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The K73 form factors are investigated in the one-loop approximation within the context of a linear
renormalizable SU(3) cr model. The model incorporates SU(3) nonets of pseudoscalar (m,K,g,g') and
scalar (K,K,o,o ) mesons. The q', ~, K, cr, and cr' mesons are associated with the X (957), 8(980),
v(1400), S~(980), and e(1300), respectively. The Lagrangian contains the most general renormalizable
chiral-SU(3) )& SU(3)-invariant couplings as well as explicit linear symmetry-breaking terms belonging to the
(3,3*) (3~,3} representation of SU(3))&SU(3). All calculations are carried out in the one-loop
approximation. With this model we first obtain a reasonable approximation to the scalar and pseudoscalar
mass spectrum and the known leptonic decay constants. Most of the masses and decay constants are
reproduced within 10%. In addition, the second-order corrections were usually in the neighborhood of
15-20%%uo or less, supporting the conjecture that higher-order strong-interaction effects may, in most cases,
be rather small. Employing these solutions, we calculate the K„ form factors and compare these with recent
experimental studies. The predictions for 5,+ are too small probably due to the fact that, at this level of
approximation, the model contains no spin-one poles (vector mesons). However, the model predictions for Xo
and g(0) are fairly good. A number of theoretical predictions for the K&3 form factors based on current
algebra and chiral perturbation theory are then investigated. In particular, we were interested in the
magnitude of the corrections to various predictions derived using specific symmetry assumptions. As the
model reproduces quite closely the model-independent calculation of f+(0) from chiral perturbation theory,
we feel that our conclusions in this area may have a more general significance. For example, in the tree
approximation the Callan-Treiman relation is an identity. In the one-loop approximation, the magnitude of
the strong-interaction effects is much larger than the symmetry-breaking effects and the relation is still
obeyed quite well (within-2%), reflecting the influence of the underlying SU(2) && SU(2) symmetry.
Overall, our results support calculations based on chiral perturbation theory.

I. INTRODUCTION

The K„decays K- m+ l+ v„where l stands for
either an electron or a muon, have been enthusi-
astically studied' both theoretically and experi-
mentally. This great interest stems in large part
from the hope that they will reveal valuable infor-
mation about the strong interactions. According
to the Cabibbo theory the transition matrix ele-
ment describing these decays ean be factored into
a known leptonic piece and a hadronic part given
(up to unimportant normalization factors) by

&&(q') iV„"='(0)i'(q)) f, (&)(q+q')„f+(&)(q —q')„,

where V~~ '(x) is the weak, hadronic, strange-
ness-changing vector current and f = (q —q)'. The
form factors f, (t) and f (t) are manifestations of
the underlying hadronic dynamics. Their experi-
mental determination can thus serve to test some
of our ideas about hadronic interactions. f+(t) and

f (f) may be especially useful as probes of approx-
imate hadronic symmetries. This aspect will be
of interest to us in the following.

The purpose of the present investigation is to
study the K» form factors within the context of a
renormalizable SU(3) o model. ' In particular f+(f)
and f (t) are calculated in the one-loop approxi-
mation. This gives an indication of the magni-
tude, not only of the higher-order strong-interac-
tion contributions to the form factors, but also of
the corrections to a number of predictions derived
on the basis of various assumed symmetries.

It has been emphasized by a number of people' '
that chiral SU(3) x SU(3) may be a fairly good sym-
metry of the strong interactions, perhaps as good
as SU(3), and that SU(2) xSU(2) is even better.
Indeed, SU(2) xSU(2) is probably almost as good
a symmetry as isospin, ' corrections to it being of
the order of 5-10%. Chiral symmetry is supposed
to be spontaneously broken, ' with the pion, or the
entire pseudoscalar-meson octet, becoming mass-
less Nambu-Goldstone bosons in the limit of exact
SU(2) xSU(2) or SU(3) xSU(3), respectively. The
smallness of chiral-symmetry-breaking terms in
the strong-interaction Hamiltonian is implied by
the relatively small kaon, q meson, and especially
pion masses, as well as by other evidence' such
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as the success of many current-algebra predic-
tions. '

According to the above philosophy, it makes
sense to write the strong-interaction Hamiltonian
density as

K=K +3C

with

K a =6,K +5,K', (1.2)

where K is SU(3) xSU(3) invariant, K' is SU(2)
xSU(2} invariant but breaks SU(3), and K" breaks
SU(2) xSU(2). Then we would expect that

(1.3)

SU(3) v models can of course be constructed to
have the structure" of (1.1) and (1.2). They also
have the advantage of incorporating the SU(3)
xSU(3) algebra of currents" as well as pseudo-
scalar- and scalar-meson pole dominance of am-
plitudes. In addition, such models provide a useful
laboratory in which to explore various symmetry
limits. In this connection solutions have been
found" " in which SU(2) xSU(2) and SU(3) x SU(3)
are realized in the Nambu-Goldstone mode, thus
lending support to the ideas discussed above.

The SU(3) cr model employed here has the struc-
ture of (1.1) and (1.2}. It is based on a Lagrangian
which is constructed out of SU(3} nonets of pseudo-
scalar (w, K, q, q ) and scalar (e, v, g, o') meson
fields which are assigned to the (3, 3*)8(3",3)
representation of SU(3) x SU(3). The Lagrangian
contains no term of degree greater than four in the
fields, thus ensuring its renormalizability. In
addition to SU(3) x SU(3)-invariant terms, the
Lagrangian contains terms which are linear in the
(o and a ) fields giving rise to (3, 3*)@(3*,3) sym-

-metry breaking. ' '
This model has been studied in the tree approxi-

mation by many authors. "'" Qf course, the vir-
tue of working with a renormalizable model is that
one can go beyond the tree (or effective Lagrangian}
approximation to consider higher-order contribu-
tions. Crater" explicitly demonstrated the renor-
malizability of the SU(3) xSU(3)-invariant form of
the model in the one-loop approximation. Lee"
and Symanzik, ' considering different chiral Lag-
rangian models in which the symmetry-breaking
terms are linear in the fields, have shown that
these models can be renormalized such that all
divergent counterterms can be absorbed into the
coupling constants of the symmetric part of the
Lagrangian. Subsequently, Chan and Haymaker"
carried out a renormalization of the present SU(3}
o model with linear symmetry-breaking terms, in

which they calculated one-loop corrections to the

one- and two-point functions. They have also"
used the model to calculate meson-meson scatter-
ing amplitudes in the one-loop approximation.

The above applications of the o model are ex-
amples of lower-order calculations in the loop
expansion, which is essentially a perturbation
series in the number of closed loops in the Feyn-
man diagram contributing to a given process. The
loop expansion has the advantage that the symme-
try properties of the Lagrangian are preserved
order by order. For example, the Ward-Takahashi
identities hold to each order in the number of loops,
as do the relations obtained from them by the
PCAC (partial conservation of the axial-vector
current) substitution.

The present investigation is meant to shed light
on two different aspects of the g, form factors.
First, and most obviously, it is interesting to de-
termine the higher-order contributions to f, (t) and

f (t) in a strong-interaction field theory. It is
often supposed that such effects will be quite large
and even that a perturbation series will not con-
verge becasue of the large coupling constants.
However, previous work indicates that, at least
for the renormalizable SU(3) o model, higher-
order contributions are rather small. ' '" This is
born out by the present analysis as well.

At least as important as this general insight into
strong-interaction effects is the estimation of the
sizes of corrections to various symmetry predic-
tions for the g„ form factors. These corrections
are generated by the presence of terms such as
5,K' and 5,K" [see Eq. (1.2)j in the strong-interac-
tion Hamiltonian. Moreover, since several of the
more basic predictions are trivially satisfied in
the tree approximation, one must go to higher or-
ders to investigate symmetry-breaking effects.
For example, since f, (0) = 1.0 in the tree approxi-
mation, we do not obtain any information, at that
level, about the size of the second-order SU(3)-
breaking corrections called for by the Ademollo-
Gatto the.ore m."

