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We propose that the angular distribution of heavy-quark jet production in e+e annihilation is a clean
place to measure the quark mass (e.g., accurate to within a few percent for the b quark) in perturbative
quantum chromodynamics (QCD). %'e present our argument as to why this is the case (as compared to
measurements given by the total cross section). We also evaluate the leading-order perturbative QCD
correction to the angular distribution; we find that the QCD effect on the angular distribution is small
except when the velocity v is close to one. Our formula gives the leading QCD correction to the angular
distribution of hadronic jets, with the quark-mass effects fully taken into account.

I. INTRODUCTION

There has been a great deal of interest recently
in the study of quantum chromodynamics (QCD),
which involves the interactions of quark and gluon
fields. This field theory has been used to calculate
many physically interesting quantities, and con-
frontation with experiments looks very encourag-
ing.

The only free parameters of QCD are the color
coupling o., =g'/4w and the quark masses m, where
i =1,2, . . . , ~ for g number of flavor. It goes
without saying that determination of the above
parameters is of great importance. In this work,
we discuss in detail one method to measure the
heavy-quark mass. We shall first point out the
method; then we shall discuss some of the issues
that accompany our approach, namely, (1) the
sensitivity of the experiment, (2) confinement
effects, ' (3) definition of the quark mass, and (4)
higher-order perturbative QCD corrections. We
believe all these complications can be handled
easily, and the method we propose is a very clean
and accurate way to measure heavy-quark masses.
gee estimate that our method can determine the
mass of the 5 quark, e.g. , to within -0.3 GeV,
i.e. , to -6% accuracy.

The idea is both obvious and trivial. Consider
e e annihilation into a heavy-quark pair (q,q, ) in
lowest order,

do)(s) 3a We; v
(3 p)(1 38)

d cos0 2s 2

+(1- v')(1 —3 cos'8), (1.1)

v =1 — —= 1 —g,
4m]

s (1.2)

and e, is the electrical charge of the quark mea-
sured in units of (4vo, )"'. Rewriting Eq. (1.1) for
later convenience, we have

= ~p(2 —v') v[1+B,(v) cos'6],
gp g cos8 (1.3a)

where

V
Bp(v) =2 (1.3b)

op=(4vo'/s)e is the total cross section e+e- q,q, in the limit 4m, '/s- 0. Hence we see that
the angular distribution of the quark pair deviates
from (1+cos'8) when the quark-mass effect is in-
cluded. To see how much this deviation is, let us
consider the charmed quark. Its mass quoted in
the literature ranges from 1.1 to 1.85 GeV.' The
coefficient Bp(m, s) is plotted in Fig. 1, which
illustrates clearly the dependence of Qp on the
quark mass. For example,

Bp(m = 1.1 GeV, W = 7 GeV)
Bp(m =1.85 GeV, W =7 GeV)

where 8 is the angle between the quark and the
electron direction, s is the c.m. energy (W)
squared, s =W', v is the velocity of the quark with
mass pli ~
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This means a good measurement of the angular
distribution of the charmed-quark production can
certainly give an accurate value (i.e. , to within
10-20%) of the charmed-quark mass. The coef-
ficient Bo(m, s) is also shown for the b quark
case in Fig. j., where we have taken the 5-quark
mass to be (i) 4.2 and (ii) 5.5 GeV.

An immediate question concerning our sugges-
tion should arise: The total cross section for the
production of heavy-quark pair o„,(m, s) also de-
pends on the quark mass m and s; why then don' t
we use the measurement of a&,&, or equivalently,
its contribution to 9, to derive the value of m, ? If
this is not possible, then why does the angular
distribution allow us to obtain the value of m, ? Let
us present our argument in some detail.

That o„,(m, s) does not provide a measurement
of the quark mass has been discussed in the lit-
erature. ' In every order of perturbative QCD, the
theory predicts the production of quarks and
gluons, whereas only color-singlet bound states
of quarks and gluons (i.e. , hadrons) have been ob-
served in nature so far. This means that direct
application of perturbative QCD to calculate physi-
cal quantities is in general not justified. Since the
phenomenon of quark confinement in QCD is not
yet understood, all sensible application of pertur-
bative QCD must be free from confinement (i.e. ,
long-range) effects. The process e'e -q,q, has
a threshold at s =4m,.' in perturbative QCD where-
as nature puts the threshold at s =4m~' where II
is the lightest meson containing q, or q, . Excluding
pure coincidence, m~cm, . Hence a direct applica-
tion of perturbative QCD is meaningless. Also
(naive) perturbative QCD predicts Coulombic

bound states (qq) in the e'e channel while ob-
served bound states clearly do not obey a. Coulom-
bic binding. Hence, to obtain a meaningful com-
parison between theory and experiment, we must
render the calculation infrared insensitive. One

way is to smear the perturbative QCD cross sec-
tion in s, as suggested by Poggio, Quinn, and

Weinberg. ' However, in the process of smearing,
one (deliberately) washes out the distinction be-
tween contributions from the quark-antiquark and
multigluon production (or quark-antiquark bound

states) and the actual production of hadrons. Thus

the smearing also washes out any (precise) mean-

ing to the mass parameter in o&,&.

