
PHYSICAL REVIEW 0 VOLUME 21, NUMBER 2 15 JAN UARY 1980
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The ordered phase of Reggeon field theory is analyzed in the framework of the Reggeon quantum spin
model with three- and four-point couplings. We work at a particular value of the bare-intercept gap,
kp = 60~ for which the spin model is exactly solvable in one transverse dimension. We include the higher
single-site states by developing a perturbative expansion for this spin model. The expansion is shown to be
characterized by a small dimensionless parameter e = 16aokp~ /ro'. At each stage of calculation we are
able to relate the spin model to the continuum Reggeon field theory by letting the lattice spacing go to zero.
The two-point function is then calculated to order e. We find that the necessary condition for satisfying

Reggeon unitarity, of Regge-Mandelstam singularities appearing in the complex angular momentum plane,
is satisfied in the form of the two-Reggeon cut.

I. INTRODUCTION

Reggeon field theory' (RFT) has been shown to
exhibit the behavior associated with a, second-or-
der phase transition. ' The theory has been ex-
tensively studied at the critical point" b,„and in
the disordered phase 6,& 4„by use of the re-
normalization group. All known t -channel and s-
channel constraints are satisfied for these cases. '
A great deal of progress in understanding the or-
dered phase 6, & A„has followed from the intro-
duction of analog spin models, believed to be in the
same universality class of the continuum RFT.' '
These models maintain a continuous rapidity vari-
able while introducing a lattice in the transverse
impact-parameter space. The intersite interac-
tion is proportional to the slope of the Pomeron
tra, jectory n,' and is treated as a perturbation on
the single-site solution since n, is believed to be
a. small parameter. ' For large values of rapidity,
the single-site dynamics is dominated by the two
lowest-lying states. This motivates the spin-model
approximation of truncating the Hilbert space to
include only these two lowest states. While much
knowledge of the nature of the vacuum and obey-
ance of s-channel constraints has been demon-
strated with these models, the notable absence of '

Regge-Mandelstam singularities has created doubts
a,s to the validity of the ordered phase of RFT.
This follows because RFT is explicitly constructed
to satisfy Reggeon unita. rity which requires the ap-
pearance of Regge-Mandelstam cut singularities
in the complex angular momentum plane.

In this paper we will develop a perturbative for-
malism for including the higher single-site states.
We will utilize the spin model presented by Bron-
zan and Sugar, ' in which a four-Pomeron interac-
tion is included in addition to only the three-Pom-
eron interaction of the earlier models. This is
not supposed to effect the high-energy behavior

of the scattering amplitude but does provide a
number of important advantages. This Reggeon
quantum spin model does not break down for fixed
6, and x, as the lattice spacing goes to zero. This
allows one to take the continuum limit at any
point in the calculation and is necessary for check-
ing whether Reggeon unitarity is satisfied. We
are also given the option of choosing a value of 6„
termed the "magic value" 6,„,which corresponds
to the ordered phase of RFT and allows a simi-
larity transformation to be applied that converts
the non-Hermitian Hamiltonian into a, Hermitian
Hamiltonian.

We will determine the leading correction to the
two-level spin model induced by the higher single-
site states. At each stage of the calculation, the
lattice spacing can be taken to zero, with a finite
result. The perturbative expansion will be shown
to be characterized by a small dimensionless pa-
rameter e =16o.ob»'/x, '. This parameter indi-
cates that our treatment corresponds to a strong-
coupling expansion, and that the Reggeon quantum
spin model is the strong-coupling limit of RFT.
We then evaluate the two-point function (the prop-
agator) in RFT to the first two orders in e. In
lowest order we have the two-level Reggeon quan-
tum spin model result, which has both poles and
a cut in the angular momentum pl'ane. In the next
order in e we expect these moving singularities
to produce further cuts in the angular momentum
plane. What we find is a minor shift in the tra-
jectories found in the two-level Reggeon quantum
spin model and the production of a new singularity
that can be identified with the two-Reggeon cut.
This is extremely important because it shows that
it is possible for RFT to satisfy Reggeon unitarity
in the ordered phase. To check Reggeon unitarity
quantitatively, we would have to calculate the ap-
propriate Reggeon amplitudes. This is a formid-
able task and is beyond the scope of this paper. -
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Our paper is organized as follows. In Sec. II
we introduce the Hamiltonian formulation of RFT
and show how one may transform to a Hermitian
version when Ap is at its magic value. We then
introduce a lattice in impact-parameter space and
the spin-model approximation. The spin-model
Hamiltonian is then diagonalized on the subspace
of states which contribute to the propagator. These
states are termed the '"box states. " We then ex-
pand the Hilbert space to include the next higher
single-site state. In Sec. III we develop the per-
turbation theory for the Reggeon quantum spin
model. The box states appear as the correct lin-
ear combinations of degenerate perturbation the-
ory. This formalism differs from the standard
formalism, in that the box states are characterized
by a pair of continuous variables and their ener-
gies are degenerate. In Sec. IV we determine the
propagator to order e and discuss its implica-
tions. A brief summary and our conclusions are
presented in Sec. V.