Similarly, nothing is learned in the tree approxi-
mation about corrections to the current-algebra
relation based on pion PCAC"

(1.4)

nor to its kaon PCAC counterpart"

(1.5)

where m, (mr) and E, (Er ) are the pion (kaon)
mass and decay constant, respectively. Both of
these sum rules are identically satisfied in lowest
order for the on-mass-shell form factors.

One of our goals then will be to study the success
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of the above predictions in the one-loop approxi-
mation. We will also consider relations for the
derivatives of the form factors which have been
obtained" "using current-algebra approaches.
In addition, a number of other sum rules and re-
lations will be examined. Not all of these involve
the g» form factors, but rather serve as tests
of, e.g. , pole dominance and vertex-function
smoothness in the one-loop approximation.

Because it is interesting in its own right and
can also serve as a check on our calculations, we
have also determined thepion electromagnetic form
factor Fgt) in the one-loop approximation.

Additional tests of the calculations were afforded
by the requirement that certain Ward-Takahashi
identities should be satisfied in the tree and one-
loop approximation.

The plan of the paper is the following: In Sec.
II we briefly discuss the renormalizable SU(3) o
model and the method used to determine numeric-
ally the basic Lagrangian parameters to second
order. The evaluation of the g» form factors and
the pion electromagnetic form factor are discussed
in Secs. III and IV, respectively. In Sec. V some-
details of the numerical analysis are provided.
Finally, our results are presented and discussed
in Sec. VI. Included are tests of the above-men-
tioned predictions" "for the 'K» form factors
based on SU(3) and current algebra with PCAC,
as well as tests of other relations obtained from
symmetry, pole-dominance, and smoothness as-

sumptionss.

term.
For details of the model concerning the transla-

tion of the scalar fields, the treatment of particle
mixing, the transformation of the Lagrangian into
a more convenient form for numerical calculation
and the type of perturbation theory used see Chan
and Haymaker. "'" We follow their notation when-
ever possible. In this section we outline our
method of determining the basic Lagrangian param-
eters to second order. The Feynman rules for this
model are given in Fig. 1.

Eight parameters (p', g,f„f„$„$„e„e,) must
be fixed in the tr ue approximation. We input
various masses and leptonic decay constants to
determine the parameters and adjust the input
somewhat to obtain acceptable overall values for
the mass spectrum and the decay constants. Our
criteria for accepting solutions and the details of
the numbers obtained are discussed in Sec. V. In
this section we only consider the method used for
fixing the Lagrangian parameters for a given nu-
merical input.

Two constraints are immediately available from
the condition that the vacuum expectation value of

IE
I

iD iJ(& )

iD "(k )
IJ

II. BASIC NUMERICAL CALCULATIONS IN THE ONE-I.OOP

APPROXIMATION

As indicated above, we chose the linear SU(3) o
model developed by Chan and Haymaker"" for
our numerical calculations. The basic Lagrangian
'ls

2 = —,'Tr(B„MB~M ) —2p' Tr(MM )+g(detM+detMt)

+f,[Tr(MM )]'+f, Tr(MM MM ) —coo, —e,o, ,

(2.I)

where M and M are Sxs matrices of fields that
transform as the (3, 3*) and (3*,3) representations
of chiral SU(3) xSU(3), respectively. M can be
rewritten as

rJ

/j
k

j I

X

i rrk
/

j

6 IG~jk j

6I Gjjg

8iF(jk)

A
8 IF)j

M = ~ X'(o,. +i/, ), (2.2) —i8ms"
IJ

where g& and P; represent nonets of scalar
(e, a, o, o ) and pseudoscalar (m, K, g, q') mesons,
respectively. This Lagrangian contains the most
general renormalizable chiral-invariant couplings
plus a linear (3, 3*)63(3*,3) symmetry-breaking

—
I 8 lYl+iJ

FIG. 1. Feynman-diagram rules for the Lagrangian
of Eq. (2.1) ~ Solid and dashed lines represent scalars
and pseudoscalars, respectively.
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Ei =0, $ =0, 8. (2.3)

The remaining six parameters are evaluated
using F„F»/F„, m„m», m„, and m, ." The
latter mass is input as only the I =0 scalar masses
provide sufficient information to allow the evalua-
tion of both p' and f,. The quantities

the scalar fields vanish by construction. Two non-
trivial constraints are afforded by

are again provided by required vanishing of the
vacuum expectation values of the scalar fields. The
remaining parameters are fixed by inputting sec-
ond-order values for F„m„mz, m„, m„., and
m . There values are not necessarily fixed at
their tree-approximation values, but are adjusted
to give an acceptable mass spectrum overall.

III. THE EI3 DECAY FORM FACTORS IN THE ONE-LOOP

APPROXIMATION

a= 1

e,
(2.4)

(2.5)

The ~„form factors are defined in the usual
manner:

[(»)'4~»~» l'"(yf(q')
~
I'y(o)

~ y;(q))

=if„,[(q+q )'f, (&)+P"f (f)], (3.l)

provide a measure of the relative strengths of.
SU(3) and SU(2) xSU(2) breaking, and of the SU(3)
invariance of the vacuum, respectively.

The second-order Lagrangian parameters are
fixed by again using the one- and two-point func-
tions and inputting masses and leptonic decay con-
stants. Several points regarding the second-order
calculations are worth reiterating.

(I) Although only the parameters of the symme-
tric Lagrangian acquire divergent second-order
part, all parameters can have finite second-order .

corrections.
(2) The analysis is simplified if a basis for the

fields is chosen for the internal meson loops such
that the mass matrix is diagonal in the tree approx-
imation. The orthogonal matrix

where
IP=q q ~—

P2

and the appropriate indices are chosen.
The free-field relations

[(»)'»;]"'« I& "s; ls;(P)& = iP"-
and

(3.2)

(3.4)

lead to the vector-current Feynman-diagram con-
tributions given in Fig. 2. From the form of the
vector current the unmixed vertex coefficients are

[(2»»)'4a&,.&u, ]'~'(s,.(q') ~s»a "s» ~s, (q))=i(q+q')" (i cj )

(3.5)

~ Z 8 0

m 1 0

p»»= i hafe», », (3.6)

Z 0 I
U4

C)fi cos 0~ -s in'~ (2.6)
~k, ij A, if Jkig ~ (3.7)

s in' cos e~

For any tensor T,

Tn = ~~iTi

n

is defined such that

(2 7)

(2.8)

I ]I p

k

P PR
k, i

where Latin indicies indicate the old basis and
Greek indices denote the new one. A similar ma-
trix is defined for the scalar case (8P- 8»).

(3) In the evaluation of any quantity to second
order, the second-order corrections (the 6 terms)
can only appear linearly. This often requires the
6(» terms to be treated separately. The resulting
numerical problem is simpler than the tree ap-
proximation, however, as only linear equations
need be solved.

In this case two constraints on the parameters

yI
k

Pk "«q+q'&
S

q

Pk " (q+q&j,IJ

q

FIG. 2. Feynman-diagram rules for the vector-cur-
rent —field vertices. The current is denoted by the wig-
gly line. The p~ &

and p~ &&
factors are given in Eqs.

(3.6) and (3.7).
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FIG. 3. Feynman diagrams for the K&3 decay amplitude to second order. The current V& is denoted by the wiggly line.
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where k is the current index and i and j are the
field indices. The mixing of the I =0 fields is in-
corporated via

~ @oS —t'J((I5'eS ~ tt(eSPkaj ai t k fj ' (3.6)

Clearly,

(-( @88 —U' /AS P @88 ~ tt oS —0&ka8 ni Sj I k ij (3.9)

Finally, note that p@ and p' are antisymmetric in
the field indices.