There have been other attempts' to extract the
values of the quark masses from 0„,. One of the
methods uses finite-energy sum rules and the no-
tion of duality and relies heavily on the resonances
in cr„, measurements. The quark-mass value ob-
tained this way is closer to the "constituent quark
mass" value than to the quark mass that appears
in the Lagrangian, which is what we are suggesting
to measure. (See Sec. II for more discussions. }

Now we would like to argue that, under appro-
priate smearing, the angular distribution of the
heavy-quark-antiquark production is determined

by perturbative QCD, and the quark mass here is
physically meaningful, in contrast to the case of
p „,. We do not have a rigorous justification for
this procedure; however, it is supported by the

following simple intuitive argument, which seems
to us to be quite plausible. In any case, the point
in question can be cleanly tested experimentally.
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FIG. 1. The lowest-order coefficient &p{v)=&p{M &)

in the angular distribution fg+Bp{e)cos28 j as a function

of the total energy in the center-of-mass frame in e+e
annihilation. For the purpose of illustration, we have
chosen 1.1 and 1.85 GeV for the charmed-quark mass,
and 4.2 and 5.5 GeV for the b-quark mass.
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FIG. 2. The top two curves are o~o~(m, s)/o~o, (o,s}.
The lower two curves are the coefficient Bp taken from
Fig. 1. The dashed curves are for mass =1.1 Qev. The
solid curves are for mass =1.85 GeV.
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Our argument is best illustrated in Fig. 2. We
observe that the cross section approaches its
asymptotic value [Le., o „,(m =0, s)] much faster
than the coefficient Bo(m, s) as the total energy
increases. Now for the cross section, we can
trust the perturbative QCD calculations only for
energies far above the continuum threshold. 'How-

ever, at those energies, the cross section has al-
ready reached its asymptotic value, This means
any quark-mass effect is negligible. The situation
for the angular distribution is quite different.
Because B,(m, s) approaches its asymptotic value
much slower than g„,, the angular distribution
still depends strongly on the value of the quark
mass even at energies way above the continuum
threshold. This also means that at the energy
range where B(m, s) is to be measured, one has
essentially the maximum cross section available.
As we shall show, this feature persists when per-
turbative QCD corrections are included.

To measure B(m , s), it is . important to go to
energies way above the continuum threshold. To
see this explicitly, let us take m„& m, and consider
three regions of s.

(i) 4m„'& s& 4m,.'. As mentioned earlier, this
region clearly demonstrates that o„, is strongly
dependent on confinement effects since o„,(per-
turbative QCD) e 0 while o„,(e'e - B +f1 +X) =0.
Hence it is meaningless to talk about the angular
distribution in this energy range.

(ii) s&4ms'. FI is taken to be a pseudoscalar
meson, the lightest meson containing the heavy
quark. Then the angular distribution of the exclu-
sive process e'e -IIII is dictated by the vector-
scalar-scalar coupling. This completely dictates
the form of the angular distribution so the under-
lying photon-quark-antiquark coupling is totally
masked. To avoid this situation, we must take
$'&& 4PlH .

(iii) s»4ms' such that e+e annihilation can go
to either one of the many different channels of a
pair of excited H' exclusively ox a multiparticle
final state where one of the particles contains the
heavy quark, another the heavy antiquark. Al-
though the individual exclusive channel e'e -H+H
has an angular distribution dictated by spin proper-
ties of H, it may be possible that if we smear over
many exclusive channels, the energy-averaged
angular distribution reflects the underlying quark
structure.

Fortunately, for heavy quarks, the mass spacings
between H and its excited states are expected to
be very small, while the hadronic width of an ex-
cited state is expected in general to be quite large
and is increasing as m„ increases. Hence, smear-
ing can be done over small regions of v s, since
the large widths of the excited 0's provide a built-

in smearing already.
To be concrete, consider the charmed-quark

case. When we are close to the threshold, we
must smear over a large region in s. But for
s& 4m+', say (for charm) v s& 5 GeV, the size of
the smearing can be taken to be quite small, say
as~ 1 GeV'. This is because the (qq) states in the
e'e channel are resonances as s is above the
continuum threshold. The density of such reson-
ances and their individual widths increase as a
function of s. This automatically smoothes the
cross section e'e -qq-hadrons. In Fig. 2, we
have plotted the zeroth order g„,(m, s) normalized
with o, =&&„&(m =0, s) for the two quark masses
m =1.1 and 1.85 GeV. For v s above 5 GeV, the
difference between the two cross sections (before
smearing) is tiny, while the difference between
their angular distribution is still substantial.
After smearing, we expect the difference in o:&„
would be washed out, but the difference in the
angular distribution will remain substantial. This
allows the measurement of the quark mass from
angular distribution but not from pg

The physical picture for e'e annihilation is as
follows: The virtual photon goes into a heavy-
quark-antiquark pair in a certain direction. The
quark and antiquark start to fragment along that
direction (in the language of duality, fragmentation
means that a pair of highly excited hadrons are
created, which then decay strongly into lighter
hadrons). Since fragmentation comes from con-
finement effects, which are soft in nature, the
direction of the initial quark pair would be main-
tained during fragmentation.

Since we can use our method to measure masses
of quarks of different flavors (i.e. , we can separate

' quarks of different flavors) it suffices to use again
the charmed-quark case for illustration. In that
case we look for D, D* mesons. From the decay
modes (e.g. , K'w v' mode) we can reconstruct the
energy and direction of the D or D* meson and
hence the direction for the initial charmed quark.
We can check this by looking at the jet axis of such
events. Confinement effects give a transverse mo-
mentum spread of the order of 300 MeV. At Ws
= 10 GeV for example, the angular deviation due to
confinement is of the order of a few degrees.
Hence we should smear 8 over, say 69-5'.

