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The nonperturbative condensation of the operator G,,” in quantum chromodynamics is discussed using
the renormalization-group technique. It is shown that magnetic condensation, <Guv2>>0’ leads to a new
vacuum which has lower energy than the perturbative vacuum. From this fact it is concluded that Green’s
functions calculated in the normal vacuum have tachyonic singularities. By assuming the gauge-invariant
local expansion of the effective action it is shown that the condensed vacuum has the property of a
vanishing dielectric constant. If the color electric field is applied by introducing heavy quarks at infinity, the
condensation is partly broken and there is a consistent solution in which an infinite tube of the color
electric flux is formed. Arguments used rely heavily on the instability of the normal vacuum and on the
negative character of the 8 function. An attempt at the mean-field-type approximation is made. Comparison
with the previous phenomenological approach is also given.

I. INTRODUCTION

The central problem in studying the low-energy
spectra of quantum chromodynamics (QCD)! is
certainly to determine the ground state. Many
people suspect that the normal perturbative
ground state may not be a true one.?

In this paper we discuss one of the dynamical
aspects of pure QCD, excluding Higgs particles,
which seems to play an important role in deter-
mining the true vacuum. (Quarks are introduced
as external color sources.) The same problem
has previously been discussed in an intuitive
approximate way. Our starting point is a very
simple observation that the two-body force be-
tween normal massless gluons is attractive in
the color-singlet channel, and gluons can form a
color-singlet bound state which is necessarily a
tachyonic one because gluons are massless. This
means that the normal vacuum sits on the maxi-
mum, instead of minimum, of the potential cor-
responding to this bound state. The problem was
first studied by a variational approach in terms
of the Cooper pair,® which is the nonrelativistic
analog of the tachyon, and then discussed! in
terms of a tachyon by solving the Bethe-Salpeter
(BS) equation in the ladder approximation, Both
led to the same qualitative picture that such a
bound state is formed for arbitrarily small cou-
pling constant, i.e., the critical coupling constant
is zero. However, these approaches rely on
gauge-noninvariant approximations.

It is now clear that the local gauge invariance
of the vacuum of QCD is an essential ingredient
of the theory. In order to discuss the color-
singlet condensation phenomenon gauge invariant-
ly and nonperturbatively, we choose in this paper
the operator G,(x) or [d G, ,*(x) and discuss its
nonperturbative condensation. Here (;ﬂ,, is the

usual Yang-Mills field-strength tensor. We have
used the fact that any field can be an interpolating
field of the bound state as long as it has the same
quantum number as the state we want to discuss.
Thus the source term J coupled to G,,? is intro-
duced and J¢§ coupled to the gluon field A“’, are
also introduced to discuss the situation where
quarks are present in the condensed vacuum.
The introduction of J or J¢ does not spoil the
renormalizability of the theory so that the non-
perturbative condensed solution, if it exists,
should be a solution of the renormalization-group
equation (RGE). The assumption taken in this
paper is that the RGE has a nontrivial solution,
specifically (23) below is assumed to have a finite
solution, Then the analysis of Sec. II shows that
the magnetic-type condensation of G,z ie., A¢
=4(:G, %) >0, leads to the vacuum which has
lower energy than the normal vacuum. It occurs
for arbitrarily small coupling constant. The rea-
son we believe in the existence of a nontrivial
solution of (23) is twofold. One is due to the re-
sults of the ladder approximation? where the
physical elements leading to the condensation is
the attractive force in the color-singlet channel.
The other is due to the general statement that any
zero-mass theory which has the property of as-
ymptotic freedom shows a nonperturbative con-
densation phenomenon, There is no proof of this
statement but there is also no -example which con-
tradicts it. As an example we discuss in Appendix
A the condensation of the Lagrangian in x¢* theory.
In the discussion in Sec. I the problem of operator
mixing is neglected. It has been discussed by
several authors®® with the results that we can
ignore the mixing when only the physical quanti-
ties are discussed.