The Feynman diagrams which contribute, in the
one-loop approximation, to the g» hadronic ma-
trix element are shown in Fig. 3. %e write this
matrix element as

19

[(2 )'4 ]'"(y (q') lv„(0) l(t (q)) = T,', (3.1o)
(2 r

~ fj 2 ~k n 1+2~i f +
RZ

+p(. .d ((,n

+ok, a&Gfj.n& (3.12)

~&
~ (J Z Giy, aGyi. 8pk, n8a, 8,y

x C" (q, q', p', my+, m' m ~) (3.13)

~k, fj ~ G f a,yG Bj,y I k, n8
4p

a, 8,y

(3.14)

where 7'k'~i j denotes the contribution from diagram
g. These are"

7'a". .( =(q+ q'}' Pk~(;[1+ 2~';(M ) + 2~$(M(')], (3 11)

G+ aE;,&» ~ ( 24)p(( 8y. i.8y
k, fj ~ Pk, n *2 m82a, 8,y a

x B(p', m88', m( ),
8

(((( ( 16) g (i.y . n8y
k, fj Pk, a8 *2 ms~a, g,y my

x B~(p, m„, m", ),
G4fj,y n8 y

Pk.
a88 8y

x B~(p, m8', m8 },

7", „= g (- )p"p, . '".'" '„"
a, 8,y n

x B(q",m 8', mf),

n, 8,y a

x B(q', m", , m8'),

G gG 6a8y' ByPpl, a(P2m+)(P2m+)
x B(p', m8', m' ),

(II, G (t G108" ij, yn' ~", P'" (p' -mg)(p2 —mf)
x B(p' m 88, m f),

G F
/van ( 24) p l J y ny88' ~" (p' -m+)(p' -ms')

x (m f — v)B2(0, m 8v'),
G' F

( 24&*((
(. ,(( ~ }P P~.+ (p2 m@)(p2 m 82)ae5 oy

m

x (m ~+ —v ')B(0,m f, v ""),

and

(3.20}

(3.21)

(3.22}

(3.23)

(3.24)

(3.26)

(3.26)

(3.27)

(3.26)

G
7 8(( g ( 216)p(( (y. cPy(. 8 n88

n, 5,y, ~

x C(q', q",p', my'-, m~, m~8-), (3.15)

»u —~6 ~ n 8'
~2, (i ~ P Pi(, n (p2 g)2 ™n'
The B integral is evaluated in Ref. 19.

The integrals

(3.29)

Ti "(( = Q 216p p( 8
a, 8,y, &

G f n.yG Bj,yG ns, .~

2 S2~6
x C(q' q" p' m+, m 8', m 88'), (3.16)

C(q', q", P', x', y2, z')

d l 1 1 1

(2(()' [P —z'] [(1+q)'-y'] [(l+q')'-z']

7",,„=Q ( 4)P(, „8p„'.8B-(P, m„', m,'),
a, 8

(3.17)
and

(3.30)

&i", (( = Q (-,4)F;, 8P28 „8Il"(p, m 8', m f),
a, 8

Gs
y9P — 24@p a8y fj,gy

k, fj ~k, n
n, 8,y P —m

(3.18)
C"(q, q', p', z', y', z')

d'l (2l+q+q')"
(2(()' [l' —z'][(1+q)' -y'][(1+q')' —z'] '

where

x B(p', m'8, my~), (3.19) p' =(q —q')', (3.31)
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are discussed in Ref. 14. The linearly divergent
integral

d'l (2/ —p)"
(»)' (~' —~)[(f-p)' —s']

(3.32)

I g g J/

)peITl(q+q )P'

q'-

'porn(q+q~)P'

is evaluated using a r egular ization proc edur e in
Ref. 1V.

IV. THE PION ELECTROMAGNETIC FORM FACTOR

FIG. 4. Feynman-diagram rules for the electromagne-
tic-current-field vertices. The current is denoted by
the wiggly line. The factor p';&m is given in Eq. (4.4).

y(( = y((+ yj( (4.2)

In the present model

~em =— 3,.g+, g ~]~ ~ + -e . 4.3

Our general method of attack in this section
follows that of the K» form-factor analysis. The
pion electromagnetic form factor F,(t) is defined
in the usual manner:

2 (2(()'v'(u, ((j,.((y'(q')
~

Vj' (0) ~(('(q')) = (q + q')((F (f),
(4.1)

where t=(q —q')' =P'. The electromagnetic cur-
rent V~ is related to the octet of vector currents
via

The contributions from the last two diagrams
will vanish identically upon regularization, as only
pairs of particles of equal masses can contribute.

We will be interested primarily in the t depen-
dence of F,(t). The consequence of electromag-
netic current conservation, F,(0) =1, is used as
a cheek on the calculations.

V. THE NUMERICAL ANALYSIS
I

We will now present a brief discussion of our
numerical solutions for the model. The reader
should consult Chan and Haymaker" "for addi-
tional comments on the properties of other pos-
sible numerical solutions. Our approach consisted
of attempting to find values of the model param-

The current-field vertices in this case are given
in Fig. 4. These vertices are characterized by
the factors p'„. which are defined as /

q/ %q

em 1
P(i f30 ~3 f8(i ' (4.4)

Qf course, V," only couples to identical, charged
mes ons.

The Feynman diagrams that can contribute to
F,(t) are given in Fig. 5. The diagram contribu-
tions are denoted by 7.",~, where a is the diagram
number. Then

k+q rW +k+(j'

rf k T
q'

k+

k
'q'

7'. (( =i ( + )(( z./2z

T'i Z i .yG Bi.y PaB
a, 8,y

2

(4.5)

(4.6)

(2)

and

Tl~ 36ZGgy aGy~ BPat
a, s,y

X C "(q, q', P', my~, m „,m B ),
2

7';ij'= Q —4iF(i Bp'BR"(P, m&, mq~ ),
a, s

(4 f)

(4.8)

a'I
k

k& ~f k-p

j r & j

a P

kQ k-p

/
q

T(q = Q —4iF; i Bp'„~qR "(P,m~, m f ) .
a, s

(4.9)
FIG. 5. Feynman diagrams for the pion electromagne-

tic form factor to second order. The electromagnetic
current is denoted by the wiggly line.
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eters which would give a reasonable account of
the meson mass spectrum, and the decay con-
stants F„and I'~, and then to investigate the K»
form factors for these values.

The pseudoscalar-meson spectrum is well
known" with the possible exception of the g,' we

shall assume here that the X' (957) is the q'. The
status of the scalar meson nonet is much less
clear. The best-established member is the I =0
.S*(980).29 The location of the other I =0 state is
uncertain. It was once thought to be the e(660)."
More recently it has been identified with the broad
c(1300) (Ref. 29) (whose mass may be as high as
1700 MeV) with the broad e (660) disappearing. "
Nevertheless, for the sake of comparison, we
have considered solutions in which the S* is paired
both with the e(660) and with the e(1300) as the o

and cr' of the model. TheI=1 E and the I=2m of
the model are associated respectively with the
5(980) (Ref. 29) and the &(1400)."

We considered it desirable to attempt to obtain
a value of -1.25 for the ratio Ilz jF„. (The justifi-
cation for this value will be given in the following
section where we discuss the experimental data
for the K„decays. )

A large number of solutions were considered.
We have chosen to present six of these as being

representative. The tree and one-loop approxima-
tion solutions are given in Tables I and II, re-
spectively. It is not intended that the tree approxi-
mation solutions be taken seriously in their own

right as they were used only as a starting point
to obtain the one-loop solutions.

Our method of calculation was tested and our
solutions verified using several Ward- Takahashi
identities. We set v' = ~g'~ throughout our numeri-
cal work.