II. THE REGGEON QUANTUM SPIN MODEL

The Reggeon quantum spin model' is derived
from the Hamiltonian formulation of RFT. We
work in the Schrodinger picture so that the field
operators are independent of rapidity. The Ham-
iltonian is given by

I

(j)( =(0~ exp '" d x}j(x)
0

(2.5)

il) =Vs(iy) —io)) (2.6)

(&I = ~(&yl -&0i) (2.7)

as our second right and left ground states so that
they satisfy the orthonormality relation

(dip) =5„t}, n =0, 1, p=0, 1,
where

2 -1/2
1 —exp — '," V

ia p

(2 3)

(2.9)

and V= fd x is the total volume of impact-pa-
rameter space.

Next we make a similarity transformation on
II by means of the operator

8 = exp — '" dDxy(x)»&p~
p

(2.10)

Keeping 6p= Ap„results in transforming 0 into a
positive semidefinite Hermitian operator H':

are right and left eigenstates with eigenvalue zero.
Since the ground state is then degenerate, the ma-
gic value of 6p corresponds to the ordered phase
of RFT. It is more convenient to define the states

H= d xapV' x 'V' x +hp x x

+ iro[qt(x)'g(x) + rP(x)((x)'j

+-,'~,y'(x)'y(x)'f,

where gt(x) and g(x) are the creation and annihila-
tion operators of the bare Pomeron and satisfy
the commutation relation

[y (x), yt(x')] = 5 (x —x') . (2.2)

As mentioned in the Introduction, owing to the
non-Hermiticity of P, gt(x) may be taken to be the
adjoint of g(x) at only one particular value of
rapidity. We choose this to be the value of y at
which the Heisenberg and Schrodinger pictures
coincide.

The bare vacuum, defined by g(x) ~0) = 0, can im-
mediately be seen to be a right and left eigenstate
of H with eigenvalue zero. If we choose a particu-
lar value of the bare intercept, the magic value,
as

P 2

H'=S 'HS= d x o.p'V ~.V'—

x ~ 22~0~ 22~p

}|=a ~' f d x}~(x}
b, y,-

(2.12)

(2.11)

Since H and H' are related by a similarity trans-
formation they must have the same spectrum. We
also know that there are no states with energy
lower than zero since H' is positive semidefinite.
This illustrates an advantage of including the four-
Pomeron coupling in that we have the option of
working with a Hermitian version of the theory,
which is the course we will follow in this paper.

We now introduce a cubic lattice of spacing a,
in impact-parameter space. The creation and an-
nihilation operators at lattice site i are given by

6o = 4o~ = —ro'/X o,

we can see by inspection that the states

~y)=exp~ '" d xyt(x) (0)
»&p~

and

(2.3)

y, =a D}" dDxy(x),
~v,-

so that they satisfy the commutation relation

(2.13)

(2.14)
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The Hamiltonian H' of (2.11) then becomes ON aD/2o2ih
r j 7

0
(2.23)

H' = Hp~+ H',

where the single-site Hamiltonian is

(2.15)
then the Hamiltonian jI' on this subspace of states
reduces to

2 -D 2'
0 yt y1' ON D/2

y
ON D/2

4g ph1 rp rp

(2.16)
where

4aON aD/2

0 (i j&

0 W,
'

(2.24)

or

haft;

= —&oN4,'4~+ 222'oa "'(0"0 —0,'0', )+ 4&oa 'g"0'
(2.1V)

and the gradient term becomes

&,'=~2 Z (4,' 0,')4-; 4/)—
Q

(2.18)

E„=~boa Dn(n —1)+ O(a D") (2.19)

which show that only the lowest eigenvalues re-
main finite and degenerate as the lattice spacing
goes to zero. This is the motivation of the spin-
model approximation of truncating the Hilbert
space to the two lowest states at each site. Equa-
tion (2.19) illustrates another advantage of inclu-
ding the four-Pomeron coupling. In the model
with only a three-Pomeron coupling the two lowest
states are well separated from the rest only when
(&o'/ro')aD» 1,"so the zero-lattice-spacing limit
is not allowed.

Next we must determine the two lowest single-
site eigenstates. By inspection we see that the
ordinary vacuum fo),. and

where (zj) indicates a sum over nearest neighbors.
The slopeof the Pomeron trajectory np is believed
to be small' so we treat the gradient term as a
perturbation on the single-site term. A standard
perturbative expansion in the lattice spacing shows
that the single-site eigenvalues are

N'(1+ Ne2)-& /2

0 (1+N'2)-& /2
(2.26)

and
-N'

0

0 (1 yN'2)~/2
(2.2 "I )

which satisf y

(2.28)

so that we will be able to diagonalize the Hamil-
tonian on our truncated Hibert space. The single-
site eigenstates are now

lo&,. = o&, ,

Iy&;=N'(1+N") '"lo&,.+ (1+N") "'I»;=-
f y&;