Alternatively we can select the cc events by a
analysis of jetlike properties. In the energy range
of Z,+,- =4 to 8 GeV, we expect the cc events to
be less jetlike than the light-quark events. An
analysis of large-transverse-momentum (with re-
spect to the jet axis) events should help the selec-
tion of cc events. The two ways of selecting cc
events can be used simultaneously.

In principle, the QCD coupling and the quark
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mass determine both AB due to the quark pair
and the jet angular distribution. This provides a
test of the mass dependence of (zeroth- plus first-
order) QCD in e'e annihilation. Once this is
verified, it can be used to measure quark masses.
Angular distribution measured at different energies
can substantially improve the accuracy of the mass
determination. If neutral particles as well as
charged particles are detected and measured, the
jet axis, and hence the jet angular distribution,
can be determined more accurately. If the coef-
ficient B at a fixed energy has an error of 0.1, we
expect the charmed-quark mass to be determined
to within 0.1-0.2 GeV, and the b-quark mass to
within 0.3 GeV.

Of course, once the quark masses are known
(either using this method or some other methods),
the jet angular distribution for all hadronic events
is simply given by a sum over all flavors of the
jet angular-distribution formula we give in Sec.
III.

There are two other important points that we
shall discuss. First, what do we mean by the
quark mass? This is discussed in Sec. II, which
is essentially a review of what is known in the
literature. We include it not because we have
something new to say, but rather that a proposal
of quark-mass measurement would be incomplete
without a discussion of what we mean by the mass
of a quark. The other point, which is our main
work in this paper, is the evaluation of the non-
trivial leading-order perturbative QCD correction
to the production of heavy quarks (see Fig. 3).
The physical results are summarized in Sec. III,
where a discussion of the physics is also included.
Details of the calculation are contained in Sec.
IV and the Appendix. The inclusion of the QCD
effect is important, since even in the zero-quark-
mass-limit, the deviation of the angular distribu-
tion from (I+cos'9) due to QCD corrections is of
the order of 10 to 20%%u~ (see Sec. III), which is com-

parable to the effect we want to measure. However,
we find that the QCD correction to the angular dis-
tribution is small (-3%) except for the velocity v
close to its upper (v = 1, i.e. , m, -0 or s- ~) or
its lower (v =0, i.e. , close to the threshold region)
limits. (See Sec. III.)

For small velocities, the perturbative expansion
is not valid (see Sec. III for more discussion on
this point); for velocity close to unity, the angular-
distribution deviation is essentially proportional
to the strong-interaction coupling ~, . We calculate
the angular distribution for both the cross section
and the energy-weighted cross section to leading or-
der in u, (they are identical in the zeroth order). We
do not know which is an easier quantity to measure
experimenta, lly.

II. THE QUARK MASS

Since quarks are not free, we have to be precise
in what we mean by quark ma. sses. For light quarks,
it is natural to consider the currentquarkmasses
that occur in the divergence of the chiral flavor
SU(N) xSU(N) currents. In particular, the axial
current for flavor f gives

I

8~ Jsi =i Q5~, m)gyes~

where the quark masses are those that occur in
the strong interaction Lagrangian. Chiral sym-
metry and other considerations determine the
light-quark masses. ' Unfor tunately we cannot
extend this method to the determination of the
heavy-quark masses.

Although quarks are confined so that we cannot
measure the quark masses by letting the quarks
go on mass shell, we can still define the quark
mass to be the location of the pole in the quark
propagator. We can carry out the mass renor-
malization so that to any given order in perturba-
tive QCD, the quark propagator has a pole at
P=m. This definition need not imply the existence
of free quarks. Experience from two-dimensional
QCD' suggests that the following intriguing pos-
sibility may take place. The hadron-quark vertex
I"(P,) always develops a zero as any of the quark
propagators approaches its mass shell (see Fig.
4),

I'(P„P„P,)~ = 0 for any j,

FIG. 3. The leading. @CD contributions to the e+e

qq process.

such that the amplitude for a free-quark production
is always suppressed.

An alternative defintion has been suggested by
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P(
propagator

Nucleon
I I I I I I I I I I I I

I reftormalizedr 22 IP = -p~

With the use of the. renormalization-group equation,
the mass behaves like a running parameter, very
similar to the color coupling g; that is, they have
different effective values at different energy-mo-
mentum Q involved:

FIG. 4. The hadron-quark vertex I (p~,p 2,p 3). The
solid lines are quarks. —= p, (g, m/q),eg (2.1a)

Georgi and Politzer. ' In their approach, one
carries out the wave-function and coupling-constant
renormalization at momentum P such that P' =-p.'.
The quark mass is then given by the inverse quark

8 pR
=my (g, m/q), (2.1b)

where I = -', ln(q'/p, ') . To lowest nontrivial order
in QCD,

-g', ~ )" Gm ' 12m, '/I), ' (1+4m '/P, ')"'+1
16'' ' ~

)

* )1+4m 'i ')"' (1+4m '/ ')"' —1

16g JLt, Pl f

(2.2a)

{2.2b)

For the heavy-quark case, the angular distribution
in Eq. (1.3) would be modified if we replace a fixed
mass~ by a running mass m(t). If we normalize
o, ,($ = 0) = 0.3 and m(t = 0) = m = p, /2, then, using
Eqs. (2.1) and (2.2), we obtain B,(v)- B (v), where
v is the velocity defined in Eq. (1.2). In Fig. 5,
we compare the coefficient B (v) with running
mass to Bo(v) given in Eq. (1.3). We find the devia-
tion is small.