Section III is devoted to the proof of the general
statement that if some composite operator shows
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nonperturbative condensation then any Green’s
function calculcated in the normal vacuum has
tachyonic singularities in the channel which has
the same quantum number as the above composite
operator. According to this theorem, the Green’s
functions of QCD if calculated in the normal
vacuum have tachyonic, i.e., spacelike, singulari-
ties in the color-singlet channel. They will be-
come complex for spacelike momentum. The
imaginary part at zero momentum is related to
the decay probability of the normal vacuum.

Now the true vacuum is filled with gluons which
condense nonperturbatively forming a color-
singlet composite state. The normal gluons can-
not be in the asymptotic states. The problem is
to determine the “color electrostatic” property of
the vacuum, which is discussed in Sec. IV. The
condensation of G,,? does not violate the local
gauge invariance of the vacuum so that the ef-
fective action is expected to have a gauge-in-
variant local expansion (54) below. We have in
mind the situation that an infinitely heavy quark
and antiquark with definite color index are intro-
duced at infinity so that the static Abelian constant
color electric field is chosen for the argument of
the effective potential. Then we see that the ap-
plied color electric field E breaks the condensa -
tion so that A¢ becomes a function of G= $E?2,

It is also seen that the dielectric constant € of the
vacuum diminishes as the condensation A¢ in-
creases and € vanishes as A¢ takes the vacuum
value A9 =A¢,. In deriving these results the
signof A¢p (A¢ >0) and of the B function (8 <0) play
important roles. The stationarity condition, that
is, the sourceless condition J,=0, is satisfied by
the normal solution G,,=0 and by e=0. The
former solution cannot represent the condensed
solution because the tachyonic singularities are
present in the Green’s functions owing to the
results of Sec. III (see also Appendix B). The
perfect diaelectric property € =0 leads to a tube-
like solution for the color electric flux, We also
attempt to discuss the behavior of the dielectric
constant by mean-field approximation

Section IV is devoted to a discussion of the con-
nection between the present approach and the pre-
vious phenomenological one.” We get qualitatively
the same picture of the stable vacuum and the
mechanism of flux squeezing. In the phenomeno-
logical approach the condition e =0 emerges as
a stability condition of the vacuum. In the present
approach we are forced to take the solution e =0
because the other solution G,, =0 corresponds to
the unstable normal solution.

The picture of the hadronic bound state we get
in our paper is similar to the one discussed by
Callan, Dashen, and Gross.? But their instanton

density is replaced here by a more general quanti-
ty, the condensation (:G, %:). The antishielding
property of the vacuum is due to the more general
fact that the B function is negative. The precise
mechanism of the condensation need not be speci-
fied. According to the picture discussed in Sec.
III, however, the bag constant of the MIT bag
model® is supplied by the condensation energy
density of the tachyonic bound state.

In Sec. VI discussions are presented on several
points which seem to be crucial to the present in-
vestigations. We look for the vacuum solution
satisfying J=J¢ =0 by taking a particular field
configuration as an argument of the effective ac-
tion, i.e., we probe the vacuum by the external
field of the specific configuration. For a discus-
sion of more complicated x-dependent (gluonium-
like) solutions, we need a more general effective
action which is not the subject of the present
paper,

II. NONPERTURBATIVE CONDENSATION OF '@“,,2

For the purpose of discussing the nonperturba-
tive translationally invariant condensation of Gwz,
the constant source J is introduced as

eiW Il f exp[— i +J)f G*wz(x)d'ix}[dl‘i] R

1
where G2, =23, A3 a,,fi; +gf e Ac G, 2
EG:,, @fw , and Q is the space-time volume. The
internal group is assumed to be SU(N) with the
structure constants f ®*¢, Throughout the paper,
except in Sec. III, the caret is used for the field
operators or for the fields which are integrated
out in the functional formalism. The fields with-
out the caret are ¢c-number quantities. It is
known!® that given a Lagrangian of the form

£;,,00)==21+0)G,2), @)

we need a 5%(0) term in the functional integrand
in order to reproduce the correct perturbation
series. Thus (1) is modified to

em‘““zf exp[if f,.,',(x)d“x

+ 1540)Q1n@1 +J)] [dA]. (3)

The gauge we choose in this paper is the axial
gauge or the Lorentz-type background gauge in
which Z,=Z, holds. In the latter gauge ghost fields
must be introduced. We suppress these gauge terms
for simplicity because they do not affect our dis-
cussions below.
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A. Defining g,