(2.25)
0 1

By treating 0~ Perturbatively at +0 +pN we
have been led to a problem in degenerate pertur-
bation theory because lo)/ and f»/ are degenerate.
To proceed we specialize to D=1. 'This is nec-
essary since we can only solve the spin model in
one dimension and at &0 = &ON using the present
simple techniques. 'These conditions are certainly
not general ones, or physical ones. However,
these conditions do allow us to proceed quite far
in the analysis of the ordered phase of HF'T. We
proceed by making a change of basis via the trans-
formation matrices

exp '"e &'0'J)~0),.
286

0

have eigenvalue zero. However, to satisfy the
biorthonormality relation

,&o
l
-N,',.&1 f,

,&j f
=(1+N,") /', .&Tf,

(2.29)

we choose

fl),. =N,' exp '"a 2gt —1 fo)/,
2Z~oN

0

where the normalization constant is

(2.20)

(2.21)
o& = U-'cr&U =

0 1
(2.30)

and

and we see that the right and left eigenstates are
no longer adjoints of each other. The creation and
annihilation operators in H,

' become

o 0'

2 -1/2¹,= exp '," aD -1
rp

If we then define

(2.22)
cr'= U 'o'U=

No(1 +N")'/'

-N'(1+N")'/' '

1+%0
(2.31)
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We now introduce box states which are defined
by

4 Ap +OQ
bo =- lim(a —4b) =

e»p +0
(2.41)

where

(2.32)
The normalization of the box states is calculated
directly from the definition given by (2.37) and is

(Xe(7', 8') lX~(v, 8)& = 7/'f(7, 8)5(8 —8')5(r —v'),

(2.33)

(2.34)

where

f(» 8}= l,~,o/-2:;, +

1
A+ j6}f 2- j7'1 —e

1
A+ g8/2+ f7

. —I
J

1
Q -i / O+i2w

(2.42)

(2.43)

o',
l
0) = N,'(1+X,"}'/'

l
l, f + 1) . (2.35)

In addition, the Hamiltonian 0,' maps box states
into box states:

H,' ll, o &=
'", ((4N,"+2)

l
f, r& -N,'(1+X,"}' '

amp'

(2.36)

We may dia, gonalize H,' on the subspace of box
states by forming the following linear combina-
tions:

l X~ (r, 8)) = Q Q e'"""'/' sinr (~ —f }l f, r&,
l=-~ r=l

0~ 8&2li, o~y&w. (2.37)

'These states form a complete set since we may
write

"d6) 'd&
l f, o &

= — —e-'"'"'/ ' sinT (o. —l ) l x (&, 8)& .
p tt 0

(2.38)

Letting H,' operate on the linear combination of
box states of (2.37), which we will hereafter also
cal.l box states, we find

H,' l X/l (r, 8)) = (a —4b coso 8 cos&)
l Xs (r, 8)), (2.39)

Q /Q 2
0 0if (2b/I 2 1)

~~0

4n'&0 ON ~l (1 ~/2)l/2
QXO

The minimum energy for the box states occurs
when cos&6}cos7 = 1 and in the continuum limit is

where l (r) labels the left (right) end of the box.
In the first term, the sites from -~. to l —1 and x
to ~ are in the state lo&,. The sites from f to
x —1 are occupied by the state

l
&f&&, Box states

are seen to be relevant to the calculation of the
propagator because F, creates a box state from the
bare vacuum:

phf Q.I p

(2.44)

We see that at &0= &~~ the Beggeon quantum spin
model has emerged naturally as the way to find
the correct linear combinations of the degenerate
perturbation theory for II'. In addition to the box
states, Bronzan and Sugar' have also identified
linear combinations of "kink" states that also
diagonalize H,'. (These states consist of lo), states
to the left of lattice site i and

l Q&,. to the right of
site i. ) These states do not enter into the cal-
culation of the propagator so we will not discuss
them further.

We will now expand the Hilbert space to include
the higher single-site states that we have trun-
cated to this point. The higher single-site states
for the Hamiltonian H,'/ of (2.17) can be deter-
mined by developing a perturbation expansion in
the lattice spacing a. The first state above the two
degenerate ground states is given explicitly as

5 & 283 &

0 +0

3
3l/2 Oi/gl/2 iO

X 3I/2 OiW +3/2 }3)lp
0 0

( 3
21/2 p&gl/2 2-1/2 0/M g3/2

3

2 ~ 4
6g31/2 ORE + 53 y 31/2 Ohf +2+ 5 2 75

)I
I

3—&& ]5 / o'~ /i3/2
l 5& i @ )&lol/2 o// g2

l
5&

0 0

(2.45)

The states lM&/ are harmonic oscillator eigen-
states.

