
PHYSICAL REVIEW D VOLUME 21, NUMBER 3 1 FEBRUARY 1g80

Calculation of the s-wave final-state interactions in the Nmm system
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The coupled integral equations for the Nmm system are considered for s-wave isobars in S states. For
phenomenological objectives the equations are made tractable and the subenergy dependence of the isobar
amplitudes is organized according to a collection of resolvents. These quantities satisfy coupled integral
equations which are solved by means of a basis-function method. Calculations of the resolvents as functions
of the subenergy variable are made for total energy 8' = 1.3, 1.4, and 1.5 GeV. All of the large number of
results admit a useful physical parametrization in terms of a sort of complex scattering length. A
remarkable sign regularity among the parameters is observed and interpreted.

INTRODUCTION

The physics of a three-hadron system is usefully
described in terms of the pairwise interactions
among the three particles. There arise three con-
figurations, isobar channels, each consisting of a
two-body isobar plus a third particle. The isobar
subenergy dependence of the amplitude to each of
these channels becomes the quantity of interest in
this approach. The description in terms of sub-
energies is a natural one phenomenologically be-
cause distributions in these (Dalitz-plot) variables
are generally focused upon in experimental situa-
tions.

Considerable recent progress has been made in
the effort to develop a dynamical framework based
on a subenergy perspective, the cornerstone of
which is subenergy unitarity imposed upon the
isobar expansion. ' The isobar amplitudes are
found to satisfy coupled linear integral equations
in a single variable. The form they take for the
N«problem has been developed and discussed at
length, ' and has been applied in a set of medium-
energy calculations.

The purpose of this paper is to take the next
logical step, to show ho» the coupled integral
equations may be solved. It should be noted im-
mediately that even at modest values of the total
energy, the number of coupled amplitudes is
rather large; therefore, the emphasis of the pro-
cedure is to avoid quadrature methods of ob-
taining the solution. Such a numerical approach
would become cumbersome in a highly coupled
application and might even swamp the capacity of
the computing system. Instead, a set of suitable
functions is identified and used as a basis set for
the expansion of the desired solutions. By this
means the coupled integral equations are solved in
terms of simple algebra.

The scope of the problem has been limited some-
what as the title would indicate. Only +-wave N&

and « isobars in ~ states are considered so that
only the waves having ~ ~= ' occur. This collec-
tion of isobar channels is sufficiently complex to
illustrate the method, even though the P-wave &
isobar in ~ and & states ought not to be left out of
any comprehensive phenomenology. Despite this
truncation of the problem, a multitude of quanti-
ties is to be determined according to the pro-
cedure. Calculations of these quantities are per-
formed for total energy 8'=1.3, 1.4, and 1.5 GeV.
By way of interpreting the many numerical re-
sults, a parametrization of universal form is
proposed which reveals a striking observation
common to all the calculations.

e&f (s,)=c +f d (z z)sDc(c(zsz)f s(zz)

e3
d@36&3(S&sZ3)C f,(Z3)f, (Z3) (1a)

~2

8 ff (ss)=c, +I dz, 2zss, (ss, z, )CE (z,)f (z,);

the variables s; and z& denote the three isobar sub-

EQUATIONS

The isobar amplitudes are identified as in Ref.
4, Eqs. (25) and (26), and the basic amplitudes of
interest are organized in two-component form ac-
cording to the isobar isospin:

ff.,),„,
if, ,] ~f„)

The notation for the &-wave isobars is the same as
in Ref. 5: ~& and ~3 for N&, &, and ~& for «. The
coupled integral equations, in the notation of Ref.
4, are
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energy variables. The isospin crossing matrices
are

i( t 2vz) r ( i W2)
and C =—

]

&2~2 -ii ( 0 0 i
for total isospin T= &, and

W5) ~ i f 0 0)= 61'E~ -2& '
EW5 i&

for 7.
' =&, the matrix ~ is the transpose of g. In

Eqs. (1), 4 and f, are the diagonal matrices

and

f0, 0)

the diagonal elements of which are the unitary

two-body amplitudes describing elastic scattering
in the isobar states.

