state of the unperturbed harmonic os-
cillator

In the case of t."e and bb 4 =1 states the
radial wave functions Q(p) consist of 2+10 com-
ponents. If we label the various channels by
means of their quantum numbers

~
L, S, (sq, s2)),

we have the two confined channels
~ 0, 1) and

~
2, 1),

the five nonstrange free channels
~
1, 0, 0, 0),

~1, 1, 0, 1), ~1, 0, 1, 1), ~1, 2, 1, 1), and 3, 2, 1, 1),
and a similar set of strange free channels.

The six different thresholds follow for the open
cc channels from the data. Owing to lack of data,
for the open bb channels we have chosen a value
of 10.5 GeV for the lowest threshold and the same
separation between the various thresholds as for
char monium.

The pa.rameter C in Eq. (3.6) is determined by
the rest masses of the two heavy quarks, i.e. ,

The result for the coupling constant g in (3.7) is

—= 2.09.
4m

(6.4)

The mass of a charmed quark appears to be

m, =2@,,=1.60 QeV,

about ~ the mass of J/g. For the T states the
only parameter to be adjusted is the mass of the
b quark, which comes out to be equal to

(6.6)m, = 2 p, ~ = 4.76 GeV .
In Table I the real parts of the computed pole

positions are compared with the masses of the
six established 1 g resonances and the three
known Y resonances.

If we use the same procedure for the tt states,
we predict a similar spectrum as for the other
qq states only shifted to much higher energies.

I'(y„-e'e ) = 16m(-', u)' I „0)I'
n

(6.1)

where $„(0) and M„are the wave function at the
origin and the mass of the nth radial excitation,
respectively, and where n is the electromagnetic
fine-structure constant. In (6.1) the factor —',

comes from the electric charge of a charmed
quark; a factor 3 for its color degrees of free-
dom has also been taken into account. If we cal-
culate the decay w&dth for the ground state of the
harmonic oscillator using (6.1), we obtain for the

I

VI. THE LEPTONIC DECAY WIDTHS

This section is devoted to the leptonic decay
widths of the $(3100) and the g'(3685), which have
become popular in discriminating between the
various models for charmonium. For instance,
ordinary harmonic-oscillator models do not re-
produce these widths. One can easily see this
from the Van Royen-Weisskopf formula for the
electromagnetic decay width of 8 waves, which
reads"

TABLE I. Predicted and experimental masses of J =1 cc and bb levels for the param-
eters (5.2)-(5.5). [We use the spectroscopic notation n +~1 ~, where n is the number of
radial nodes plus one, S is the total Qg spin (0 or 1), L is the orbital angular momentum of
the pp system, and J is the total angular momentum of the state. ]

Mass (GeV)
Level

23S( 33S 43S 13Dg 23D

CC
Predicted
Expt. (Ref. 4)

P redicted
Expt. (Ref. 4)

3.08
3.095

9.50
9.46

3.66
3.684

10.00
10.01

4 04
4.03

10.39
10.41

4.42
4.414

10.77

3.80
3.772

10.14
~ ~ ~

4.14
4.16

10.48
~ ~ ~
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parameters (5.2)-(5.5) a value of 1.1 keV, which
must be compared to 4.8 keV being the experi-
mental width of the J'/g. For the first radial
excitation we obtain similarly a value of 1.2 keg,
whereas the experimental width of the P'(3685)
equals 2.1 keV.

In their theoretical investigation on the behavior
of the wave function at the origin, ' Grosse and
Martin show that convex potentials like the har-
monic-oscillator potential yield ( pt(0) )

~
( $0(0) (.

Thus convex otentials are ruled out because the
data require $,(0) ~

&
~ g, (0) ~.

The situation is, however, noticeably different
if we couple open charm channels to the cc chan-
nel. We find, for instance, in the 8-wave cc
channel of the lowest bound state a-quark distri-
bution $0(r) $0(r) which is almost constant inside
the 6 shell and which drops very fast to zero out-
side the & shell in contrast to the exponential fall-
off in the case of an ordinary harmonic-oscilla-
tor potential. This is, of course„a reflection of
the breaking mechanism of the string. If at some
length the string has the possibility to break, then
there is less chance to find a larger quark sepa-
ration. So it is no surprise that also the leptonic
decay width is different in this case. If we ne-
glect the contribution of all other channels, we
obtain with (6.1)

1(g(3100)—e'e )=3.2 keV.

In fact, we can estimate that the contribution of
the other channels is of little importance owing
to the small quark content of these channels.

For the first radial excitation the situation is
quite different. The breaking mechanism of the
string has the effect that of the two regions in the
quark distribution the region outside the node
becomes more pronounced which in: its turn causes

a decrease of the wave function at the origin.
The result is

~ Pt(0) ~
&

~ $0(0) ~
for the parameters

(5.2)-(5.5). In the language of Grosse a.nd Martin
we might state that owing to the coupling to free
channels the effective potential in the confined
channels has become concave instead of convex
for the bound states of charmonium.

The ratio of the leptonic decay widths is not in
agreement with experiment. The reason for this
failure might be that for charmonium the descrip-
tion of the string-breaking mechanism by means
of a & shell is a bit too far from reality, since
the breaking point may be subj ect to some spread-
ing. However, this certainly depends on the quark
mass in such a way that for heavier masses the
spreading is less. As a test we also compare the
predicted leptonic decay widths of the Y system
with experiment. Our result is

I'(T(9.46) —e'e )/I'(T'(10. 01)-e'e )= 3.g .
This value is in agreement with experiment.

VII. CONCLUSION

Even in its rather primitive form our model
passes the test with experiment. In the near
future we hope to present a more realistic form
of the decay potential with several 6 shells.

The above model also offers a starting point
for the application of perturbation theory. For
example, the influence of spin-spin and spin-orbit
terms in the potential can be studied to any de-
sired order.
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