Having determined the higher single-site states,
we may now determine the matrix representations
of the creation an annihilation operators to order
a2 in the complete Hilbert space. However, to
find the leading order effect, it is necessary to
retain only the first higher single-site state i/2/.
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(We will explicitly demonstrate this fact in Sec.
III after developing our perturbative formalism for
including the higher single-site states. ) There. -
fore, we truncate our Hilbert space to the lowest
three states and we find

0 Np 002

0 0 ap,

op=U '+)U= 0 1 cr

0 0

(2.5o)

allow the creation and annihilation operators to be
represented by

o,.= 0

0

1 V12 (2.46) and

-N"
0 -~ (1+~ )'I2

where

(2.4V)

2

O = j2 / + j2-3/2 0& g02
0

O' — Q"1/2 0 +1/2 + Q 3/2 Ohf +1/2y
12

pb1 Vp

X21/2 phf &3/2
1200

We must transform to a nonadjoint basis to cal-
culate the effect of the Hamiltonian on the sub-
space of box states. 'The simple generalization of
the transformation matrices to

o~-—- U 'o)U = No(1+No')'i'
~+
020

0
1
2

(2.51)

where

02 02 0 12

p, a-i2-'/' X2-3/2 0' &
91

and

1 N'(1+ N")-' ~2 0

U= o (1+x,")-'~2 o

,0

0

(2.48)
0'+ =0+ = j2- / j2- / —0~ g

2

20 02 2
0

o'„= (o~o2AO+ o,*2)/(1+So")'~' = o' *

(2.52)

O (1 //2)1/2 O (2.49) With these representations, we find that the
Hamiltonian of (2.24) when operating on a, box
state produces the following result:

H,'
l
ga (7, 8)) = [a —4b cos28 cos7']

l ga (&, 8))

~ 3 2 0 Af

OO Ooi2"' -'", [-1+O(a)j g ge""'""2sim(r-1)
arp'

7 =-~ r=l

x&lf r -&+If, r, +&+ If+1, r )+lf r 1 +&&. (2.53)

The higher-order term, represented by O(a), must.
be neglected since we would get contributions of
competing orders from the next two higher single-
site states had we not truncated the Hilbert space to
the three lowest states The stat. e

l
l, r, -) in (2.53)

corresponds to the
l
l, r) state given by (2.33)but with

a l2&&single-site state atthel —1 site. Similarly, the
ll, r, +) state has a l2),. single-site state at ther site.
We also wish to point out that the result of (2.53)
does not depend upon the order of applying the
transformation and truncating the Hilbert space.
Equation (2.53) will be used to determine correc-
tions to the box states in a perturbative formalism
which we develop in Sec. III.

JI'ly(r, 8)) = E(T, 8) ly(r, 8)),
where

(3 1)

III. PERTURBATION THEORY FOR THE REGGEON
QUANTUM SPIN MODEL

In this chapter we will develop a perturbative
formalism to find the leading correction to the box
states, which we trea.t as a first approximation.
This formalism differs from the standard pertur-
ba, tion theory we have applied previously in that the
states are characterized by the continuous vari-
ables 7. and L9. Therefore we have a problem in de-
generate perturbation theory in the continuum
sector. Our problem is defined by
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H' = H'+A. H,
'

0 (3.2) IX"'(» 8)& = Q Ix.&&x.lx"'(~ 8)& (3.8)

as given by (2.15). X has been included for book-
keeping purposes. We begin by expanding Ix(r, e)&

and E(7', 8) in a power series in A. .
where the states IX„& satisfy

H.'lx. &
= E."'lx.& (3.io)

Ix(, 8)& = IX.(, 8)& XIX"'(,8)&

+A'Ix(2'(T 8))+ ~ ~ ~

E(T, 8) = E"'(7 8) +XE"' (T, 8)

(3.3)

and are composed of an infinite product of the
single-site states, In&, The projection operator
onto this space of states may be split up as fol-
lows:

+x' E"'(r, 8)+ ~ ~ . (3.4)

Recall from (2.42) that the box states satisfy

&x,("8') lx.(~, 8)& =.y(, 8)6( - 8')6(.-"). (3.5)

(P = g Ix.&&x. l

I
"de" 'd~" IX (~",8")&&x (T" 8")I

J, &(, &( y(7-, 8)
We substitute these expressions into (3.1) and
equate equal powers of A. which then yield the fol-
lowing set of equations:

+ Q Ixd&x. l (3.11)

(3.6a)If.'Ixa& = E"'IXB&

&,'IX"'& + 5&,'Ixa& =E"'Ix"'& + E"'Ix a&,

&'lx"'&+ If,'ix"'& =E"'Ix"'&+E"'Ix"'&+E"'Ixk

(3.6c)

etc. We have temporarily dropped the ~, 0 labeling to
simplify the notation. We see immediately that
@(0) —p

Next, we multiply (3.6b) and (3.6c) on the left
by (Xa(7', 8')I and we find

and

E&»(, 8)
&x~(T', 8')lff.'Ix~(T, 8)&

&x,(~', 8') Ix, (T, 8)&
(3.7)

&x.(",8') lf. ,'lx"'(~, 8)&

=E"'( 8)&x ( ', 8')Ix"'(, 8)&

+ E"'(~, 8)&xa(7'i 8') Ixa(7 ~ 8)& (3 8)

We may express IX"'(7, 8)& as an expansion over
a complete set of states

Since (x I is orthogonal to Ixa(i, 8)&, we find

( I
(1)(~ g)) &Xm I+z IXB(~& 8)&

Xfft X P E(0i 0 (3.14)

Now consider Eq. (3.8). We substitute the ex-
pansion of IX"'(r, 8)) IEq. (3.12)] into the left-hand
side of (3.8), and using (3.5) we obtain

where the prime on the sum indicates the exclu-
sion of box states. Equation (3.11) then allows us
to express Ix"'(T, 8)& as

'" de"
IX"'(~, 8)& =

0
Trdyll IX (Tll g ll)&(x (/II 8/I)[x( )(7 g)&

y(~ II g II)

I

+Q IXV&X Ix"'(& 8)&.