By the change of integration variables
(1 +J)1/2A° ->A , we rewrite (1) as

ewri= f exp[z' S B, 4x][dzi], @
where

$y,¢, 0)=— 10, A2 - 3, A5 +g, 1A, AV iw),

(5)

gr=g/1+12, (6)
Such a transformation has been used by Kluberg-
Stern arld Zuper5 in their discussion of the inser-
tion of L=[£(x)d*. Now instead of making the
theory finite governed by the Lagrangian of (2),
we can make the equivalent theory (4) finite. So
the renormalized couplmg constant is introduced
as usual:

g5=[2(g5, A w]V2g,=VZ g/(L+ )2 (1)
We define g” as

g =g).0=[2(g", A/ W] . (8)

Here VZ =Z,712,*/2=VZ, in the usual notation
and A is the cutoff and u the subtraction point. It

ZP = - ZO_f Y1 +TVR/T,

29 =252 [~ v A0+ R + a4 D020 4 (1- i) 1 2],

and so on. Thus Z, can be chosen to be J independent up to the order g2.

is not necessary to give the precise renormaliza-
tion scheme to fix Z,
In order to discuss the expectation value of
G,,2, d/dJ is.applied to (1) but this produces
extra infinities due to the hard character of G
The source J should thus be renormalized as

J=J"Zy(g", I, A/ ). « 9

In general Z; depends on J”, which is easily
seen perturbatively (see below). From (7) and
(8), bare quantities are eliminated to given

z(g,, A/)

2

(10)

where we have suppressed the superscript # be-
cause only the renormalized quantities are used
from now on. Z; is chosen in such a way that g,
does not have A/ dependence. Now in order to
see the perturbative structure we expand as

2
g.rz 1+J +f1(J)g +fz(J)g6+"‘

Z=1 +Z(1)g2+Z(Z)g4+... , (11)
ZG=1+ZC(;“g2+Zé2)g4 oo,

From (10) it is seen that

(12)

But for higher orders Z; con-

tains J-dependent infinities. Also higher-order terms of 2,2, fi() (=1), depend on the renormalization
prescription of L. There is, however, a natural choice of renormalization conditions which make all
fi@) (=1) vanish, It is a generalization of the scheme discussed by Kluberg-Stern and Zuber,® who dis-

cussed one insertion of L,

We define 7 insertion of renormalized L into the propagator by

T (ey), = (D, ™) (o) [( 73—) D,<x'y'):;"']J @y ™9, (13)

where D, (xy)%, is the propagator (A“ ®)A%(y)) of
the theory governed by £, e of (2) where 1+J

is replaced by 1 +JZ,. New divergences appear
for each 7 so we can impose a renormalization
condition for (13). In Fourier space 7% has the
form

T (q)zbv =T ) (qZ)qzﬁabguv + gauge term ,
We choose
7™ (@ =pd) = (- )"l . (14)

The factor (- 1)"z! is taken from the tree con-
tributions. [For n=0, (14) is the renormaliza-
tion condition determining Zs. |

Now in an equivalent theory governed by .G,, Ve,

r
of (5), the propagator Dg, xy) —(A (x)A® A (D)
is defined in the same way as (13) and (14) with
n=0. Here A“,, is the renormalized field and
contains a factor (1 +JZ;)!/?/VZ. Thus g, 4%,
—gA“ and hence the inverse propagator D, "‘(x,y)
for finite J is related to D, ~!(xy)%, by D,

=D, ! g2/g,2. Wlth the above renormalization
cond1t1on for D;, , and writing the Fourier trans-
form of D,~1(x,)%, as 7,(q%)q%6%%,, + gauge term
we have

Ty @t =ut)=g%/g,%. (15)

1t is easy to see that (14) requires d™m, (g% =p?)/
d"J|,=0 to be unity for n=0, 1 and zero for n>1.
This leads to f;=0 (i > 1), i.e.,
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2
2_ &
8r=1y7"

(16)

Z; is fixed by (12) order by order setting f; =
in the equation.