The discussion of our results should be prefaced
by the following remarks. The present model was
not able to accommodate all of the masses and de-
cay constants at their "physical" values in the one-
loop approximation. Of coorse, it is neither nec-
essary nor desirable to achieve exactly these
values to any finite order in perturbation theory.
For a perturbative approach to make sense, the
percentage difference between three and one-loop
values of the masses and decay constants should
not be too large, say 10—15/~; the differences be-
tween the target values of these quantities and
their corresponding one-loop values should prob-
ably be no greater than this.

We were successful in finding solutions which
largely satisfied these requirements. Owing to
the rather time-consuming nature of the numeri-

TABLE I. The tree-approximation calculations for the six cases considered.

Quantity

Solution

~ (MeV)
m (Mev)
m„(MeV)
m, . (MeV)
m, {MeV)
m„(MeV)
m, (Mev)
m, . (MeV)
I, {MeV)
Z~ {MeV)
y- /~
E8„{MeV)
F'gq. (MeV)
Z„(Mev)
Hp (deg)
H& (deg)
a-
h

$, {Mev)
g, (Mev)

p~ (GeV2)

fj
f2
g (Gev)
&8 (GeV3)

~, (GeV')

137.5
497.0
548.8
924.1
874.4
841.3
525.0

1087.7
95.0

142.0
1.495

160.5
-32.70
-47.03

4.19
-52.02
-0;9251
-0.2481

-54.30
154.7

0.0349
-2.779
-1.604
1.286
0.0384

-0.0294

137.5
495.0
548.8

1084.4
1071.1
1108.2
800.0

1248.2
110.0
135.3

1.230
143.5
-25.30
-25.30
-0.569

-57.93
-0.9088
-0.1329

-29.21
155.4
-0.0524
-3.644
-5.604
1.887
0.0358

-0.0279

137.5
495.0
548.8

1115.2
1124.0
1172.9
900.0

1324.9
100.0
120.0

1.200
126.2
-21.50
-20.00
-1.199

-55.71
-0.9066
-0.1176

-23.09
138.8

-0.1459
-5.485
-8.814

2.252
0.0318

-0.0248

137.5
495.0
548.8

1115.2
1124.0
1172.9
800.0

1280.5
110.0
132.0

1.200
138.7
-23.65
-22.00
-1.20

-64.0
-0.9066
-0.1176

-25.40
152.7

-0.0030
-3.042
-7.284

2.047
0.0349

-0.0273

148.2
490.0
543.2

1095.4
1109.5
1160.8
898.8

1314.5
99.3

119.0
1.198

125.1
-21.57
-19.67
-1.39

-55.1
-0.8901
-0.1166

-22.71
137.7

-0.1540
-5.478
-8.957

2.181
0.0306

-0.0243

228.1
507.8
556.7

1115.3
1131.6
1179.1
941.8

1325.9
103.5
122.4

1.182
128.2
-20.53
-18.82
-1.24

-54.5
-0.7641
-0.1081

-21.73
142.2

-0.1521
-5.455
-8.564

2.157
0.0302

-0.0280
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TABLE II. Six one-loop-approximation solutions for the tree-approximation solutions pre-
sented in Table I.

Quantity
Solution

M, (MeV)
~~ (Mev)
~„(MeV)
~„.(Mev)
M, (Mev)
~„(MeV)
M, (MeV)
M, . (MeV)
(E+ &E), (MeV)
(F+ hF)~ (MeV)
EE/E + 4(EE/E )
(E+aE) (MeV)
(E+ ~E)~, (MeV)
(E+ ~F)„(MeV)

a
b

8„(deg)
8„. (deg)
8, (deg)
-8~. (deg)

Z i/2

Z i/2
K

Z i/2

Z , i/2

Z i/2

Z i/2

z 1/2

Z, i/2

~&, (MeV)
a$, (Mev)

Ap~ (GeV2)

Afi
hf2
~g (GeV)
~., (Gev')
~~, (GeV')

137.5
497.0
548.8
958.0
885.2
921.2
450.0

1038.0
95.0

118.5
1.248

124.9
-24.45
-32.04
-i12.99

-0.9135
-0.1578
-1.29
1.77

-52.4
-67.2

0.9314
0.9256
0.9267
0.9086

0.9423
1.022
1.093
0.9074

29.95
-28.99

0.1815
22.88
1.181

-0.3573
-0.0038

0.0026

137.5
505.0
548.8
958.0
863.0

1056.7
990.0

1653.6
95.0

117.0
1.231

122.1
-44.20
-33.37

-i20.62
-0.9134
-0.1433
-6.25
-6.96

-53.9
-44.2

0.8502
0.8516
0.8525
1.020

0.8710
1.124
0.3540
0.8706
5.682

-42.36

-0.0736
58.54
28.10
0.5115
0.0025

-0.0018

137.5
510.0
548.8
958.0
910.4

1287.3
990.0

1608.6
95.0

108.5
1.145

109.3
-54.1
-19.51

-i20.09
-0.9098
-0.1049

-11.6
-15.2
-5.05

-81.2
0.7719
0.7779
0.7791
1.097

0.6914
1.034
0.6815
0.5274
9.215

-40.32

2.448
107.76
37.48
-0.1500

0.0069
-0.0053

137.5
510.0
548.8
958.0
956.7

1305;3
990.0

1578.7
95.0

108.1
1.146

108.5
-54.06
-17.54
-i17.87

-0.9098
-0.0995

-11.0
-14.7
-2.03

-69.8
0.8295
0.8298
0.8303
1.0889

0.5523
1.0239
0.3136
0.3676

12,21
-49.75

-0.5008
157.6
102.6

6.259
0.0025

-0.0019

142.2
504.2
545.9
993.3
905.8

1229.5
874.1

1455.4
97.5

112.5
1.155

115,0
-41.58
-22.49
-i20.55

-0.9060
-0.1097
-7,96

-10.3
-11.8
-91.6

0.7741
0.7804
0.7811
0.9694

0.6870
1.0590
0.7264
0.7776
7.036

-34.48

3.184
111.5
41.47
0.1201
0.0078

-0.0058

193.5
546.9
595.2
995.9
979.5

1333.4
953.1

1546.4
100.8
114.9

1.141
126.1
-50.27
-20.81
-i16.13

-0.8899
-0.0985
18.9

-14.5
-13.7
-91.6

0,7961
0.7977
0.7936
0.9772

0.5128
1.018
0.8031
0.6768
7.098

-33.85

2.999
106.9
36.30
-0.0479

0.0146
-0.0089

cal analysis, we usually input the known masses
at or very near to their physical values and, as
indicated in Sec. II, adjusted these somewhat to
obtain an acceptable solution overall. This re-
sulted in spreads of -2Q% between tree and one-
loop results for some quantities. However, solu-
tion 6 represents an example in which there is
perhaps a more realistic averaging of the percen-
tage differences between tree and one-loop values.

Let us now look at some of the more important
features of the solutions. Since the e(13QQ) is now

preferred to the e(66Q) as the partner of the S~(98Q),
we have included only one example in which the cr

is assumed to be a (broad) low-lying state and the
S* is the o'. This is solution 1 in Tables I and

II. In the remaining solutions, 2-6, the v is iden-
tified with the S* and the o with the e(13QQ).

Solution 1 is the only one (displayed) in which
the tree and one-loop values of the pion mass and
decay constant and the kaon and q masses are
each chosen to have the same physical values. In
solutions 2-6, EI,10 and for a least one of m, K,
or q there is a second-order mass adjustment.

It can be seen from Table II that solution 1 comes
reasonably close to achieving the goals of a low-
lying 0 coupled with a v' at -1 GeV. However,
the one-loop e mass comes out -5Q% below that of
the a(14QQ)." On the other hand, the target value
of 1.25 for Fz/E„, 27 could be approached arbitrar-
ily closely.
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Turning now to solutions 2-6 one sees from
Table II that all but solution 2 give quite respect-
able results for all of the masses, as well as for
F„and Fr/F„So. lution 2 has the lowest v and the
highest g of these solutions. While the one-loop
values of the 0' mass are quite a bit higher than
1300 MeV in most of these solutions, this is prob-
ably not a major problem, because the e(1300) is
fairly broad. Although solution 6 is perhaps the
most satisfactory overall (see the above discus-
sion), it still has a flaw in that its one-loop pion
mass is 25-30% higher than the physical value.
An investment of additional time and effort would
undoubtedly lead to an improvement of this situa-
tion through further averaging over all the masses,
without seriously affecting the qualitative features
of solution 6.