Next we multiply (3.6b) on the left by (X I
and

obtain

E"'&X.IX"'(~, 8)&+ &x.le,'IXB(~ 8)&

=E"'(&, 8)&x Ixa(&, 8)&.

"de" "d~" (X~(~', 8')IP,'Ix~(T", 8")&(X~(~",8")IX"'(T,e)& ~'. . . 8,, & I& yg & o„
0 0 JK p I Sl

=E&»(~, 8)(x,(T, 8')Ix&'&(~, 8)&+E ' (~, 8)vy(T, 8)6(e )8(~6--~'). (3.i5)

Using (3.5) and (3. 1) we may evaluate the integral. Then using (3.14) in the second term on the left-hand
side of (3.15) we find

E(»(7 I gl)(x (~I gl)
I

(»(~ g)) ~ Q &xB(T 1
8') IH,' Ixk(xm I H,

'
Ix&& (~~ 8)&

= E"'(7,8)(xa(7', 8') IX"'(r, 8)) + E"'(7, 8)&(f(7, 8)5(8- 8')6(r —r') . (3.16)

In our three-level Hilbert space we have shown in (2.53) that 0,' acting on a box state will produce a
modified box state in which one of the ends of the box will be excited to a 2&, state Therefor. e the only
states that will contribute in the sum over m will contain combinations of 0&, and I1&,. states, accompanied
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(3.17)

by one ~2&,. state. From (2.19) we see that the energy of these states comes entirely from the ~2&,. state
and is X,l2&2= —);2/2a, „a. The remaining sums in (3.16) are then evaluated and we find

'&X8(T' 8') le.'lx2&x. l/f.'IX8(&, 8)& (, 8)5(g 8,)6(. ..),h(. .. 8)6(g 8 )g (o) 7 7

where

(, )
64&'o't'&o~

aro
1 1 1 1

eA+i 8/2+ i~ +
1 eA+i 8/2-i~ 1 eA-i 8/"-'-i7' 1 eA-i 8/~+i T (3.18)

64&&0 &o~
h(~l I 8) () 1 A+i 82/+1&' '1 A+i 8/2 ir '-1 A+(8/2+iV 1 A+(8/2-&rax0 L I»

I

1 1
1 eA-i 8/2+i7' '

1 eA-i 8/2-i7' '

Using this result in (3.16) we obtain

eA-i 8/2+iv
1

1 eA-i 8/2-'~ (3.19)

E"'(~', 8')&x (~', 8')Ix"'(7, 8)&+g(~, 8)5(8 —8')6(7 —2')+h(2, T', 8)6(8 —8')

=E&'&(7, 8)&X8(7', 8') ~x"&(2, 8)) +E&'&(7, 8))('f()., 8)6(8 —8')5(w- ~') . (3.20)

From this we learn that, for v cv',

h(7', T', 8)5(8 —8')
&X8(), 8 )IX )(), 8)& -E(1)(~ g) E(1)(~ gll)

and for ~=~', we learn

(2)( g)
g( 0 )
v'f(T, 8)

or

(3.21)

(3.22)

1 eA -i 8/2-i~ 1 eA+i 8/2+i 7' 1 gA-i 8/~+i~ 1 /A+ i 8/2-i~
(3.23)

where

— 64& '~.~'
C= 6Qto

(3.24)

Inserting (3.14) and (3.21) into (3.12) yields the desired result for the first correction to the box states in-
duced by the next higher single-site state:

(, )
&

"dg' 'd~' IX8(2', 8')&h(r, 7', 8)5(8 —8') ~' IX»&&x IJf'IX8(), 8))
f() I gl) [E(1)(~ g) E(1)(yl gz)] ~ E(0) (3.25)

where the symbol P indicates the principle value of the 2' integral. The energy E")(T,8) as given by (3.7)
is easily determined with (2.53) and (3.5) to be our previous result

E" (v, )8) = a —4b cos ,'8 cos~ .— (3.26)

Using this result in (3.25) and carrying out the 8 integral, the expression for the correction to the box
states reduces to

IX"'(~, »& = IX"'(2, 8)&+ Ix""(&,8)&,

where

(3.27)

and

16o.,'4,„')ii)/8(1+ f&/,")'/' cosg&/2, wf (~', 8) (cosa' —cos2)

(irl)(T g)& ~ IXIII&&x I+ Ixa(+ 8)&
IX g (0)

m m

(3.28)

(3.29)
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The projection operator may then be expressed as

d8 'dT
XBT~8 ggT~8 + g~T 8 )( "T)8

v f(i, 8)

+ Ixs(~, 8)&&x""(7,8) I+ Ix""(~,8)&&xa (7 8) I+ Ix(""(~ 8)&&x (~, 8) I), (3.30)

where we are allowed to keep only the leading
terms. This expression, which contains correc-
tions induced by the higher single-site states,
will be used in Sec. IV to determine the propaga-
tor. The higher single-site states make their en-
trance in equations like (3.17). This particular
equation determines the second-order correction
to the energy 'eigenvalues E('&(r, 8) via the func-
tion g(r, 8) as seen in (3.22). We will now show
that the expression for E'"&(7, 8) is finite in the
continuum limit.