In the rest of this work, me shalt. use the "loca-
tion of the pole" definition. Readers who are in-
terested in the "running mass" definition can
easily incorporate the effective-mass correction
into the angular distribution by using Fig. 5.

For any given quark, the mass measured from
the angular distribution should also be the mass
that appears in deep-inelastic lepton-hadron scat-
terings and in weak decays. In deep-inelastic
scatterings, the production of heavy quarks is, in
general, small. Furthermore, this is complicated
by the fact that the quark-mass effect occurs in a
twist-four operator, and a complete treatment of
all twist-four operators is required by gauge in-
variance. This renders the analysis complicated.

In principle, meak decays of heavy quarks also
provide a means to measure the current quark
masses. It would be interesting to compare the
quark masses provided by that method with those
measured by the "angular distribution" method
which, we believe, is one of the cleanest mays to
determine the heavy-quark masses.

Finally, it is mell knomn that if the Higgs boson

in weak and electromagnetic interactions is dis-
covered, its decay into heavy-quark pairs should
provide a clean way to determine the quark masses,
since the strength of the quark-antiquark-Higgs-
boson vertex is directly proportional to the quark
mass. However, to use this method we have to
wait for the discovery of the elusive Higgs bosons.

III. PERTURBATIVE QCD CORRECTION

In this section we will summarize our results of
the leading-order @CD correction, the detailed

I 0—
l

0.5—

0.0 I I I ! I I

0 O. l 0.2 0.5 0.4 0.5 0.6 0.7 0.8 0.9 l.O
V

FIG. 5. The coefficients Bo(v) andB~(v) as a function
of the velocityv. Bo(v) is given in Eq. (1.3); B (v) is
Bo(v) modified with a running mass as defined by Eqs.
(2.1) and (2.2).
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calculation of which will be relegated to Sec. IV and
the Appendix. The effect of perturbative QCD
comes in when we consider the gluon-bremsstrah-
lung and radiative- correction diagr ams shown in
Fig. 3. For the massless-quark case, these
diagrams have been studied in great detail. The
differential cross section for the gluon-brems-
strahlung diagrams is given by [recall o, = (4wo. '/
s)e, ']

strong-interaction coupling.
Since we are only interested in the angular dis-

tribution of the quark, we integrate over the x,
variables. Including the contr ibutions from the
radiative-correction diagram, we obtain, to lead-
ing order in n, (m, =0),

1 do 3 3= —1 +——
i

1 + cos'8, +—(1 —3 cos'8, ) I0'p d cosHy 8 ' 4 g ) 2p .j
2+ 21 do . ~a xi +x~

(1 28)
o, dx,dx,d cos8, 4v,(1 —x,)(1 —x,)

l

+2 ' ' (1 —3 cos'8 )
Xg

( 2n
cc 1+

i
1 — cos'8, . (3.2)

(3.1)

where x, =2E, /v s, E, is the energy of the final-
state particles in the c.m. frame, i =1,2, 3 for the
quark, the antiquark, and the gluon, respectively,
and 8, is the angle between the quark and the elec-
tron (we have taken m, =0). For later use, we
define e =C, (R)o., = ~4„owhere C, (R) is the value
of the quadratic Casimir operator for the quark
representation R =triplet, and n, =g'/4m is the

A]1 infrared divergences cancel exactly, as ex-
pected. For a typical value of a/&=0. 1, we have
1+0.8cos'8, . This deviation from (1+cos'8) is
comparable to that induced by the quark-mass ef-
fect. To include this effect in perturbative QCD,
we must evaluate the diagrams in Fig. 3 with non-
zero quark mass m.

The result of the differential cross section for
the gluon-bremsstrahlung diagrams with quark
mass m is given by

[&8,(1 + cos'8, ) + (~ 8, + ft,G)(1 —3 cos'8, )],0'p dxydx2d cos'9& 4P
(3.3)

where

8(x,'+x, ')
4

1 1 2 2,( 1 1
+

(1 xi)(1 x~) (1 xi} (1 x2} 1 xi 1 x2 kl xi 1

8$(,+,—l), i/
1 1

(1 —x,)(1 —x, ) (1 —x, 1 —x, J

](2 —x, —x,)'
4(1-x,)(1 —x, )

'

while in terms of the angle 8, (the angle between
the gluon and the electron}, it is given by

[zft, (1 + cos'8, )
0'p d X]dX24 cos 83 4P

+(&ft, +g,g)(1 —3 cos'8, )],
(3.4)

where

6=4(2-x, -x,) ' —~(l-x, ) (l-x.)

