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Non-self-dual static gauge faelds
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%e exhibit exact non-self-dual static solutions to the SU(2} Yang-Mills field equations by solving the
equation + V + XV = 0 using cylindrical and spherical coordinates. The resulting gauge fields are complex
and have singularities. For the cylindrically symmetric solution, we convert it into a real gauge field coupled
to the Higgs field in the limit in which the self-interaction potential of the Higgs field vanishes.

I. INTRODUCTION

Recently there have been many attempts to con-
struct static sol.utions to the classical Yang-Mills
(YM) field equations. ' However, most of the ex-
plicit solutions obtained are self-dual or self-
anti-dual, ' ' and non-self-dual static solutions are
scarce as they are harder to come by. " Non-
self-dual solutions may contain features of the YM
theory which are not exhibited by the self-dual
solutions, "for example merons" are non-self-
dual solutions and have noninteger topological
numbers. Furthermore, the self-duality condition
can in fact be linearized whereas non-self-dual.
solutions result from solving nonlinear differential
equations. Finally self-dual solutions are neces-
sarily sourceless but non-self-dual fields do not
automatically satisfy the sourceless YM equations.

In Ref. 5, families of self-dual static solutions
are presented by using the ansatz

A;(x) =a —&'1nv, A&(x) = —e&,„S'1nv,

where V is a function of the spatial coordinates x'
only. If one defines cr = —,'&' o~, o' =+ —,'io' where
o' are the Pauli matrices, expression (1) can be
written as

tive. The vanishing of X renders Eq. (4) the self-
duality condition. To solve Eq. (4) is not easy un-
less one imposes certain symmetry requirements.
In Ref. 11 we write V as a function of u =P,.x'+q,
with p' being a constant vector and q an arbitrary
constant, and transform Eq. (4) into a differential
equation of one variable. 'The general solutions
for V are the Jacobi elliptic functions and V=u '.
'These solutions lead to gauge fields which are
periodic in u and have constant energy densities.
They are singular on parallel planes. Further-
more, the solution V=u ' possesses zero energy
density in spite of the fact that it corresponds to
the gauge fields which are non-self-dual. . This
means that although the self-duality condition
always yields gauge fields with vanishing energy
density, the converse need not be true. " In this
paper we wish to present other solutions of Eq. (4)
by employing cylindrical. and spherical coordinates
for the Laplacian ~'. These are separately carried
out in Secs. II and III. In Sec. IV the cylindrically
symmetric gauge fields are coupled minimally to
the Higgs triplet and the resulting configuration
seems to correspond to a string of non-Abelian
"electric" sources lying on the z axis. We end
with brief remarks. in Sec. V.

II. CYLINDRICAL SOLUTIONS

&a
A, (x) =g 2, A'„(x) = fa„„~"ln((x) (2)

Using the cylindrical coordinates (p, p, z), Eq.
(4) admits the solution

with g(x) = V, which is the Corrigan-Fairlie-
't Hooft-+ilczek ansatz'4 in Minkowski space. On
substituting the ansatz (2) into the YM equations

F'v + tA„, F'v) = 0

where the signature of the metric g„„ is (-+++),
a nonlinear equation for the function V follows:

V=+(—X)
'~' —, p'=(x')'+(x')',

P

which leads to the perfectly cylindrically symme-
tric gauge fields

4,= -io,„n"/p, n" =x'/p.

Here the capital Latin indices A, B, . . . . take on
values 1 and 2 only. For the ansatz (2), the field
strength can be expressed as

V'V+ ZV' = 0. (4) F,„=(z/V')[o„.(Vs.s V —2~ Ve V)-o,„~™VBV

Here X is a constant which can be positive or nega- +a~(2s„vs V —V&„s V)] (f)
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and the energy density for the gauge field is

(g'/~) e„=—,'zv'+ s,vs'V.