Consider the first-order energy eigenvalues
for the box states E('&(r, 8) given by (3.26). The
continuum limit is then

lim E("(v., 8) = ','" +,' —+—+ ~ . (3.31)

Clearly, the second term above indicates that T

and 8 must be of order a in the continuum limit.
With this fact in hand, E(2&(~, 8) as given by (3.23)
is clearly seen to ha, ve a finite continuum limit,
the a ' dependence of c being canceled by the a'
dependence of the term within the brackets. Or
preferably, from (2.43), (3.18), and (3.22), we may
determine that g(7, 8) and f(r, 8) behave as a ' in
the continuum limit so that E "&(w, 8) is again fi-
nite. From this point of view it becomes clear
tha, t any contributions of higher powers of a in
g(7, 8) from the sum over intermediate states in
(3.17) will vanish in the continuum limit. If we re-
tain the I3&,. state in our Hilbert space, we would
have an additional term included in (2.53). It
would be identical to the term exhibited there, ex-
cept for I/3,. states occupying the positions where
we find the I2&,. states, and the coefficient will be
of order a 'l' rather than the a ' exhibited. This
a,dditional one-half power of a wiQ produce vanish-
ing contributions of order a in the continuum limit
of E("(r,8). It is this observation that allows us
to neglect contributions from the I3&; and higher
states to this order of perturbation theory.

Having established that the physical quantities
like the energy, have finite continuum limits and
noting that ap' appears only as a coefficient of II,',
the only dimensionless parameter proportional
to o. p' that can be formed is

Ig 3
~=~6 (3.32)

Vp

We have included the factor 16 for later conven-

ience. This dimensionless parameter must char-
acterize the perturbation expa. nsion we have esta-
blished, and we can expect to recover the two-level
spin-model results by taking the e - 0 limit. Fur-
ther comments on e will be presented in Sec. IV.

to transform to the Hermitian version of the the-
ory, we fix the bare intercept gap to its magic val-
ue n, ,„and insert SS '= 1, given by (2.10), be-
tween the factors appearing in (4.1) and obtain

G(x, y)=(a ((x)e "'"()) (0) — "" a'~') 0),
p

(4.2)

where we have used

S-'(I (x)e = y(x),

t(0)S yi (0) 0&& ol/2
Yp

and defined

&ol=-&ol s .

(4.3)

(4.4}

The Hamiltonian H appearing in (4.2) is the Her-
mitian operator given by (2.11). Since e " 'lo&

=I 0), (4.2) reduces to

g(x, y) =&~I y(x)e- "y'(o)I0&. (4.5)

Following the procedure of Sec. II we introduce
a one-dimensional lattice in impact-parameter
space (i.e., D = 1). This allows us to write the
propagator as

&(x, x)=(ils)&elk&e ""P.'Io), (4.6)

where j = lxlla, and the Hamiltonian is now given

by the lattice version (2.17). The propagator is
expected to be an analytic function of 6p at Ap

6pg so we expect that the singul arities generated
in the complex angular momentum plane exist
for all hp& 6~.

In a conventional Hermitian field theory, the
propagator is given by a vacuum expectation val-
ue. In our case, however, the bare vacuum bra

IV. ANALYSIS OF THE PROPAGATOR

The propagator for the untransformed continuum
Hamiltonian of (2.1) is defined by' '

c(x,y) =&ol y(x)e-" y'(0)l o& . (4.1)
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(0~ is replaced by the state (o(~. Let us consider
this state (o() further. Taking the lattice version
of the operator S, we may write

)
4b, ,„' "de " d~ (o(io, ix (w, 8))

1/, a f(T 8)

(el=(ple*p(- '"e"Z4) (4.V)

xe- "'"(q, (7, 8)[a.'I 0), (4.14a)

4&(&)2 de &~ (O(I (/; I X2 (re 8))

If we truncate the Hilbert space to the two lowest
states and use the representation of P/ given by
(2.23) and (2.25), it is easy to show that x e-e('e) &X""lo:I0&, (4.14b)

or

(el ="'(,(OI+~, , (zi) (4.8)

(4.9)

4I),,„' "de " dv (o(jo,. jy~(r, e))
f(~,e)

(it 12 (g, 8)[v+2 ~0), (4.14c)

2

(ele) =exp,'" v) .f 0
(4.10)

where /((t)~ is the normalized state adjoint to the
ket

~ (I))/ introduced in (2.29). We see that (u~ con-
tains a linear combination of the two degenerate
single-site ground states. The norm of the state
is easily found from (4.9) and is

4b, ,„2 '" de " dT (o(~o,.~y""(T, 8))
r,', w, 1/ f(7,8)

x e e"e" (Xe (T, 8) ( oo ( 0), (4.14d)

4a,„' '" d8 " d7 (oI~o, )y(")(~,e))
G "' =

r,'", v, ~ f(., e)
'

(This also follows directly from the continuum
theory without truncation. ) We see that this state
has an infinite norm as the volume of the quantiza-
tion region goes to infinity. This unusual circum-
stance in the Hermitian version of the theory re-
flects, through the similarity transformation, the
non-Hermitian character of II. The infinite norm
also enables the propagator to contain singularities
not associated with the spectrum of the Hermitian
Hamiltonian 8', and therefore of the similarity
transformed non-Hermitian Hamiltonian II as well.