As has been stated, if we change the renor-
malization scheme of L, then f; will be changed
but the lowest-order relation of g, in (11), i.e.,
(16), is unchanged. Thus if we restrict ourselves
to small g then the relation (16) is renormalization
prescription invariant.

If we apply d/dJ to (10) and set J=0, the resuit
of Ref. 5 is reproduced,

Z;(g,0,A/u)=1- (g/22)3z/3g, amn

and hence the anomalous dimension of L is given
by :

76(8)=(1/Z2)ud Zs/du =~ gd(B/g)/dg,  (18)
where
B(g):ﬂdg/du:b0g3+b1g5+'" . (19)

In the above discussion, the problem of operator
mixing is not discussed with the hope that such a
mixing does not affect the physical quantities to be
discussed in the following.

B. Nonperturbative condensation of G v

Having obtained a finite g, we discuss in this
subsection the condensation of L =/£(x)d%. For
this purpose we need renormalized W[J], whichis
a sum of vacuum graphs in the presence of the source
J. They are quartically divergent in perturbation
theory. In familiar examples where the source
couples to soft operators such as the scalar boson
field ¢, these quartic divergences can be sub-
tracted by taking the difference of W[J ] and
W[J =0]. In this case the J-independent sub-
traction makes AW[J]= W[J] — W[J =0] finite:
We can apply the usual renormalization scheme
to AW[J] if the theory is renormalizable at all.

In our case, however, J couples to the hard
operator G“,, and J-independent subtraction does
not work., In order to discuss this problem, we
temporarily introduce the source term J¢ (x)

coupled to the gauge field A‘,‘, and consider W{J,J4].

For fixed J, V[J,A%] is defined by the Legendre
transform

vI,A8l=- wlg,78] + [ T80 ”gJ{ (i) LG
5W (20)
6J'Z.(x):Az(x)’

To render V finite, we subtract Vi, [J,A% =0]
from V[J,A%] where Vyo[J,A% =0] is the ener-
gy of the perturbative vacuum in the presence of

J. 1t is a sum of one particle irreducible (1PI)
vacuum graphs calculated perturbatively and
hence it is quartically divergent. The difference
AV,

AV[J,AZ]:V[J,A'}‘] - Vnrt[J’Ai:O], (21)

when expanded around A% =0, can be made finite
by the usual renormalization scheme at least in
perturbation theory so it satisfies the RGE. We
perform the usual renormalization after the scale
change (1 +J)1/24, =A,,; and g/(1 +J)/2=g, so
that AV is a function of g;, A,;, and u and satis-
fies

(N-ai‘ +B(g1) _5_

- v(gs) [ AL 0) e A,‘J(x)

Now we can easily see that A%, 56/6A% ; =A%5/5A%
[ see (60) below]. Thus at the stationary point
[6AV/8A% (x)=J%(x)=0], provided a stationary
point other than the perturbative vacuum state’
exists, AV is given by a nontrivial solution of

)AV:O. (22)

b 0
(u e E)Amh w=0, (23)

where

QAV(g5, =AY, AL] lsar/oat <o

The reason we have introduced J¢ or A is two-
fold. The first is, as explained above, to define
the quantity which is finite after renormalization
at least in the perturbative sense. The second is
that we want to introduce quarksin Sec. IV. Inthat
case the equation tobe solved is changed into the form
8AV/BAS =ja,

Equation (23) can be written down directly if we
apply the argument given by Gross and Neveu!!
that any physical quantity should be independent
of the renormalization point, Our AV(g,, i) is the
difference of the energy density of nonperturbative
(if it exists) and perturbative vacuum so it is ex-
pected to be a physical quantity. In this paper we
assume that a nontrivial solution to (23) exists.
The reason we believe this has been given in the
Introduction,

Now we define A¢ and A¢, by

aAV(gJ’ “)

aJ ’ A¢c:A¢'l=01 (24)

Ap =

which is the difference of the expectation value of

- /L =1/9)[G,,%x)d * measured in the non-
perturbative vacuum state and the perturbative
vacuum state. In this sense we write
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A= % <%= f | G‘uf(x)d 4"’> = (3:6,,200) -(25)

From (16), 38/3g,=-2(g%/g,%)8/8J, so that by

(23),

b AV (g, u)=48V(g, w) =2 BE)
where the fact that AV p* has been used. We
restrict ourselves for small g where we know

that B is negative, 0, <O0.