'The electric and magnetic fields associated with
the solution (5) are easily computed to give

1 1B
2p 2p

and

and

EA 2 2 [P c(k)x Bx /p 2cAg p

I3, = E, , o,(p'c(k) ——,'S),3 E2 2 3

where we write S for

S =P'c(k) ,'~A—'—E'(Py).

(14b)

3CD
2 AB3~ C+D

2p

=
z AB3 = 2, Pg3~ACr

2p

(9b)

p'E" + E+XA2E3 = 0 (12)

'The fields are singular along the z axis, indicating
the presence of sources lying along a straight line.
From Eqs. (8) and (5), we find that the energy den-

sity is real and is given by

1
800 2' 4 &

which increases rapidly when far away from the
line o'f sources. The total energy diverges due to
the singularity at p= 0.

By trial, we are able to modify solution (5) to the
form

v = (A/p)E(PA),

which are solutions of Eq. (4) and where A, p are
nonvanishing arbitrary constants. Here E(PP) is
a, function of the coordinate P only and satisfies the
relation

Comparing with solution (5), the elliptic functions,
which depend on the azimuthal angle $ only, in a
sense provided structure to the electric and mag-
netic fields. This means that the source associat-
ed with the singularity for solution (5) is simpler
in structure than that associated with the singu-
larity of solution (11). The energy density as
computed from Eq. (8) is given by

g y P (15)

'The parameter k for the elliptic functions is now

restricted to k =0. With this restriction the func-
tions E(P) are either (sing) ' or (cosP) ' and the
constant c(k) takes zero value. For these simpli-
fied solutions the electric and magnetic fields are
r'espectively

Depending on which of the twelve Jacobi elliptic
function is used and also on the value of the para-
meter k, the constant c(k) in expression (15) can
be negative or positive.

Solution (11) can be simplified if we set p = 1.
In this case A =a (-2/X)'~', and Eq. (12) becomes

E"+8 —2E3 = 0.

or

p'E" +E'+ —,'h4'E4 =p'c(k),
E2

E]——y 2 Cr]
2p

where E' =dE/d(PQ), etc. This indicates that
E(pp) are the Jacobi elliptic functions with para-
meter k such that 0 ~ k ~ 1 and c(k) is a constant.
The gauge field as calculated from the solution (11)
is

which has a singularity along the z axis as well
as those arising from the elliptic functions. 'The

field strengths corresponding to solution (11) are
respectively

E, =+» [o,S —2p'c(k)x'(o, x' —o,x')/p'],1
2g p

E,=+, , [cP' —2p'c(k)x'(o, x' —c,x')/p'] . .

1E3=+ 2 2SO3
p

2 E'Cr. .
2p

'These expressions look simpler in appearance
than Eqs. (9a) and (9b). Actually the function V is
now effectively either V-1/x' or 1/x' and depends
on one coordinate only. It is interesting to observe
that for this simplified case c(k) vanishes, and

that means the energy density by virtue of Eq. (15)
also vanishes. Again we have found an example of
SU(2) non-self-dual gauge field with zero energy
density. "

III. SPHERICAL SOLUTIONS

So far the solutions obtained from solving Eq. (4)
are real functions. 'The function V may be com-
plex since the ansatz (1) already provides a com-
plex gauge field even though V is restricted to be
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real. Using the spherical coordinates (r, 8, (II)),

the expression
tion potential of the later vanishes. ' This can
easily be performed by setting'

1
V = —E(u),

u = k, lnr+ j'p, ln csc8+ ik,g,
(16)

g+g= ~say 1nV,

g&; = sinhy8'lnV,

g4' = coshy~'lnt/,

(21)

Xu -"
E(«)=+ (B-— (17a)

gives a family of solutions to Eq. (4), where k, and

0, are real parameters. If k, =-k„ then E(u) is a
simple function

where y is a constant. As an example we ill.ustrate
for the cylindrically symmetric solution (5).
Following the notations of Ref. 1V, the Lagrangian
density for the YM field coupled to the Higgs field
is

where c is an arbitrary constant. For &24+0„
E(u) satisfies the following differential equation
for which we fail to obtain explicit solutions:

Z = -4F'""F'„—-', p"'m + —' p, 24' ——'X4'

where

(22)

(17b)

E'
A =ia—' B~u+ —

IE

with n~ =x~/r being the unit vector and

(18)

The gauge field as derived from solution (16) is

For the ansatz (21), the electromagnetic field 6:„„
as defined by 't Hooft can be simplified to

(B VB'V) '~'(B B'V- —B.VB'V}B,l V,
(23)

(8'V)(8 8 V)8 8'V/(8~Vs/V) ~'.

8'u = 'n~ I(,,—cot8»8 ~ fu, »y,r (19a) For the solution (5), we obtain for the electric
field

8~(t) = (-sin(t), cos(t), 0)/(r sin8),

8~8 = (cos8 cosP, cos8 sin())), -sin8)/r .
(19b)

(19c)
sinhy

kA +oA uA
g'P $, = 0 (24)

The gauge field has a singularity at the origin and
those due to the function E'/E. We have calculated
the electric and magnetic fields for the above
solutions. Their expressions are lengthy and they
vary with distance as 1/r' with modification by the
function E(u). The energy density is complex and
is given by

Q2
(g'/~) 8„(x)=(-', ~E'+ 1)—,

+ E'&~ue u- —EE'n~e u
2

(20)

From the above, we see that solunon (16) leads to
a gauge field with Coulomb-type behavior modified
by the structure function E(u).. However, as the
energy density is complex we do not believe solu-
tion (16}has any physical significance.

IV. THE SCALAR COUPLED GAUGE FIELD

%u and Yang" have shown that the complex gauge
field can be made real if one extends the gauge
group to the noncompact group. However, it is
also possible to understand the complex static
gauge field by converting it into the exact solution
for the real SU(2) gauge field coupled minimally
to the triplet Higgs field 4' when the self-interac-

while the magnetic field vanishes. The solution
thus suggests the presence of a string of non-
Abelian electric sources lying on the z axis. A

cylindrically symmetric solution has been dis-
cussed in the literature"~" and is described as
corresponding to a string of monopoles. However,
our solution does not satisf y the required boundary
condition since. the Higgs field does not tend to a
constant asymptotically.

The energy density can be evaluated from the
time component of the energy-momentum tensor

. ~oo +og~og+ Wo W o

After some lengthy but straightforward cal.culation
we obtain

7'oo = —,(2 cosh'y —I)/p'

and the total energy is infinite. If we allow the
constant y to be complex so that cosh'y= & then
the energy vanishes, but in this case the gauge
field Ao becomes complex although 4; and 4' still.
remain real. B

V. REMARKS

(1) Topological arguments permit the existence
of monopoles with magnetic charge greater than
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one. 'To search for such monopoles with higher
magnetic charges one must consider gauge field
configurations departing from spherical symmetry
since spherically symmetric monopoles cannot
have magnetic charge greater than one unit. The
solutions given here are nonspherically symmetric
and it does not seem that they will yield finite mag-
netic charges.

(2) Except for the Hsu and Mac' solution, practi-
cally all static solutions for the SU(2) gauge field
possess singularities. I'hese singularities arise
naturally in the solutions and may have signifi-
cance in the theory of elementary particles.

Singularities may or may not require the presence
of external sources to sustain them. "

(3) If we consider an N-dimensional version of
E|I. (4), then solution of the form V= (+Br')'
where

r' = (x')'+ (x')'+ . + (x")',

exists only for N=2 andN=4. We have discussed
the case N =2 in Sec. II whereas the case N = 4
corresponds to the meron solution" in the four-
dimensional Euclidean space. If we restrict X to
be an integer, then V= I/r is a solution for any
N-dimensional space.
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