Some concessions must be made to make pro-
gress with these equations. The attitude one takes
about the inhomogeneous terms &~ and &, is the
heart of the matter. In principle these terms may
depend on s,. as long as they are free of the right-
hand (elastic) unitarity cut which the integral
terms contain; for example, production Born
terms having left-hand cuts would show up here.
These may be of interest as driving terms in a
dynamical application of the equations. For the
present purpose a phenomenological attitude is the
one to adopt. Only physical values of s, are of in-
terest; for subenergies thus restricted &~ and &,
may be assumed independent of s„although of
course they must depend on + —8' . The motives
here wouM ultimately be to fit data, allowing for
rescattering corrections to previous nonunitary
fits using the isobar model. 7

. In this context the
's arethought of as complex fitting parameters,

TABLE I. Parameters for fitting I~~(s; ) according to Eq. (27).

~P W (GeV)
(a) Total isospin & =2

r (Ge& 1) aP W(GeV)
(b) Total isospin T =-

r (Gey -~)

Real Imaginary Real, Imaginary Real Imaginary Real Imaginary

1.3
1.4
1.5

-0.064 0.001
' -0.077 -0.004
-0.090 -0.009

-0.364 -2.040
-0.262 -2.545
-0.456 -2.675

1.3
1.4
1.5

0.088 -0.009 -1.292
0.080 -0.020 -1.650
0.074 -0.031 -1.651

-1.203
-1.228
-1.135

1.3
1.4
1.5
1.3
1,4
1.5

0.175
Q.227
0.284

-0.281
-0.291
-0.299

0.009
0.011
0.007

-0.031
-0.049
-0.065

-2.029
-2.573
-2.674

-0.645
-0.822
-0.844

-5.285
-4.325
-3.411

-3.498
-3.070
-2.701

S,S,

1.3
1.4
1.5
1.3
1.4
1.5

-0.3.07
-0.140
-0.178

, 0.183
0.196
0.210

0.002
0.008
0.013

0.010
0.018
0.028

-1.738
-2.542
-2.730

-0.334
-0.494
-0.553

-5.175
-4.357,
-3.388

-2.839
2 0 737

-2.532

1.3
1.4
1.5

-0.128 -0.042
-0.163 -Q.084
-0.195 -0.134

-1.660 -5.474
-1.860 -4.485
-1.861 -3.681

S3S3 1.3
1.4
1.5

0.110 -0.001 -2.046 -5.299
0.148 -0.001 -2.644 -4.354
0.191 -0.001 -2.786 -3.409

4'o

Sseo

1.3
1.4
1.5
1.3
1.4
1.5

-0.064
-0.075
-0.091

0.108
Q.131
0.156

-0.007
-0.006~.007

0.022
0.036
0.058

-2.743
-2.649
-2.581

-2.278
-2.160
-2.143

-4.346
-3.674
-3.057

-4.535
-3.804
-3.197

S(e2

Sse2

1.3
1.4
1.5
1.3
1.4
1.5

-0.063
-0.072
-0.081

-0.035
-0.042
-0.050

-0.001
0.003
0.006

-0.004
-0.006
-0.010

-2.404
2Q 223

-2.102

-1.907
-1.634
-1.537

-3.655
-3.015
-2.407

-3.940
-3.300
-2.729

1.3
1.4
1.5
1.3
1.4
1.5

-0.688
-0.636
-0.592

-0.802
-0.954
-1.100

0.004
0.039
0.071

0.003
0.089
0.195

-0.160
-0.402
-Q.456

-1.775
-2.188
~2 e312

30332
-2.896
-2.471

-5.492
-4.978
-4.112

1.3 1.463 0.074 0.229 -4.209
1.4 1.477 0.122 0.339 -3.925
1.5 1.478 0.164 0.388 -3.606

e2S3 1.3 -0.491 -0.050 -1.528 -5.685
1.4 -0.603 -0.069 -1.708 -5.176
1.5 -0.714 -0.120 -1.737 -4.232

60 6p 1.3
1.4
1.5

-0.017 -0.012
-0.038 -0.040
-0.054 -0.085

-5.358 —7.152
-3.983 -6.388
-3.263 -5.034

2&2 1 3 —. 0.042 -Q.014
1.4 -0.056 -0.029
1.5 -0.064 -0-048

0.836 -8.001
3.263 -7.372
6.138 -6.480
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constants for a given value of s. In any practical
application of the results which follow, no more
parameters than the original set of &'s arise.
This represents a distinct improvement over the
state of affairs concluded in Ref. 5, wherein the
effective parameter set was doubled in size.