Integrating over the angle 8, Eqs. (3.3) and (3 4)
both give'

do' 2Q~ ~8

Vp dxgdx2 377 8

It is clear that the cross section (3.3) approaches
the cross section (3.1}in the limit m - 0.
grating over the phase space .in x„x„we obtain
from Eq. (3.3), with the inclusion of radiative

. corrections,

=—1 + P
i

—(3 —v') (1 + co—s'8, )
d(r 3 c7 be

vpdcos~g 8 'F j 2
I

+ $ (1--3 cos'8, ) 1 +—%"
i

a
j

(3.5)

where g is defined in Eq. (1.2). P and%' are com-
plicated functions of v to be given below. If we
integrate over 8„ the (1 —3 cos'8, ) term integrates
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to zero so that only the (1+cos'8,) term contributes
to the total cross section:

3+v 7T

P(v) =
2v 4 2 4 (3.7)

1+ P(v—) —(3 —v ).O' CV v

go 7 2
(3.6)

Values of vP(v) are given in Table I. The evalua-
tion of &(v) is more complicated. In terms of the
Spence function

P has been calculated in the literature (see Sec.
IV). An excellent interpolation formula (good to
1% throughout and exact as v-0, 1) has been sug-
gested by Schwinger": it takes the form

where

+2 ln (I +() +3 —$ — + inl
1+v 4 —( (4 ~)' 3g 1 f3+~j l
1 —v 4 42+ (3.8)

II =Stt, (W(, v) +ALII, ( W(, v)-,

~(("*,~) Ki0(=-i)-a(i+a)I I(, "'.)-Il,' '.)-I(,'",)+r(' ', [+I(~ ",)-I(~+;)

+L, —L +I. +L

where

(3 9)

The function $~(v) is finite for all values of v be-
tween 0 and 1 (see Fig. 6). w(v) is small in com-
parison to P(v) except at v close to 1. Values of
$xv(v) are given in Table I.

The angular distribution of the heavy quark can
be written in the following form to order n„

I.O—

Bv ~1+B,(v) cos'8, ,d cosO~

5 Q
Bl(v)

2 2 ~~(v) y (3 v2)

(3.10) 0.5—

O' Q7T1+-P- 1+—,
2v

(3.11a)

B,(v)- B,(v) 1+O— (3.11b)

and hence the perturbative approximation breaks
down. (This phenomenon is well understood in

We note that $m(v) ~„,= 1 so that the angular dis-
tribution (3.10) reduces to that given in Eq. (3.2)
for the massless-quark case. In Fig. 7, we have
plotted B,(v) and B,(v) as a function of the velocity.
The QCD correction is small except for large and
small values of V. For small values of v, the
QCD correction grows like inverse powers of v,

0.0

I I I I I I I I I

0.0 O. I 0.2 0.5 0.4 0.5 0.6 0.7 0,8 0.9 i.O
V

FIG. 6. The function v(~ in Eq. (3.8) and the function
v$'ll in Eq. (3.14). The solid curve is the function v$~
(the ordinary cross-section case) and the dashed curve
is the function v(Q (the energy-freighted cross-section
case). The curves for the region O~v ~ 0.1 are indica-
tive at best. They are based on values at only two
points, viz, v =0 andv =0.1.
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TABLE I. Values of vP, f~, and $Q for different values of the velocity v.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

eP 4 94
0
0

4.61 4.27 3.90 3.51 3.10 2.68 2.23 1.75 1.26 0.75
2.10 0.19 -0.09 -0.09 -0.12 -0.21 -0.22 -0.20 0.03 1

-2.09 -0.28 -0.10 -0,16 -0.23 -0.25 -0.24 -0.12 0,27 1.50

QED)." For our purpose, we should avoid small
v regions by considering only values of v such
that a,/v(1. We note that for v) n„ the QCD
effect gives only a small correction to the coef-
ficient B,(v). In terms of mass and energy, this
means B,(m, s) is close to that given by B,(m, s)
once we are at energies above the continuum
threshold. The QCD correction remains small

until we get to energies much bigger than the
quark mass involved, say, E, 25m, .

B,(m, s) for the charmed and the 5 quarks are
shown in Fig. 8.

Alternatively, it may be more convenient for
experimentalists to measure the angular distribu-
tion of the energy-weighted cross section. " This
is defined by

dZ 1 ——d cos 8,.6 (cos 8& —cos 8),E d20

0'ply COSH g
0'0 ~ W dE&d cosH&

(3.12)

where the summation is over all hadrons. For the perturbative QCD correction term, the sum j converts
to a sum over quarks and gluons. Integrating Eqs. (3.3) and (3.4) with the appropriate energy weights, we
obtain (see Sec. IV)

=—
I
1 +-P I- (3 —v')(1+cos'8) +&(1 —3 cos'8)

I
1+—tt

I

div'. . . ( a
a, dcosH 8 i w )2

where

v]e=)(I —3g) LI I

—I- +—+—v+v] +———+-(1+vi 1 —v 3R 3
2 j 2 2 2 3+$ 3 12 8

—~](1+()lnI +(3$ —1) ln
4

—
4 2 ~

—3 —4)+ 6

1+v (2+~) 4 1(4 —$)' 5

I~

II =Wj[3g,( ~, v) -II,(-Wj, v)j,

(3.13)

(3.14)

I.O

0.5
B(y)

~ ~ ~ ~ ~ » ~ » ~ » 8 (y)0

where , is given by Eq. (3.9). If we rewrite Eq.
(3.13) as

dz ~1+B,(v) cos'8,
0'p d cos 8

then

v2 —V2

025 I I I I I I I I I

0.0 O. l 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I.O
y

FIG. 7. The. coefficients Bo(e) (dotted curve), B~ (e)
given in Eq. (3.10) (solid curve), and B~(v) given in
Eq. (3.15) (dashed curve). We have used 8/v=0. 1.
Note that for values of v such that n~/v )1 the perturb-
ative approximation actually breaks down.