Most of the particle masses as well as the known
decay. constants are in fact reproduced to within
-10%, especially in solutions 4-6. It may not be
overly optimistic then to expect that one-loop cal-
culations of other quantities, such as the K» form
factors, would typically be that accurate as well,
although some may be no closer than -20% to the
exact model value. The assumption here is that
an exact solution to the model would yield all
masses and decay constants at or very near their
physical values.

As a final point, we note that in our solutions the
coupling constants undergo large shifts from their
tree to one-loop values. However, it should be
realized that large shifts in the coupling constants'
are not manifested directly as large shifts in the
decay widths of the unstable particles (v, z, . . . );
these widths may be determined by means of phase-
shift calculations such as those carried out in
Ref. 14.

The parameter a is shifted by an insignificant
amount in all our solutions, save solution 6. In
general the model solutions appear to support the
conjecture that the higher-order corrections to the
tree-approximation results are relatively small
and that the perturbation series will in fact con-
verge.

With our solutions chosen, we then calculated
the K» and pion electromagnetic form factors.
Table III lists the contributions to f,(t) and f (t)
at I;=0 and ]=mz' from the individual Feynman
diagrams of Fig. 3 for solution 4 of Tables I and
II. A comparison between the tree and one-loop
approximation values of f, (t) and f (f) is given in
Table IV (again using solution 4) for a number of
t values. Our predictions for the K» form-factor
parameters, defined in the next section, are
listed in Table V. The calculated K» for factors
were checked numerically using Ward- Takahashi
identities.

TABLE III. The individual diagram contributions to
f,(t) and f (t) for t=0 and t=12m, p (where m, p=140 MeV)
for solution 4.

Diagram
t= 12m p2

f+ f~

1
2

4
5
6

8
9

10
11
12
13
14

15+16
17+18

19

0.6592
0
0.1826
0.1426
0
0'

0
0
0
0
0
0
0
0
0
0
0

0
-0.7236

0.0104
-0.0348

0.1033
-0.0406
-0.0131
-0.1208

0.4721
0.2321
0.0411
0.1315
0.0101
0.1229

-1.4431
-1.7853

3.1374

0.6592
0
0.1847
0.1500
0
0
0
0
0
0
0
0
0
0
0
0
0

0
-0.8729

0.0108
-0.0470

0.1273
-0.0571
-0.0133
-0.1631

0.5667
0.2463
0.0507
0.2138
0.0122
0.1482

-2.0451
-2.5976

4.5650

Total 0.9844 0.0997 0.9939 0.1450

TABLE IV. The values of f (t) and f (t) in the tree and
one-loop approximation for solution 4. The tree-approx-
imation form factors are given in Eq. (6.10). The last
row corresponds to t= mE (m, p= 140 MeV).

Tree
t (m, p2) f,(t) f (t)

One-loop
f,(t) f (t)

~2
-1

0
1
2
3
4
5
6
7
8
9

10
11
12
13.6

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0.1,60
0.162
0.164
0.167
0.169
0.172
0.174
0.177
0.180
0.183
0.186
0.189
0.192
0.195
0.198
0.203

0.9830
0.9837
0.9844
0.9851
0.9858
0.9865
0.9873
0.9880
0.9888
0.9896
0.9904
0.9912
0.9921
0.9930
0.9939
0.9960

0.0953
0.0974
0.0997
0.1021
0.1047
0.1074
0.1104
0.1135
0.1170
0.1207
0.1247
0.1291
0.1339
0.1392
0.1450
0.1607

The pion electromagnetic form factor F~(f) is
given in Table VI for selected values of f. In
Table VII we give the diagram contributions to
F„(f) for solution 4. In all cases, F„(0)=1.0, as
required by electromagnetic-current conservation.

VI. PREDICTIONS OF THE SU(3) 0 MODEL

Now that its parameters have been fixed by the
requirement of a reasonable mass spectrum (and



OWE-LOOP CALCULATION OF THE EI3 FORM FACTORS I5 759

TABLE V. The X» form-factor parameters to second order for the solutions presented in
Tables I and II.

Xo

h(0)
A

0.9848
0.1918
0.0173
0.0004

0.0003

0.0000
0.0214
0.2035
0.0036

0.9847
0.1584
0.0140
0.0007

0.0003

0.0000
0.0232
0,1673
0.0039

0.9803
0.0923
0.0087
0.0010

0.0002

0.0000
0.0213
0.0990
0.0024

0.9844
0.0997
0.0090
0.0007

0.0002

0.0000
0.0194
0.1060
0.0023

0.9813
0.1001
0.0097
0.0010

0.0003

0.0000
0.0241
0.1010
0.0027

0.9876
0.0977
0.0094
0.0008

0.0005

0.0000
0.0452
0.0597
0.0015

decay constants), the SU(3) o model can be put to
a number of interesting uses. In subsection A the
calculated &» form factors will be compared with
experiment. - This will be followed in subsection
8 by a study, within the context of the present
model, of a number of theoretical predictions for
the K» form factors and for other quantities of
interest such as masses and decay constants. Let
us first introduce several additional form factors
and the conventional parametrization which will
be needed below.

The divergence form factor f,(t) is defined by"

f (I} f (0}(1+X, , +X',' mr' ' m.'
and

$(t) = $(0) +A mr'

Note that, from Eqs. (6.3}—(6.6),

and (for small X,)

(6.6}

(6 't)

(6.8)

t[(2v)'4(o, u)r ]"'(m'(q') is ~ W„„(0)i''(q))

(m ' —m ')f, (t). (6.1)

From Eq. (3.1) it follows that

(6.2)

Next, we define in the usual way

(6.3)

In experimental analyses of the &» decays it is
customary to employ the parametrization [in the
physical region m, ' ( t ( (m» —m,)']

(6 9)

It is usually assumed that f, (t) and f, (t) are linear
in the decay region; this requires A, =0 for con-
sistency.

A. Comparison of EI3 predictions with experiment

Tables III-V contain our predictions for the &f3
form factors based on the one-loop approximation
calculations of Section III. A measure of the
higher-order effects of the strong interactions is
provided by Table IV in which the tree-approxima-
tion form factors

f,(t) = 1.0

f (t) =f,(0)(1+X, , +X','m. ' ™r'
f (t) f(0)(1+v ), =

(6.4)

(6.6)

and

( )
12+„G,

$ —m„

(6.10)

are compared with their one-loop approximation

TABLE VI. The pion electromagnetic form factor E, (t) for various values of t for the solu-
tions given in Tables I and II. F,(0)=1.0000 in all cases (m, p= 140 MeV).

t (m, p2)i

-20
-40

1.0105
0.9814
0.9720 .

1.0128
0.9720
0.9560

1.0172
0.9605
0.9373

1.0130
0.9709
0.9540

1.0150
0.9617
0.9388

1.0077
0.9731
0.9548
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TABLE VII. The individual diagram contributions to
I', (t) for t= 4m, o and t= 40m, o for solution 4 (m, 0=140
MeV).

Diagram t= 4m, o2 t = -40m, o2

Total

0.6589
0.2358
0.1183
0.0000
0.0000

1.0130

0.6589
0.1810
0.1141
0.0000
0.0000

0.9540

counterparts at a number of different t values.
The one-loop correction to f,(t) is seen to be ex-
tremely small over the range of f, considered; on
the other hand the one-loop corrections to f (t) are
quite s ubstantial.