In the same spirit, the integral terms in Eqs.
(1) may be put into a more practical form. Let
each integral be written as

f(zl = 3+f G(z, zlzdl, (3)

where G satisfies

G(x, z) =-K(x, z)+ K(x, y)G(y, z)dy,

independently of &. The special feature of this
well-known construction is that a further step can
be taken if c is a constant. Then (3) becomes

f(x) =c+I(x)c,
where I satisfies

(5)

where z& lies at the upper edge of the Dalitz-plot
boundary. It may then be recognized that, for s&

physical, the second piece spans the Dalitz plot
where it is expected to make the dominant con-
tribution to variations in s,. If the first piece has
comparatively negligible dependence on s,-, then it
may be treated as constant and absorbed into the
unknown & term. By t.his argument the integral
equations to solve for physical s, are just Eqs. (1)
with constant c's and with the lower limits —~
replaced by 0. Once this has been done, then
simple effective range forms are admissible for
f~ and f,. In Sec. IV of Ref. 5, expressions for
these have been given in Eqs. (14) and (19); for
the purposes of the calculations to follow, the
parameters used, which provide an excellent fit
to the available elastic N& and «data, are as
given numerically in Table I of Ref. 5.

Every one of the &'s contributes according to its
weight in the determination of how each f depends
on its s,. The way to sort out all the possible in-
gredients to the s,. dependence is to introduce
resolvents and deduce the integral equations they
satisfy. The s, dependence of each of these quan-
tities is obtained independently of the t-"'s.

A simple one-component example serves to
illustrate. Let f satisfy

f(x) =c+ K(x, y)f(y)dy.

The solution in terms of the resolvent kernel is

I(x) =I (x) + K(x, y)I(y)dy

in which

I3(x) = K(x, z)dz .

Thus the dependence of the resolvent I on its
single variable is obtained from a knowledge of
the kernel K alone. The simple step (5} then pro-
vides f in terms of c.

The problem at hand involves a set of several
coupled f 's and a corresponding collection of c's.
Because ~~ and ~, are constants, the same pro-
cedure goes through, with allowance made for the
greater dimensionality. Thus, because there are
two kinds of isobar channels, (N11)& a,nd N(»),
there must be four resolvents: I~~, I~„I,~, and

Further, each of these must be a 2& 2 matrix
in the isobar isospin. Step (5) becomes therefore

fS(S1) CS + ISS(S1)CS+Is (S1)C (8)

f, (s3) =c, + I, s(s3)cs + I„(s3)c,.
The problem of determining the subenergy depen-
dence of the f 's comes down to obtaining the s,
dependence of the I's by solving the integral equa-
tions they satisfy, independently of the c's. It is
easy to show from (1), (8), and (9) that these
equations are

Iss(s1) =DI3ss(s1) +D
A

~2 c3
Z2 12( 13 Z2)~S(Z2) Ss(Z2) Z3 13( 13 3)~d(Z3) ds(Z3) 3

l, (z,)=CI (3,)+Df . dz3z33(3„.,33)( (z )l()+3CfZ3dzzz33(Z\ Z,3) (z )l (()3, z„
0 0

~3~

8 fI,s(s3) =CI ds(s3) +C dz12(331(s»z1) is(z1)ISS(z1) l
0

(10b)

(10c)

g
~I„(s,) =C dz, 243,(s„z,)gs(z, )Is, (z,).

0
(10d)



CALCULATION OF THE s-WAVE FINAL-STATE. . . 721

The inhomogeneous terms are, apart from the
isospin crossing matrices,

0.3-

fs('i) J "'~ i~('i *~)( (*~) (
0

¹ 3I s, (sf) = dzs 1s(sf, zs) g, (zs), (11b)
0

¹ gI,s(ss) = dzf2&sf( s, zf) fs(zf). (11c)
0

Note that the I 's are diagonal because the f's are,
and that there occurs no I'„(ss).

0.2

O. I

(bj

0.5 I.O

.(Gev )

SOLUTION

The Is's in Eqs. (10) and (11) are among the
many rescattering integrals which have been
calculated in Ref. 5. In fact, it is the further
study of their detailed behavior which reveals the
method by which the integral equations are to be
solved.

g- ~ theinteg»s ',fs, and s s3areshown
as functions of s& for 8'=1.5 GeV. Their behavior
is representative of all of the Is's in (11). The
real and imaginary parts cross in the region above
the subenergy threshoM, a fact which has been
noted in Ref. 5 by way of suggesting a useful pa-
rametrization and interpretation of the results.
For the present purpose, it is more to the point
to extend the calculation below threshold and ob-

-O. I

-0.2

FIG. 1. Rescattering integrals, real and imaginary
parts, for W'=1.5 GeV: (a) Ig(g) (sg) and (b) I s3s3(s~).
The dots indicate the quality of the fit obtained using
the basis set (13) in Kq. (15a).