1 +~- (1+cos'8) +z- (1 —3 cos'8)
0'0 Cf COSH 7T

( 3(y~1+
I

1 — cos'8.
7r

(3.16)

The functions vugg is plotted in Fig. 6 while the
coefficient B,(v) is plotted in Fig. 7. Values of
g~ are given in Table I. We observe that as v- 1
(or as quark mass is taken to be zero), Eq. (3.13)
becomes"
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In Fig. 9, v„, and B,(m, W) are plotted for the 5-
quark case. For comparison, we also include the
zeroth-order coefficient B,(m, W) =Bo(m, W) for
m, =4.2 GeV. Figure 10 shows v„, and B,(m, W)
for the charmed-quark case.

For our numerical work we have used u/m =0.1,
or o., =0.24. To be more accurate, we should use
a running coupling constant with a determined A in
o., ~[in(W'/A')] '. Properties of the renormaliza, —

tion group and asymptotic freedom do not allow us
an accurate determination of the value of A at
present energies from other experiments (such as
deep-irelastic scatterings) without the evaluation
of higher-order QCD corrections to B(v) or B(v)
Hence, to determine o., (or A) that comes in B(v)

1.0—

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
+ + ~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ yg

~r&

r~
~ \ ~ ~ ~ ++

~ ~ ~ ~ ~
~ ~ 0

~oo ~

0 5 B

0.0
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I I

I5 20
W (in GeV)

I
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FIG. 9. The 5 -quark case. The total cross section
|normalized to oo) to order n and the coefficient
B&(m, W). The solid curves are for quark mass m
=4.2 GeV. The dotted curves are for quark mass m
=5.5 GeV. The dashed curve is 80(m, W') for m =4.2
GeV. It is included for comparison.

FIG. 8. The coefficient B~(m, W) as a function of quark
mass m (in GeV) and the center-of-mass energy W. The
value of the velocity is plotted on the y axis at the right-
hand side. n/m = 0.1.

0.0
0

I

IO
W (in GeV)

I

15

FIG. 10. The charmed-quark case. The solid curves
are for m =1.1 GeV. The dotted curves are for m =1.85
GeV. o~, is normalized to 00.

or B(v), it is best to measure the angular distri-
bution of the quark jet for light quarks. Data (for
jet angular distributions) available from SPEAR
a.nd DQRIS" seem to indicate o., to be smaller than
the value we have used.

We end this section with three remarks:
(1) Depending on the type of detector used,

either dv/d cos8, or dZ/d cos8 is the better quan-
tity to be measured experimentally. Hence we have
evaluated both. In fact, one can go back to the
differential cross section (3.3) and consider other
quantities that are measurable in experiments. An
example is the energy correlation for the massive-
quark gluon bremsstrahlung process.

(2) We observe that the coefficient of the (1
+cos'8) term of both dv/d cos8, and dZ/d cos8 is
& times the total hadronic cross section. Hence
dv/d cos8, or dZ/d cos8 provides a clear measure-
ment of the total hadronic cross section. In fact,
both v„, and B(m, W) [or B(m, W)] are determined
by measuring d Z/d cos8 (or dv/d cos8) at two dif-
ferent angles at a given c.m. energy 8". This
method of determining 0 „,has the advantage of
avoiding the forward and backward cones where
two-photon events dominate at high energies.

(3) Our method provides an accurate way to
measure heavy-quark masses. Essentially there
are only two sources of error in these measure-
ments. The relatively minor source comes from
QCD corrections. An error -20% in u, will cause
an error -1% in the coefficient of cos8. More
serious is the angular uncertainty. For example,
an error of -6' at Z, =16 GeV, 8=30' [according
to our estimate using Eq. (3.10)] will translate
into an error -6% for the b-quark mass. Of course,
better accuracy can be achieved by accumulating
measurements at different E, and different angle
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IV. DERIVATION OF THE LEADING-ORDER
PERTURBATIVE QCD CORRECTION

%e will devote this section to present the de-
tailed calculation of the QCD processes. Some

necessary integrals are given in the Appendix.
Let us first consider the gluon-bremsstrahlung
diagrams. %e average over the initial e'e polar-
izations and sum over the final-state polarizations
to obtain the matrix element squared (we perform
our calculations in Feynman gauge):

fM P =—[(I —y)'(1 + cos'8, ) + (1 —z)'(1 + cos'8, )]=2

4 4 /1. Il' 2+(1 —y)' 1 —y&'—5 —+—+I ———
I + +

(
cos'8 +

y z Iy z) yz y )
1 1 ' 1 11 , 1 1~—+— — —+—,~cos'8, — —+—,

I
cos'8,

y z yz y') ' yz z')

2+(1 —z)' 1 —zl,', (y+z)'
+ cos'8, — cos'8,

yz z j yz

(4.1)

where $ =4m /s, y =1 —z, =1 —2E,/W, z =1 —x, =1 —2E,/W, and 8„8„8~are the angles made by the out-
going quark, antiquark, and gluon, respective to the electron direction. To ameliorate the infrared prob-
lem, we introduce a small mass A. for the gluon. P shall be taken to be zero after the cancellation of the
infrared divergences between the gluon-bremsstrahlung and the radiative-correction diagrams. Terms
that will vanish in the limit ) - 0 are neglected.