%hen we include the next single-site state in our
Hilbert space, we find, using the representation
of o, given in (2.46),

~i2 Z/2 2

g(PI - e"—'". e, (pl)
0 fo

(4.11)
We see that (o(~ now contains a contribution from
the /(2I single-site state as well.

Equation (2.23) allows us to write the propaga-
tor as

xe- ( e& &X.(~, e)lo;~0) (4.14e)

~d z(~, e) =z"' (~, 8)+z'"(~, e).
After carrying out all sums and integrals intro-

duced in (4.14) by ~ Xe (~, 8)), )
y""(~, 8)), and

[it"2) (2., 8)), and making some simple changes of
variables of integration, we have the result that
the continuum limit of the propagator to order & is

G(2:,y) = —;"I,I, + (1 e+)tI,X, E,X,]-
0

2

1+ 8 —[E1I4(c)+I2I (c)],
0 el

(4.15)
The integrals appearing in (4.15) may be expres-
sed in terms of the error function

Er(e(e). = f eee ''.
Specifically, we find

2(o(' y)» (] + e)1/2
4~ 2

G(x, y) =;" (o(( o,. e " 'c~o
( 0) .

0
(4.12)

G(x, y)= Q G, (x, y),
g=o

where

(4.13)

We then insert the projection operator (3.30) be-
tween the exponential factor and ato and allow the
Hamiltonian to operate on these states. The
propagator can then be written as

2h 02( (o(l y)1/2(1 + e)1/2
y 2 0

0

1
1(2) 2 (O)

e )1/2(1 + e)1/2

2Q 2

& exp — -
'" o"y

"' 1+~ "'
- y2

lg)0
2(O(e )1/2(1+~)l/2

(4.17)
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I3(4&(c)=+ exp —,'" o(,'p(1+a)c(c —1) w —~2~- ~x~c ~Erfc w2
1 16a, -'

y'

2

(o('S) (1+@) / (2c —1)
0

Then using (4.16) we find we may write the propa-
gator as

(4.18)

&O
'

e 1 + 8 exp ( &0y(l + &)c(c —1)
rp 4m &C

exp "2" xc dx(e "1 de e "3 + exp —- '2" - xc
~

dx2 e '2
ro Xf {) 3C3O

r{) j

O(3

2

dX4e "4

x4p

(4.19)

2
2+Elf I f /2 + f /2

+10(20) + e I ~1/2e1 &(/2 2 ((207) (1 &) (4.20)

2

30(40) y )1/2 1 1/2 +
2 (noy) (1 + e) (2c —1)

x PN I f/2 f/2
2((20'y ' 1+t (4.21)

Note that we have been able to drop the absolute value signs, since G(x,y) is symmetric under the exchange
x ~ x ~

The first point of interest in (4.19) is that if we let z go to zero our expression reduces to that found by
Bronzan and Sugar in their two-level spin-model approximation. This reveals the fact that

~6+0+ON
4

r{)
(4.22)

must truly be a small parameter. Therefore the ordered phase corresponds to the strong-coupling re-
gime of RFT, and the technique we have established is a strong-coupling expansion. In obtaining the ex-
pression for the propagator, (4.15), we encountered a number of divergent geometric series, which we
rendered finite by allowing 7 and 8 to take on imaginary values. We believe the correspondence with the
earlier results of the-Reggeon quantum spin model in the e -0 limit reveals the validity of this technique
for handling the divergent geometric series.

The propagator in the angular momentum plane is given by

G(k,Z)=J dee" feee" G(e, e).*
O(3 0

Inserting (4.19) into (4.23) gives us

(4.23)

(."()2,Z) = -(1/ 2

a{)k'+ 45p + n{)k'—
(1 + e)~

2 " 2g 1/2
—250 (1+ a) 450+ (20k0 0

1
6 rp -2E 2 Bik&ON t

/ -2E 2, Biknp&ON-- + k +, — + 2k Q. p'+
n(I + &) r02 (1 + a) r0

- -2E, Bgk~»' ~'/' -2E, , Bsk~p'~ON'-+k- + 2n{)k—
((20(1 + &) r0 , (1 + &)

»»ON 3»ON'
4

rp
—2E + 2+ 8N'&ON —2g + 2& Ik2+ Bgk&p&ON

(20(1 + &) r, '
~ (1 + e) ' r0'
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+ -2E
.~0'(1 + ~)

-2E
n0(1+ e)