serve the behavior of the Jo's over the whole range
of s,- from 0 to z, . The dominant feature is the
pronounced kink at threshold. A standard function~
which has such a kink is

(*- (M+~)')'"(*-(M-~)')'" (*-(M-~)')'"+(*-(M+~)')'" .

jn[z (M ff)2 f/2 [z (M+ ff)2 f/2

M2 —p2 M- p, M
(12a)

where z corresponds to an Nw subenergy, and

z
z —4+2 1 2 zf 2+ (z —4ff2)f 2

gs(z) n 1/2
( 4 2)1/2

(12b)

let

( ~A(z)) =(I, [z - (M + f )'j, g (z), [z - (~+ f )'f '")
(13)

where z corresponds to a «subenergy. Other
functions having a sharp break at threshold are the
roots [z —(M+ ff) J' and (z —4113)f/ . It would

appear that any of the I 's could be represented to
very good approximation by taking a combination of
Eqs. (12a) or (12b) with the proper root function to
take the kink out, and then fitting the smooth re-
mainder of I with a low-order polynomial in z.
To implement this idea a set of four independent
functions is introduced to use as a basis set for
expressing each ~ . With &=0 to 3 as an index,

(15b)

for z an Nm variable, and

(f A(z)) =$1, (z-4ffs), as(z), (z-4ff')'/') (14)

for z a rr variable. Thus the I~'s are written as

SS( f) Z ( SS)A A( 1) s

3

IS.(S1)= Z (I'S.)A&A(Sf)
,

A-"0

3

3s( s) = Z ( .s)A A( 3).
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Iss(s, ) = (Iss)AuA(s&),

Is (s&) = (Is )AuA(sg)

I,s(s3) = (I s)A@A(s3),

-('3)=(-)A A( 3)

(16)

When Eqs. (16) are inserted into Eqs. (10) there
arise certain integrals, functions of s&, which
according to the method are also expanded:

82 I2( @2)~s(82)uB(82) uA( 1) FAB (17a)
0

A
g 3

3 &3(si, z3)f, (83) B(z3) =uA(ss)r'AB, (1Vb)
0

Aa

"«2 3~('Oi&~)&8(&2)us(«) =&A( 3)l'AB (»c)
0

Note that for each A. and &, ranging from 0 to 3,
the coefficients I'», 1„~,and I'» are 2 && 2
diagona/ matrices in the isobar isospin (again,
diagonal because the 0's are). For 8 =0 a com-
parison of Eqs. (11), (15), and (IV) leads to the

The four complex 2~2 diagonal matrix coefficients
in each of Eqs. (15) are obtained by matching each
I0 at four values of +,.

If the I0's are adequately represented in terms
of the basis sets (13) and (14), then the same might
be assumed for the solutions of the integral equa-
tions (10) in which the Io's appear as inhomoge-
neous terms. Obviously, if all the functions of the
subenergy variables are represented by means of
the basis sets then the problem reduces to one of
solving simple algebraic equations to determine
all the representation coefficients. This is the
strategy to be adopted in solving Eqs. (10).

Some comment is necessary about the matching
procedure used in representation (15). The four
matching points chosen are 0, threshold, 2„and
a point intermediate between threshold and z, .
The quality of the fit to I» and Is s is shown in

3 3
Fig. 1. Clearly, the fit is excellent above thresh-
old but less so below; in fact 10» is deliberatelyS3S3
shown as an example of one of the poorest-quality
fits. If a fifth basis function were used in (13) and

(14), a matching point between 0 and threshold
could be included for overall improvement. Short
of doing this, an alternative test can be made to
evaluate the sensitivity of the solution of the
problem to a choice of a matching point inter-
mediate between 0 and threshold rather than at 0
itself. The ultimate results prove to be remarkably
unaffected by this change of procedure, so that a
four-function basis set can be regarded as adequate.