The three-body phase space can be written as

s- 2m ~Z +Z ~+2@ Z +2m 2

where 0, is the solid angle of the quark and (q», P»)
is the orientation of the antiquark relative to the
quark. Similarly, we can introduce other Q, and

(q, ~, P,~) and write Eq. (4.1) in terms of them. To
obtain Eq. (3.3), we have to express the angles 8,
and 03 in terms of 8„

cos8, =cos8, cosy»+sin8, sing» cosQ».

Integrating over the azimuthal angle p», we obtain

cos'8, - —,'(1+cos'8, ) + (—,
' sin'q» ——,')(1 —3 cos'8, ),

(4.3)

and similarly for 03. From the 5 function in Eq.
(4.2), we obtain

(4.2)

y z(y+z —1) +-,'&(y+z)'

—A(P, +yz+y +z —1) +A' ~ 1,
where A =X'/W'.

It turns out that the following variables

(4.6)

Equation (3.4) follows by introducing the angle q»
in Eq. (4.2).

To obtain do/d cos8, and d Z/d cos8, we must
first obtain the boundary of the phase space. This
follows from the requirement that ~costi

~

~ 1. In
terms of the variables y and z, this constraint
implies (see Fig. 11)

4yz(1 —y —z) -$(y+z)2"" HI-y)'- &]((I-.)'- &]
'

Similarly,

4yz(1-y —z) -&(y+z)'
f(I-y)'- $](y+z)'

(4.4a)

(4.4b)

y= z = —(I-$)I

2

d p~ d p2 d p3
(2m)~2E, (2v)32Z2 (2v)32E~

x(2.)'6'(f, +f. +f.—f.,—f.-)
IMIx, 3(4w)'a'ne(' S' (4.5)

Using Eqs. (4.1), (4.2), (4.3), and (4.4), we obtain
Eq. (3.3) from the following differential cross
section,

I

I

I xl

Y

FIG. 11. The phase space for the gluon bremsstrah-
lung for the massive-quark and massless-gluon case.
The triangle (y & 0, z & 0, y +z ~ 1) is the phase-space
boundary for the massless-quark case.
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QJ = -$ +g~ X =P +z

are more convenient. In terms of them, the bounds
due to phase space become

1 —
P, &x& 2A'",

1 dZ~ dxd11} x,
dg

godcos~ go (=0 d g dzo d cosO ) ) e —e

=64' [A,(1+cos2}9)

+(A, +P,+C)(1 —3 cos'e)],

Figure 11 illustrates the phase-space boundary
with A =0. Integrating the differential cross sec-
tion (3.3) over the energies (integrals that occur
here are given in the Appendix), we obtain, for
the real-gluon emission process,

where

P2 =8 dxdzo 1 —y g t", (4.11)

daR &c
A, (1+cos28, )

o d cosL9, 64m

+ A, +~ 1 —3 cos'9, (4.7)

C -8 d Xdgl 2 3l +g Q3Q, , (4.12)

and 8 is given in Eq. (3.4). We note that A, and

A, involve infrared divergent terms while Py P2,
and C are finite. If we introduce

where 2B,=P2+ P, , (4.13)

A, , — dx d~8

P, =8 dx dao 8,,G,

(4.8)

(4.9)

then B,=B (v (- —W$). Hence it suffices to eval-
uate A„A„C, and J3,. With the aid of the inte-'
grals given in the Appendix we obtain (1 —$ =62),

A, = (2 + $)[16(2—$)D, —8g)2 —32I,] + 16(2I2 —I2),
and 8„8„8„andG are given in Eq. (3.3). The
energy-weighted cross section for real gluon emis-
sion is given by where

(4.14)

P

16(2 —$)D, —8]D2 —32I, =16ln(A' ') 2v —(2 —$) ln

+18(2 —}}I(';") i(' —,') .-,'I(-,") —
—,'I(-,")

+64vl 1 —ln
~

+161nl
&I

(2 —g)»
I
+12v ) /1+v l 22}' l

}

and

L(x) is the Spence function

lnl1 —t I

L(x) =- df
p

A = 5[16(2 —()D, —8)D, —32I,] . (4. iS)

The integral C can also be evaluated in a straightforward manner with the aid of the integrals given in the
Appendix,

C = -8(4$ —g')I, +16)I2+8$'I2+16I, —16I,

= 11(16+~22 g —~22 $2+2)2) +ln (-24( +12)2 —3)2+ F~) .
1 —v (4.16)

The evaluation of B, is more tedious. With the aid of the integrals given in the Appendix we obtain
[g (1 $1/2)1/2]
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&,= -2$'&, + 5'(2 —n)'&. + $'"(8 —12~5+4$ + 5'")& —8g('"(1 —('")& +8~5[ ({3k—1) —$(1+h)]L,

+$ (6 —8v $+$)L2+ ~ LS —2gg~(1 —~$L 4+2$ 2(2 —$)L, — L6
$'(2 —~g(-2 +7'—2$), 2$'(2 —v $ )'

=8@ ] [W((3$ —1) —$(1 +()]S+v(4+12)+3('+8v $ —24$' ')

+—ln
I

16{—1+3$—W$ —$~' ) ln +24) i —8( ' —22)+3/
2 1 —v& 2—

where the function S is given in the Appendix. From the definition (4.13), we obtain

{4.17)

16 &, = '([(-3h'" —h"' —$ —e)S]+(~$-~$)]+v- 3(v

+;», „I (-1+3&)»I„-(1+&)» +3-&,1+vi t'2+&A 4
(4.18)

—,', P, =-'. {[3('-t—('" h"—)S]+(~(--~i))+v(-'+-'&+-.&')

+ —ln
I

—$' '(1+$) ln +(-1+3$)ln
4

—.Pk+ 8 5
1+vi,i, 2+v 5 4 (4.19)

From Eqs. (4. 14), (4.15), (4.16), (4.18), and (4.19), we obtain the cross sections for the gluon bremsstrah-
lung process. To obtain the physical cross sections (1/o, )de jd cos8, and (1/o, )dZ/d cos8, we must include
the radiative correction diagrams.