From (26) we reach the following concluswn
Nonperturbative magnetic condensating of G
leads to a nonperturbative vacuum which has
lower energy than the perturbative one.

By magnetic we mean A¢,>0, i.e., AP,
=(5:A%-E%)>0. The sign of A¢, will play an
important role when quarks are introduced in
Sec. IV and it agrees with the sign obtained
by Shifman, Veinstein, and Zakharov'? from the
analysis of their sum rules. The RGE gives a
definite relation (26) between the order parameter
A¢ and the energy density AV, which is the case
because the order parameter is the Lagrangian
itself. This is not the case for other order pa-
rameters.

AV or A¢ is complex in general reflecting the
decay of the vacuum of higher energy. For this
case we take the real part of (26). A¢ or AV be-
haves as e2/ boe* as g — 0. The condensation occurs
Jor arbitrarily small coupling so that the critical
coupling constant g, is zevo, A¢ satisfies the
correct RGE as is seen by applying 10/du
+pB(g)3/3g to (26),

Ad,, (26)

(“aa“u +(8) 2 - ya(g))A¢ —o, (26")

with y;(g) given by (18).

We now define the effective potential AV (A¢) of
A¢ by the Legendre transform of AV(g,, u). Itis
a difference of energy densities as a function of

_the difference of (4G ,,%). It is easy to get AV(ag)
=AV(g,, W -J3AV/8J, with Ap =84V (g,, n)/aJ.
In the magnetic region A¢p>0, it takes the form

bg? (—bgz‘ ) 2
— 28 —1n[ =&
AV(AP) = ) A¢>[C 1n P A¢ +b0 7|,

with C some finite constant. In Fig. 1, we plot
AV(AD).

In Appendix A, we discuss O(N) A¢* theory with
negative renormalized A in the large-N limit.!?
To illustrate the method we have used, that is,
to absorb J dependence into the coupling constant,
the condensation of the Lagrangian is discussed.

av
Adindp
s¢

ApInng
J=0

FIG. 1. The effective potential AV (A ¢).

There it is seen that the Lagrangian indeed con-
denses with the “magnetic” sign (- :£)>0 in
agreement with our result of QCD. We have also
examined the Gross-Neveu model,!! the two-
dimensional massless four- Fermi interaction,

in the large-N limit. This model again shows

the nonperturbative condensation of the Lagrangian
with magnetic sign.

Any type of condensation is surely an infrared
effect. In the pairing approach,”? we can see ex-
plicitly that it is a dynamical effect of infrared
gluons. In the present formal approach this point
is not clear. However, the masslessness of the
gluons plays an essential role in the present dis-
cussions too: It makes the RGE simple (homo-
geneous) and solvable by an elementary integra-
tion,

III. THE TACHYONIC SINGULARITY

The purpose of this section is to show that the
nonperturbative condensation of any composite
operator implies the existence of tachyonic (space-
like) singularities in the relevant channel of the
Green’s functions calculated in the normal vacuum.

In Sec. 1I, the condensation of G,,? has been
discussed. It involves the color-singlet JF=0"
composite operators in A up to fourth order.
Naively we expect the appearance of 0° tachyonic
singularities in the color-singlet channel of the -
Green’s functions if we calculate them in the nor-
mal vacuum. This problem has been discussed by
Kugo!? in the ladder approximation for a specific
type of interaction. Generalizing his arguments,
we discuss the problem to all orders for any type
of interaction,

The Fourier components of any real boson field
are denoted by ¢,(p). Here the index ¢ represents
all the attributes of the field except for the mo-
mentum (Lorentz or internal-group indices) and
the Wick rotation in momentum space is assumed.
We base our arguments on the effective action for
composite operators up to fourth order derived
by De Dominicis and Martin!® and investigate its
eigenspectrum around the stationary solution. It
is known that the stationary equations are
Schwinger-Dyson (SD) equations and the eigen-
value equations are BS equations. We proceed
step by step and discuss first the case of the



490 R.

two-body operator and then proceed to higher
operators.