In Table V we have listed our predictions for the
parameters appearing in Eqs. (6.4)—(6.7). First,
with regard to f,(0), the best experimental infor-
mation on this quantity is its correlation with E~
and I', given by"

)
=1.25+0.03.F, 0 (6.11)

We used (6.11) and our expectation" that f,(0)
= 1.0 to establish the target value of Ez/F, in our
solutions. The predicted one-loop values of F~/
F,f,(0) lie within -10% of the experimental range.
Also, the one-loop values of f,(0) are consistent
with the rather inaccurate result f,(0) =0.96+0.07
of Buchanan et al."

The one-loop values of A., are seen to range from
0.0004 to 0.0010. These are much smaller than the
recent, accurate value of X, =0.030+ 0.003 obtained
by Donaldson et al. ' in a Dalitz-plot analysis of
1.6x10' K~- vpv events. Perhaps more significant-
ly, they are small compared with the world av-
erages of K» and K» Dalitz-plot experiments as
reported by Donaldson ef al. and with which their
own value is consistent. In fact, the experimental
values of A,, are remarkably consistent with simple
K* dominance of f,(t) and, since in the pres'ent
model f+(t) does not contain any spin-one poles in
the one-loop approximation, ' it is not surprising
that the predicted t dependence is small. "

With respect to the parameter Xp the situation is
quite different. Our predictions run from Xp

=0.0087 to Xp =0.0173. Most are lower than, but
not inconsistent with, the result Xp 0 019+0 004
of Donaldson et al." and are also consistent with
the value of Ap =0.024+0.013 found by Buchanan
et al." in a constrained [f,(0) =1.0] fit; They are
not consistent with the result Xp =0.032 + 0.010 ob-
tained by Buchanan et al. using an unconstrained

fit. Donaldson et al. also obtained acceptable re-
sults with a separate, two-pole (K*,~) fit to f,(t)
and f, (t) with m„=1109+42 MeV. It can be checked
that in our case the ~ pole accounts for the largest
portion of the slope; e.g. , in solution 4 A.p 0 0090,
while (m, /m„)' =0.0111.

The positive values we obtain for $(0) are cor-
related with our small X, [see Eq. (6.8)]. A more
realistic X, would bring our $(0) closer to the re-
sults $(0) =-0.11+0.03 of Donaldson et at."and

](0)= -0.20+ 0.15 of Buchanan et al." These latter
values are among the least negative of the experi-
mental determinations of $(0). Until a short time
ago, of all the world averages, only that of the
(K»/K„) branching-ratio analyses yields a (small)
positive value for $(0).35 However, a recent
analysis" of the muon polarization in the decay
Kz —m g' v„, based on more than 200 000 events,
obtained g(0) =0.178+ 0.105, which is close to our
model predictions.

8. Model tests of various theoretical predictions

Using the present 0 model as a laboratory, we
shall now examine a number of theoretical pre-
dictions both for the K» form factors and for
pseudoscalar- and scalar-meson masses, decay,
and renormalization constants, which have been
derived using various symmetry and smoothness
assumptions. We will be especially interested in
tests of current-algebra relations and the insight
they provide into the effects of chiral symmetry
breaking.

We commented in the last section that one might
expect the one-loop calculation of any given quan-
tity to be accurate to within -20% and perhaps even
-10%, since the mass spectrum and know decay
constants were reproduced to that accuracy. In
this section we will assume further that, when a
symmetry relation holds between several quan-
tities, the corrections to this relation, which
arise from symmetry breaking, are predicted to
within -20% by the present model. This appears
reasonable, because quantities related by a sym-
metry property should receive correspondingly
related contributions at each order of the loop ex-
pansion. " It will be seen below that this behavior
usually does manifest itself in lowest order, as
the differences between one-loop and tree-approxi-
mation values of both the right- and left-hand
sides of most relations considered have the same
sign and rough magnitude. Exceptions to this
will be pointed out when we come to them. More
conservatively, the following tests can probably
at least be trusted as a guide to the relative
validity of the various symmetry predictions.

As was mentioned in the Introduction, the present
model has the structure of (1.1) and (1.2). For
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example, the symmetry-breaking interaction (2.1)
can be re-expressed as (with 3C ~ =-+8~)

s E's
(oo —V2oo)+ eo+ ~2 oo ~ (6.i2)

where vo —W2o, is SU(2) xSU(2) invariant, so that

and (6.i3)

f,(0) =1.0+O(5,') . (6.14)

Actually Langacker and Pagels have shown" that

f,(0) =1.0+O(6,'/6, ) =1.0+O(6,) (6.15)

when SU(3) xSU(3) symmetry is realized in the
Nambu-Goldstone mode (as in the present model'4).
The correction linear in 5, has been calculated""
leading to

/

yn 2

f,(0) =1.0 —,«, (—', —61n~).64&2F 2 (6.16)

Relation (6.16) could serve as a useful test of the
capability of the cr model (in the present, one-loop
approximation) to furnish accurate estimates of
corrections to chiral symmetry predictions. How-
ever, there are difficulties of interpretation in

any comparison of this relation with the model
prediction for f,(0) as calculated according to
Sec. IV.

Although calculated quantities in the present
model contain terms both analytic and nonanalytic
in the pseudoscalar-meson masses (equivalently
6, and 6,), there is not a one-to-one correspon-
dence between the loop expansion and the different
sorts of terms present in a perturbation series in

6, and/or 6,. Thus for example the one-loop ap-
proximation to a particular quantity may contain

s6, co+ ~2

From our analysis it turns out (see Tables I and II)
that (co+a,/v 2 («(e, /v 2

~
so that (1.3) is satisfied,

as expected. ' "
When considering a particular prediction below

we will indicate, where appropriate, in which
limit, '6y 0 or Q2 0 it becomes exact." The
predictions will be examined first in the tree and
then in the one-loop approximation of the o model.
The tests will be carried out using solutions 1 and
4 of Tables I and II which are representative of
solutions with low and high o mass, respectively.
The results of these tests are presented in Table
VIII.

Let us first look at one of the earliest most
general of the predictions for the K» form factors,
namely the Ademollo-Gatto theorem"

terms which behave like Olney, 6' ', 5, 6' ', . . . .
The contribution of the additional, nonanalytic
terms to the o-model value of f,(0) will cause it
to differ from the prediction in (6.16) to any order
in the loop expansion.

As can be seen from Table VIII the one-loop
o model values for f,(0) are all quite close to
those obtained" from (6.16). The corrections
arising in the model to this order are of the same
sign and approximate magnitude as that given in
Eq. (6.16). The discrepancies undoubtedly stem
from the sources noted above. At any rate we are
encouraged to hope that the estimate of chiral-
symmetry-breaking effects which follow are at
least qualitatively and perhaps quantitatively
meaningful. In fact, if our estimates are indeed
good to within -20%, our results may give a better
indication of chiral-symmetry-breaking effects
than can be obtained by simply isolating a correc-
tion term with a particular 5 dependence.

Before leaving f,(0), however, we will consider
two other predictions for it. The first, derived
by Lee ' on the basis of a chiral Lagrangian model
incorporating field-current identities, is

(6.17)

One sees from Table VIIIthatforsolution1(6. 17) is
much better satisfied in the one-loop than in the
tree approximation. In solution 4, however, the
convergence of the prediction is slower. In both
solutions (6.17) holds to -2%.

The second prediction

(6.18)

f,(m ')+f (m ') = —«+O(5, ). (6.19)

Since this relation is satisfied identically in the
tree approximation, one of the interesting features
of the present investigation is that it allows a

was first derived by Glashow and %einberg4 from
Ward- Takahashi identities and the assumptions of
(3, 3*)$(3*,3) symmetry breaking and smoothness.
Relation (6.18) is identically satisfied in the tree
approximation, of course, but Table VIII shows
that the right- and left-hand sides differ by ~ 1.5/q

in the one-loop approximation.
Our one-loop results are consistent with the

right-hand sides of both (6.17) and (6.18) converg-
ing to values ~1.0, which would make them good
approximations as judged by the present model or
by the more general prediction (6.16).