The evaluation of the radiative-correction diagram is straightforward with the introduction of the electric
and magnetic form factors &, and F,. They are given in standard textbooks (see, e.g. , Ref. 10),

F,(v) =1 —Pf, ,

f, =2(——,'lnA+21n) —1) . lnI
I

—1 +2ln2
1+v' (1+v i

2v (1 —v)

+ -w'+-, ln ——,
'

lnI I
-»n2» I+4L(v)-L(v )-L

2
+L1+v', , 1 —v 2 t'1+v't 1+v 'I 1+v 1 —vi

] 1 —v)

and

(4.20)

(4.21)

This gives, including the zeroth-order diagram,

=~v (1+cos'8) (1+-',$) 1 — f, I
—4F, +(1 ——3cos'8) —1- f, ~E, —

g d cos8 '
m ') 1 2

1 dZ~
0'( 8 cos8 (4.22)

since for two-body final state 8 =9,. %e have included factors of 3 and 4 for the zeroth-order and the
radiative processes, respectively, coming from color summation. The subscript V in Eq. (4.22) denotes
virtual-gluon emission. Combining Eqs. (4.7) and (4.22), we obtain Eq. (3.5) where

P = ~ (3 —v')(1 + v') —+ ln in
I

—4L(v)
1, , "g~ 1+v f1+v

+I.( )+2I(0) +2L( )
—2L( .)

ll 3 P 1++ + 4

+6v(3 —v') ln —4v(3 —v') lnv+ —,'v(5 —3v')
2

(4.23)
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Integrating over the angle 8, we have

1 +- P(v) —(3 —v'),
Vp 7t'

(3.6)
I, = dxdkv

which agrees with the result given by Schwinger. '
The form for P in Eq. (4.23) is obtained by using
the following Spence-function identity, in addition
to the standard ones, "

2 ( 2x vr'
I.(x) —I.(-x) = I, -+l,

i
+—.

1+x (1+x 4

Similarly the energy-weighted cross section (3.14)
can be obtained by adding Eqs. (4.10) and (4.22).
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=v ———+— + ——+—ln

1 1+vI, = dxdko —= 2v — ln
x 1 —v'

I5= dxc&E 1 =v 1+2 + — +4 ln
1 —v

In evaluating B, the following integrals occur.
The sp integration is straightforward. For the x
integration a-change of variable

x-u= 1—

is helpful. For the u integration, the limits of
integration are +gu,

1 1 1 1
de (»v+x}' x 1 —u 1+u) '

APPENDIX

Here we present the integrals that occur in Sec.
IV. In evaluating Ay A2 and C the following inte-
grals are necessary. The limits of integration
are

tv=ax 1 —,1—

J 1
Av

20 +x

r 1
de 2 =2~3

'N —x+2g

where

g3 =1 —W$,

1 $ )x)2A i

The integrals are

D, =r r»xdw

= (- lnA'" ——,'1n) +21nv+ln2) ln
1 —v

+L
2

—2L +2

1+uJ, =ln

Z, =ln Q+
'R —g

Then we encounter the following integra]s (v
= v'1-g ):

1 2vK= du1 (1 iu)3
—(v- -v) =—

(2

Dg = dxd'N g 2 +~

= ——(lnA I +in) -2lnv —2 ln2+1)
4v

6i 1+v
+ 2- — ln

1 —v'

1 1+vI, = dxd3v =-v+(1 ——3']) ln
zo +x 1 —v'

x
dxckv =v -g +8( + p —g +~)28+x

1+v
x ln

1 2v
K2 = dN (1+u)', —(v- -v) =—,

1 1+v
EC3 = du —(v- -v) =ln

(1+u 1 —v '

1 V+g
K» = du —(v- -v) =ln

o ++I' v «g

v 1 1
L, = du — (J3 —J,}—(v- -v)1+g g+u

;i +S,1+v)
1 —v] 1+g 'j
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where

v+g g- v 1 v+g g- v v+g 1'v -g v+g

1 2v 2 —$ 1+vdu, J, —(v - -v) =—— 1n(1+u)' $ $ 1 —v '

0+I)' '
1 —a Y 2 —W( W((2 —W&)) '

1 4 v+g 2g 1+vdu, (J, —J,) —(v- -v) = — 1n + 1n(g~ )2 2 1 v-g $ 1 —v'

1 3v —v g 1 2 1+v
L5 = du , J, —(v- -v) =, + —,'+-- —, 1n(1+u)' 2(R 4 ( ]2 1

V

Le = du 3 J~ —(v- -v)(1+u' '

2v(1 —v $) 1+v 1 1 —v $+$
P &(2 ~~)'
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