The resolvents are expanded as in (15); summa-
tion symbols are suppressed from here on:

observation that

A0 ( SS)A i

I'Ao = (I'8.)A

~AO —(I s)A ~

(18a)

(18b)

(18c)

Clearly, the primitive quantities are (Iss)„and
(Is,)„since (I,s)„and (I„)„areobtained from
them. By insertion of (19c) into (19a) and (19d)
into (19b), the two equations to solve are

RAC(ISS)C=DrAO+ c rABCI
„

(20)

AC( 8 )C ~AO

in which

RA, = 5„,- Dl„,—C I „,Cf'„.
(21)

(22)

At this point it should be recalled that all the quan-
tities above are 2 &&2 matrices in the isobar iso-
spin. If these are indexed with small letters, Eqs.
(20), (21), and (22) are written in detail as

~Rl

(R„,)„[(I„),]„=D„r'„,+ c„ro„,c„r'„,
(20')

( AC)OO [ ( S )C] Oj Of Ao
A,

(R„,)„=5„,6„-D„ro„,C,„l„",C„,r o„,
(21')

(22')

in which the I 's are diagonal and so l'~ denotes
the jth diagonal element.

The equations are readily solved by finding
2~2 matrices 1'~& such that

(TBA)«(RAC) oo
= 5no6BC ~

Then the results are

The numerical values of all the T"s are obtained
by the same four-point matching procedure as
described above for the I 's. No tabulation of these
complex numbers is given here; suffice it to say
that the fit (17) is very good especially above
threshold and-that a different choice of four
matching points makes no significant difference
in the ultimate results.

The solution of the integral equations (10) for
the resolvents Iss (s,), etc. , has become the
problem of determining the coefficients (Iss)„,
etc. It is easy to show from (10) that these satisfy
the algebraic equations

(ISS)A =~1'Ao+ Dl'AB(ISS)B+ AB(I. 8)B i

(Is,)A
—C &Ao+ DRAB(Is )8+ C I'AB(I„)B, (19b)

A(I„)„=cr„,+ cr„,(i„), (19c)

(i.s)A =c I'AB(ise) 8 ~ (19d)



CALCULATION OF THE s-WAVE FINAL-STATE. . .

I.(1„),I ~ = (7',„)„,(D„l„,+c„i'„,c„r'„)

and

((~s.)s~ e = (T,~)„,C„r'„,. (25)

CALCULATION

The algebraic solution for all the coefficients
appearing in Eqs. (16) may be carried out, with
the aid of a computer, for any given value of 5'.
The s, dependence of all the resolvents is then

The most convenient way to proceed to these re-
sults is to express R as an 8~ 8 complex matrix
and toinvert it, by computer, to obtain an 8~ 8
matrix T. In this view the determinant of R, a
function only of 8', plays the role of the Fredholm
denominator. As noted already, insertion of (24)
into (19c) and (25) into (19d) provides the re-
maining quantities (1,~)„and(I„)„.

assembled by means of Eqs. (16).
Some highlights of the solution should be noted.

The I 's do not depend on the total isospin T while
the I's do. The I 's are diagonal but the I's are
not, indicating isobar isospin coupling. The
origin of both the T dependence and the off-diag-
nal coupling is of course attributed to the isospin
crossing matrices &, &, and . Neither of these
features is recognized in the calculations of Ref.
5, where the full solution of the integral equations
is not addressed. Some elements of the I's vanish
identically because of isospin conservation. The
crossing matrix C (C) has one vanishing row
(column) reflecting this. This feature may be
traced through the solution to secure the vanishing
of e2 effects for T= &, and of ~, effects for T = &.

Graphs of the g, dependence of the real and
imaginary parts of the nonvanishing resolvents
are shown in Figs. 2-5 for total energy S'=1.3,
&.4, and 1.5 QeV. The results are plotted for sub-
energies between threshold and the physical
upper limit" g, .

O.I-

-O. I
.

SI SI

Re

T= 3/2

ev~)
SI

T= I/2

0.2

O. I

(c)

-O. I

, (Gev )
l.8 s(

-0.2 T=I/2

0.3

0.2
/2

0.2

O. I

O. I T= 3/2

(b)
8 s,

(GeV )

SI

(GeV )

-O. I

-O. I
T= I/2

-O. 2
-0.2

FIG. 2. Real and imaginary parts of the resolvents 1,'~(s&) for W=1..3, 1.4, and &. 5 GeV: (a) 1&&~&, (b) 1~&qs, (c) 1»z, ,
(d) I& ~ . Results for total isospin T=-2 and 2 are displayed. The behavior is shown over the physical subenergy region
(M+@)2 + s& & (8'-p); therefore, the curves are distinguished by their increasing length as 8' increases.
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-0.1

1.5 18 s,
(GeV )

= I/2

(a) ~'

-0.8

Im

Re

T= I/2

(b) L
-O. l

T= 3/2

&oS~
(b)

%.4

0.1
T= I/2

-0.8

—1.2

T= I/2

(c)
1.5

(d)
S~cp 15 18 s

(Gev )
T=3/2

1.2

0.8 T= 3/2

-0.1.