%'e will now examine a number of current-algebra
theorems for the &» form factors. The first states
that22
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TABLE VIII. Tests in the SU(3) a model of various theoretical predictions discussed in the
text. The first column contains the equation numbers where the predictions are given. Oppo-
site each of these are two rows, the first containing the values of the left- and right-hand
sides of the predictions as calculated in the tree approximation of the present model, and the
second containing the corresponding values as calculated in the one-loop approximation. The
tests were carried out using solutions 1 and 4 of Tables I and II. Note that only the terms
appearing explicitly in each equation have been calculated (m, p= 140 MeV).

Prediction
Solution 1

Left-hand side Bight-hand side
Solution 4

Left-hand side Bight-hand side

(6.16)

(6.17)

(6.1s)

(6.19)

(e.20)

(6.21)

(6.22)

(6.23) (m~p2)

(6.24) (m, p2)

(6.26) (m, p2)

(6.28)

(6.29)

(6.33)

(e.35)

(e.36)

(6.37) (m, ps)

(e.3s) (m, p)

(e.39) (m, p4)

(6.41)

(6.42)

1.0000
0.9848
1.0000
0.9848
1.0000
0.9848
1.4950
1.2482
0.6689
0.7899
0.8268
0.4046
1.4755
1.2399

18.641
15.148

240.35
199.04
18.786
16.209
1.4484
1.2288
0.5516
0.7497
1.4484
1.2288
0.5516
0.7497
1.4950
1.2477
1.5360
1.2695
0.6546
0.6995
0.678'6

0.6320
68.177
41.797
0.6896
0.3147
0.0000

-0.0047
0.0000

-0.0058

1.0000
0.9664
1.0819
1.0136
1.0000
0.9704
1.4950
1.2477
0.6689
0.7795
0.4131
0.2341
1.4950
1.2477

18.196
14.972

236.82
197.44
19.486
16.476
1.3855
1.1929
1.9353
1.4680
1.4157
1.2023
1.9413
1.4976
1.2227
1.3850
1.3934
1.1302
0.6546
2.0294
0.6786
0.5351

68.177
37.943
0.6600
0.3303
0.0000

-0.0077
0.0550
0.0275

1.0000
0.9844
1.0000
0.9844
1.0000
0.9844
1.2000
1.1484
0.8333
0.8830
0.2517
0.2863.
1.1967
1.1411

14.276
14.543

187.33
202.91
15.680
15.833
1.1919
1.1310
0.8081
0.8546
1.1919
1.1310
0.8081
0.8546
1.2000
1.1460
1.2167
1.1605
0.7579
0.7838
0.7857
0.5446

51.386
35.183
0.2624
0.1583
0.0000
0.0008
0.0000
0.0003

1.0000
0.97.52
1.0167
1.0084
1.0000
0.9932
1.2000
1.1460
0.8333
0.8708
0.1833
0.1376
1.2000
1.1460

14.198
14.368

186.76
201.01
15.805
16.048
1.1554
1.1153
1.3778
1.2767
1.1616
1.1192
1.3790
1.2838
1.0954
1.1832
1.0781
1.0317
0.7579
1.8061
0.7857
0.4823

51.386
40,254
0.2667
0.1947
0.0000
0.0004
0.0222
0.0162

comparison, in the one-loop approximation, of
chiral-symmetry-breaking corrections on the one
hand with general higher-order strong-interaction
effects on the other. It is clear from Table VIII
that the latter, while not sizeable, are much lar-
ger than the former. On the basis of Eq. (6.13) and

Table III we would expect the O(6, ) corrections to
(6.19) to be about 10 times smaller" than the O(6, )
corrections to (6.15). This is true for solution 4,
but in solution 1 they are 50 times smaller.

The experimental data, especially the high-
statistics results of Donaldson et al."support our
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finding of a small correction to (6.19). In particu-
lar, using Eqs. (6.2) and (6.6) (with X, =0) the
relation (6.19) leads to X, =—0.02, while Donaldson
et al. find Xp 0 0~19+0 004.

The soft-kaon counterpart of (6.19) is"

f,(m„') -f (m, ') = ~+O(5,).
K

(6.20)

(m»' —m, ') —f,(t)
mZ +~

,'(F /F, —F /F )+—O(5,). (6.21)

Although the O(5, ) corrections to (6.21) are model

Again this relation is satisfied identically in the
tree approximation and one sees from Table VIII
that, as for (6.19), the symmetry-breaking cor-
rections to (6.20) in the one-loop approximation
are much smaller than the one-loop contribution to
each side, which are 7-15%. The O(5, ) corrections
to (6.20) are close to what one might expect from
our analysis of the Ademollo-Gatto theorem,
namely -2%.

If one accepts the predicted size of the cor-
rections to (6.20) as realistic, as those for (6.15),
and presumably (6.19), seem to be, then an in-
teresting situation arises. For a plausible value
of F»/F, = 1.25 [see—Eq. (6.11)] (6.20), with f,(m„')
—=f,(0) —= 1.0, leads to $(0) -=0.2. This is higher
than most of the experimental determinations, "
although their trend has been toward less negative
values (see, e.g. , Ref. 39}. In addition, a value
of $(0)= 0.2 implies from Eq. (6.8) that A, —X,
= 0.016. Now it would be surprising if A., turned
out to have a value much different from its
"world average"" of -0.03. This is turn forces
Xp to be 0.046, which clearly is inconsistent with
what is required by the soft-pion theorem (6..19),
unless a simple linear expansion is not valid for
f,(t} [or perhaps, for f,(t), but this seems less
likelyi in the decay region. One would then need,
at least, to use the more general parametrization
of Eq. (6.4), together with a nonvanishing A in
(6.6). Most experimental analyses including those
of Donaldson et aL" and Buchanan et aE."use a
linear parametrization for fa(t). It would be ex-
tremely interesting to look for nonlinearity in this
form factor, but the effect would be quite difficult
to detect.

It is certainly not inconceivable that the slope
of fa(t) is higher at t =0 than at t =m»'. Qn the
other hand, as Langacker and Pagels' have pointed
out, perturbation about the SU(3) x SU(3)-symmet-
ric limit may not always be reliable. An example
in which its reliability is questionable follows.

Let us consider a theorem" for the slope of f, (t)
which states that

dependent, Dashen et al."expected them to be
smal1. . As Table VIII indicates, the percentage
correction is large in both the tree and one-loop
approximations. In solution 4 the shifts in going
from the tree to the one-loop approximation are of
opposite sign for the two sides of (6.21). Our re-
sults agree with the conclusions of Auvil and Prit-
chett, "who generalized the theorem (6.21) to all
values of t and estimated the correction at t
=m»'+m, ' to be -50%.

Based on an incorrect version of (6.21) Dashen
and Weinstein" argued that a variation of (6.19)
which should be better satisfied is

f,(m»' —m, ') +f (m»' —m„') = —» +O(5,5,) +O(5,') .+ K m' — K n'

=m ' ~ —m, ' —'+O(5, ) (6.23)

or an alternative suggested by Mathur and Okubo

(m»' —m, ')f, (a)+(m»'+m„')f (a)

=m»' ~ —m„' ' +O(5,), (6.24)

where

~ =mg +m„ (6.»)
Table VIII shows that for solution 1 these rela-
tions become better satisfied in going from the
tree to the one-loop approximation, with (6.24)
more nearly so than (6.23). In this solution (6.24)
is better satisfied than (6.20), but not so well as
(6.19). In solution 4, in which there may be acci-
dental cancellations of O(5, ) terms in the tree ap-
proximation, (6.23) and (6.24) are more poorly
satisfied in the next order. Table VIII implies that
these relations may still be quite well obeyed in
solution 4, but perhaps no better than (6.20).