+.
n0(1+ C)

oe +

Sik&o~ -2E
2 i~2 Sik o'o&o

~2 (]+g) 0 2, 2

8zk& 0+0@ 32+0
2 4

&o &o

2+ Sik o~ -2E 2,&2+ Sik&n&ou
22 (1+e) 0 y2+ 2(y'P +

SN o~' '" -2E 2,@2
Sion

r ' (1+&)
I

2

64~ & OM

Ko

-2E + 2,~2+ Sik&o o~
(1 + e)

2

64 I ON

fp
Si~&o o~'"'

(1 + ~)

(4.24)

E= o.0k +4i ' 2" k (1+e)
7'p

(4.25)

or

J= 1+ n,'t+ 4z '', " 4 t(1+ e), -
+p

(4.25)

From this expression, we see that the propagator
has poles on the trajectories

I.
factor into a renormalization of ao, shows that the
effect of including the order & term has been to
produce a cut corresponding to the convolution of
two Regge poles. Therefore we may make the
important inference that it is now possible for
RFT to satisfy Reggeon unitarity in the ordered
phase.

Owing to the collapse of the poles, (4.25), to a.

double pole in G(k, E) when t = 0, we find that
and cuts on the trajectories

a'Q2E= 260+ (1+e)
2

J= 1 — 250 — (1+C),
Q

2

0 4
~ 0 OJlf k (1 + )

2 fo

or

(4.27)

(4.23)

(4.29)

(4.32)

V. SUMMARY AND CONCLUSION

cr~ ~ logs,

which shows that the Reggeon quantum spin model
saturates the Froissart bound in one transverse
dimension. This result is due to the infinite
norm state (n ~, which gives rise to the poles of
(4.25). These singularities are not associated
with the spectrum of the Hermitian operator H'

and can be understood to be a feature through the
similarity transformation of the non-Hermitian
character of RFT.

I

J=1+ (1+&)+4i 2
v'-t (1+&) . (4.30)

2 fp

The new features here are finding a shift in the
trajectories of (4.26) and (4.28) which appear in
the two-level spin model and the appearance of
the Regge-Mandelstam moving cut (4.30) which is
absent in the two-level spin model. Reggeon uni-
tarity requires the appearance of these Regge-
Mandelstam singularities on the trajectories

(4.31)

owing to the convolution of n Regge poles. Com-
paring (4.30) to (4.31), after absorbing the 1+e

The ordered phase of RFT has been examined
in the framework of the Reggeon quantum spin
model including the four-Pomeron coupling. We
employed the Hamiltonian formulation and have
shown that the inclusion of the four-Pomeron
coupling allows a similarity transformation to a
Hermitian version of the theory when 4O is fixed
at its magic value. By working with a Hermitian
version of the theory, we were able to isolate
the unusual characteristics that arise due to the
non-Hermiticity of RFT. In particular, we found
that the left vacuum state that appears in a con-
ventional Hermitian field theor'y, was replaced by
the infinite norm state (a

~
. The physical conse-

quence of this was the saturation of the Froissart
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bound.
The gradient term of the Hamiltonian can be

treated perturbatively by introducing a lattice in
impact-parameter space, while keeping the rapid-
ity variable continuous. The spin-model approxi-
mation of truncating the Hilbert space to the two
lowest states at each lattice site, is then moti-
vated by inspecting the single-site eigenvalues
which show that only the two degenerate single-
site. ground state energies remain finite as the
lattice spacing goes to zero. The spin model
also arises naturally in determining the correct
linear combinations required to diagonalize the
gradient term of the Hamiltonian, namely the box
states. We then developed a perturbative forma-
lism for including the higher single-site states
which determined the leading corrections to the
box states. We were then able to show that this
formalism yields finite results in the zero-lattice-
spacing limit. This allowed us to identify the
small parameter 6 that characterizes the pertur-
bation expansion, and relate the spin-model re-
sults for the propagator directly to the continuum
RFT. The main result of these calculations was
to show that the next higher single-site state led
to the production of the two-Reggeon cut in the
angular momentum plane. The absence of this
cut in the two-level model created doubts on the
validity of RFT in the ordered phase, since these
Regge-Mandelstam singularities are required if
RFT is to obey the Reggeon unitarity relations.

In arriving at these results we encountered a

number of divergent geometric series. We ren-
dered these finite by allowing the variables 7 and
8 to take on imaginary values. We were able to
confirm the validity of this technique by showing
that the presupposed condition of recovering the
two-level spin-model results did occur in the
& -0 limit.

We conclude with a word of caution. Our re-
sults indicate that the parameters of RFT can be
chosen arbitrarily without violating any s-channel
or t-channel constraints. However, we have as-
sumed that these parameters are smooth functions
of the Reggeon momentum k, A recent study'
of the Regge behavior of spontaneously broken non-
Abelian gauge theories showed that the sum of
leading logarithms in the Regge limit (s -~, t
fixed) satisfies Reggeon unitarity hut violates the
Froissart bound. The source of conflict lies in
the fact that the four-Reggeon coupling is singular,
not smooth, as Reggeon momentum k,. -0 in non-
Abelian gauge theories. Therefore the assump-
tion of smooth Reggeon parameters may very well
be incorrect, if the correct underlying dynamics
of strongly interacting particles is described by
spontaneously broken non-Abelian gauge theories.
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