FIG. 3. Besolvents Is, (s~) for W=1.3, 1.4, and 1.5
f6 p' + si62& (c) Is3&p& (d) I@362'

epS)
(c) 0.2

(Gev 2)
03 s~

CONCLUSION (d)
@AS (Gev )

S~

The figures drawn in the previous section show
the subenergy dependence of final-state interac-
tions in the W«system. These have been re-
stricted for purposes of illustrating the method
to the s-wave isobar channels ~m and % in 8
states. The ingredients of the s, dependence have
been organized according to the contributing re-
solvents. Even for this somewhat truncated sys-
tem they represent a rather bewildering array of
effects. Fortunately there is a single unifying in-
terpretation by which all of them may be compre-
hended.

The immediate qualitative observation to make
is that in almost all the graphs the real and
imaginary parts exhibit a crossover. This fea-
ture was shown in Ref. 5 to suggest a scattering
length parametrization for s-wave effects. The
same idea works rather well here, but with a
slight modification in the way the scattering length
is introduced. In Ref. 5 the form (I —iqa) i was
used, where

T=5/2

-0.8

FIG. 4. Besolvents I, s(s3) for W= 1.3, 1.4, and 1.5
GeV: (a) I, &&, (b) I«&, (c) I, 2s&, (d) I, s . The upper
limit of the physical su(energy region increases with W

as 4p & s3&(W-M) . Only cp occurs for T=2, and
only e 2 occurs for T= ~.

3

The scattering-length parameter & was taken to
be real and fit to the calculated results. Of course
the parameter must depend on 8'. Because of this
it seems more appropriate physically to let the
parameter be complex, the idea being that any
quantity having 5' dependence ought to have both
real and imaginary parts reflecting the existence
of the unitarity cut in 8'. Accordingly, each of
the resolvents plotted in Figs. 2-5 is assumed to
have the form

[si —(M+ ii)~] [ si —(M —p, )t] /4si

for Sm channels

(s3 —4p )/4 for ¹ channels.
(26)

f(s, ) =rt(I+qr) ' (27)

for physical values of +,. The parameters p and
r are 8'dependent and complex.

Fitting Etl. (27) to the results in Figs. 2-5 is a
simple enough matter as long as one admits the
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FIG. 5. Resolvents l«(s3) for %=1.3, 1.4, and 1.5
GeV: (a) I. . . (b) I, ,

limitations of a two-parameter form. In some
cases the parametrization affords a very accurate
fit, while in others only a rough fit is possible. In
all cases the elementary two-parameter expres-
sion is representative of the size and shape of the
results, and accomplishes the purpose of compre-
hending a large number of calculations in pene-
trable physical terms. In Table I the values ob-
tained for g and r are listed for all the cases
plotted. Clearly, the multiplicative factors, the
g's, have little meaning since in practice they are
effectively absorbed by the unknown fitting pa-
rameters, the c's, in Eqs. (8) and (9). The r's,
on the other hand, play the role of the aforemen-
tioned complex scattering lengths; therefore, their
physical significance is noteworthy.

In fact, a remarkable regularity is to be noticed
in Table I concerning the r's: In every case Imr
is negative. The function (1 +qr) ' has a. phase &,

given by

tan5= —q Imr(1+q Rer) ~

which grows from threshold positively for Imt & O.

This effect in the dependence on subenergy is com-
parable to that of a wave function in an attractive
potential; here it arises from the coupling to the
other isobar channels as required by subenergy
unitarity. Thus the interplay among the coupled
isobar channels is seen to "pull in the wave func-
tion" in all these cases. It would appear that a
general principle is in evidence here.

Although the system of channels considered here
is adequate to demonstrate a method of solving the
coupled equations, the practical significance of the
calculations is somewhat more doubtful. If there
were a regime of total energy Wwhere the only
waves needed phenomenologically were these, then
Eqs. (8) and (9) would serve to unitarize the stan-
dard sort of fit without the need for any additional
fitting parameters. Unfortunately, even near
threshold the && channels can not be neglected.
A recent study around 1.3 GeV by Amdt &t al. ~'

allows for &r although it concludes that &' %
production is more important. The && channels
could be readily included in this analysis and the
basis function method of solution could be applied
at the expense of making the number of computed
quantities a great deal larger. It should finally be
noted that the» isobar channels have never ap-
peared in the standard fits'; it would seem that
especially near threshold these ought to be in-
cluded in the future.
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