An "improved" version of (6.23) was suggested
by Mathur and Okubo, 4' namely

( m+»'m)f, (a,) + (m»' —m„')f (a, )

=m '~+m '~ (6.26)F F
E

(6.22)

One can see from Table VIII that (6.22), though
well satisfied, is no better than half as well so as
(6.19).

Generalizations of (6.19) and (6.20) have been
derived by Mathur, Okubo, and Yang~' "on the
basis of assumptions about the smoothness of
various physical quantities as functions of the
chiral-symmetry-breaking parameters and their
ratios. The first were"

(m»' —m, ')f,(L) +(m»'+m~')f (a)
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with

(m „'—m, ')'(4m»'+ m, ')
(6.27)

O(5, ) corrections among the predictions of Mathur
et aL The relation

K & +O (6.35)
However, one sees from Table Tfiii that (6.26) is
more poorly satisfied than (6.23) in second order.
Finally, Mathur and Yang" derived the relations

and

f (b,)+f (b,,}= I —e —2ae+constx 5,' (6.28)

f,(h,)-f (6,) =I+a —ae+constx5, ',
where b., is given in Eq. (6.27),

q=~ —1
F

(6.29)

(6.30)

and

m'-~'
K ~ 0 891

mK + ~2

(6.31)

Although, according to Mathur and Yang, the
comjlete corrections through O(6,') cancel in
these relations, Table VIII shows that the remain-
ing corrections are surprisingly sizeable. The
corrections to (6.29) are especially so, being much
larger than those to (6.20). Relation (6.29) is
another example in which the differences between
one-loop and tree values have opposite signs on
the right- and left-hand sides. Thus, either this
prediction, like (6.21), is not very good, or for
some reason our model calculations do not fairly
reflect its eventual convergence. Relation (6.28)
is about as well satisfied as (6.20) in the one-loop
approximation.

Improved versions of (6.28} and (6.29), which
include O(e') terms, were also presented by
Mathur and Yang. " These are

f,(h, ) +f (6,) = —ax+ (1 + a)/x+ —,'(I + a)y (6.32)

is seen from Table VIII to be badly violated in the
tree approximation, but considerably better satis-
field in the next order. Although this suggests
that (6.35) may converge to a more approximate
validity, this may be misleading, since the one-
loop contributions to the tree values of each side
have opposite signs. All that can be stated with
certainty is that (6.35) is not as well satisfied as
(6.20) [or for that matter (6.28) or (6.32) in the
one-loop approximation].

The last K» prediction we shall examine was
derived by Gaillard. " Using (3, 3*)$(3*,3) sym-
metry breaking, the Bjorken limit, and smooth-
ness assumptions, she found

m»' F» c +~2
fo(» }=m 2 m 2 F ~/+1 (62))

K +2

(6.36)

where c is equal to v 2 times our a of Eq. (2.4). In
the limit of spontaneously broken SU(2) xSU(2)
(c -V2, m,-0) (6.36) reduces to (6.19). Note,
though, that whenever the latter is well satisfied,
as in the present case, the relation (6.36) cannot
be, unless c is renormalized substantially away
from its usual value. ' Such a large shift in c
appears to be unlikely. " Looking at Table VIII
we see indeed that (6.36) is poorly satisfied in the
tree approximation and there is only a tiny im-
provement in the next order. It seems doubtful to
us that this prediction would improve if higher or-
ders in the loop expansion were included.

We will. conclude this section by considering a
number of miscellaneous sum rules and relations
which involve masses and decay and renormaliza-
tion constants. The first group,

(6.33)

where again A, is given in Eq. (6.27), x =1+e, and

2F Z 1/2 ~ 2p Z -1/2 +~ 2~ Z 1/2
7f 7t' r K K K K K K

F Z 1/2 F Z 1/2+F Z 1l2
K K K K

and

(6.37)

(6.38)

(6.34)

The same general comments which were made
above for (6.28} and (6.29) apply as well to (6.32)
and (6.33}, respectively. Inspection of Table VIII
shows that (6.32) is indeed somewhat better satis-
fied than (6.28) in the one-loop approximation.
However, (6.33} is slightly more poorly satisfied
than (6.29).

As an aside, there is another example of large

4[m» F»'+m„F„]=3[mq F q
+m ~.'F ~ ]+m~ F~

(6.39)

was derived by Glashow and Weinberg, ~ as was
(6.18), using Ward-Takahashi identities, smooth-
ness assumptions, and (3, 3*)6(3*,3) symmetry
breaking. (6.37)—(6.39) are identities in the tree
approximation, but not in higher order. The failure
of relation (6.37) to be identically satisfied in the
one-loop approximation is an artifact of our re-
normalization procedure. " As Table VIII shows,
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neither (6.38) nor (6.39) is particularly well
satisfied (compared with most of the above K„
predictions) in the one-loop approximation. The

O(6, ) corrections to (6.38) and (6.39) are apparent-
ly larger than those in (6.18).

The last set of predictions we shall consider here
were derived using chiral perturbation theory. '
The first relation'

p ~ —1 +constx5, + (6.40)

was obtained by explicitly evaluating and then
eliminating the 6, ln5, corrections to the decay
constants.

That is, it follows from the fact that a perturba-
tion expansion in 5, yields

Fa/F ~
—1 = a5, ln 5, + b6, + ~ ~ ~

and

Fx/F„—1 = 4a6, 1n6, + c6,+ ~ ~ ~,

with a, b, and e constants. Note that the correc-
tion terms F„/F„—1 and Fx/F„—1, when evalua-
ted in the one-loop approximation of the model
receive contributions from 5,-dependent terms in

addition to those written explicitly above. If it is
assumed that our one-loop determination of the
right- and left-band sides of (6.40) is reasonably
accurate, then Table VIII shows our results to be
quite consistent with the conclusion of Langacker
and Pagels' that the 5, ln5y corrections dominate
those linear in 5,. The former are roughly four
times the latter in magnitude.

The final predictions me will examine involve
the renormalization constants associated with the
pseudoscalar fields. First, one sees from Table
II that Z„and Z„differ by -1% in the one-loop
approximation. This is consistent with the results
of Langacker and Pagels' who found that the O(6, )

corrections to the Z's are (5%. The relations

Z "'/Z '" —I =7(Z "'/Z '" —I)+constx6

Z '~'/Z„' —1=-'(F /F, —1)+constx 6, (6.42}

were derived"2 by evaluating the ~, ln~, correc-
tions to the renormalization constants. According
to Table VIII (6.41) is quite well satisfied in the

one-loop approximation. (The correction terms
should be compared with 1 here. ) Again the 6, 1n6,
terms, which are responsible for the differences
g —1, are seen to be substantially larger than the
terms linear in 5,.

(6.42) improves in going from the tree to the

one-loop approximation. Although not as well
satisfied as (6.41), it seems good to within -1-3%.
Note that in solution 4 the one-loop contributions
to the right- and left-hand sides of (6.42) have

opposite signs.

IX. CONCLUSIONS

In summary, we have employed a renormalizable
0 model in the one-loop approximation to analyse
pseudoscalar and scalar-meson masses and decay
constants and the &» and pion electromagnetic
form factors. A reasonable mass spectrum and
values for E, and Iz were obtained. Second-
order strong-interaction effects were typically
found to be small, thus justifying the use of the
one-loop approximation. Possibly due to its in-
herent limitations, namely the lack of spin-1 poles
in the one-loop approximation, the model was not

able to reproduce the experimentally determined
f dependence of f,(t} and the pion electromagnetic
form factor. Nevertheless, the model has pro-
vided a useful laboratory in which to study a num-

ber of chiral-symmetry predictions. Our results
for these are in general agreement with the con-
clusions of Pagels and co-workers, ' who have

employed chiral perturbation theory to calculate
the leading symmetry-breaking corrections to a.

number of quantities.
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