A. Two-body operator

Consider (@,(P)qg,(q)):ci,(p,q) and write the
effective action I" for G (Ref. 15),

T'(G)=-3 TrInG™!G,- s TrGG,"1+ ¥ (G),
@7

where we have suppressed all the indices so that
Tr is over indices (¢,j) and the momentum. The
indices are recovered whenever necessary, I‘%
in (27) is the two-particle-irreducible vacuum
graph with G for the internal line. G, is the free
propagator. The stationary condition is the SD
equation for the propagator,

G1-G,1=26T(G)/5G. (28)
Note that 5 ' /6G represents the complete
proper, i.e., 1PI, self-energy part. The solution
of (28) is written as G,. In order to discuss the

stability of the solution G,, we write G=G,+5G
and keep the term up to the second order in 6G,

I'(G)~ I'G,) + s6GM5G , (29)

M=-G, G, 1+K ¥, K@=

(30)

For the discussion of the eigenspectrum of M,
note that M is already diagonal in the total mo-
mentum P due to the translational invariance of
the vacuum. Explicitly

8GM6G= ), 8G, (3 P+p, 5P — p)My, (P, 0,9)
P’Pv ,
ifmn

X§Gmn(ép+q; %P_q)-

In order to diagonalize in the relative momenta
and in the indices (¢,j), observe that K ® is

nothing but the BS kernel: It is the complete two-
particle-irreducible connected four-point Green’s
function with the internal line G,. In the usual BS
equation we discuss the spectrum of the coupling
constant rather than the spectrum of the total mo-
mentum (energy). So we introduce, following

Kugo,!* a coupling constant A as a measure of the
magnitude of the kernel K ?’,
~ 1
(2) m(Z), K(Z)zxK(Z). (31)

A is assumed to be positive to give an attractive
force. Now M in (30) can be diagonalized by the
BS equation

G716 I = 1y (PHK Dy, . (32)

FUKUDA 21

The normalization of y, and the orthogonality rela-
tions of x, or of X,=G,"'G, !y, are

X Gy G X = R0 Gy Gy X = [V 2 (PD)] B, . (33)
i,, satisfies

Xa=Aa(POE PG G X, | (34)

LK D=1y, =25, . (35)

The above normalization has been chosen because,
in the massless theory in which we are interested,
it is X that has a finite value as P, —0. Thus
M(PHG,G,~ O(1) as P,—0.

Expanding 8G in normal modes

8G (s P+b, 5 P-p)= D Ay(P)Xp, (s P+P, 5 P-D)

£, (P?%)

» (36)

or

5G = E A(P)G,G, 3 "(P) ,

we get from (34) or (35),
. 2y _
GMSG=-5 Y Al (P)A’I(I;—))EA"(P), (37
n

The effective potential V, representing the vacuum
energy density, is the negative of the P,=0 mode
of the effective action so

V=-T(G,)| +:2 Al0) MO%’“—A,,(O).

p=0
(38)

The factor )\,,(PZ)/A has been extracted in (36) so
that A,(P) is O(1) as P, —~0. For the solution G,
to represent the stable solution, X,(0) should
satisfy

A, (0)=x=0 (for all n), (39)

which is guaranteed if the lowest solutions A,
satisfies

Ap=0(0) =120, (40)

The relation between (40) and the presence or
absence of the tachyonic singularities has been
discussed in Ref. 14. Here we consider the fol-
lowing problem which is our concern in this sec-
tion. If we know that some two-body operator
shows nonperturbative condensation, can we con-
clude the existence of the tachyonic spectrum in
A (P?) if we take the normal perturbative solution
of the SD equations?

Now we assume that a two- body operator
0@ = Z)C,,ci)iqﬁ, shows the nonperturbative con-
densation, Here O® can be local or nonlocal.
The effective potential V(0®) for 0 =( 6%
—EC,,G” can be constructed from that of G;; and
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the stationary value O is given by O -p?

ZEC, ,(G‘,)s(.z)We take the n?rmal s‘ol.ution for timelike continum ,
s S0 that O,°’ does not realize a minimum of (79 oy X

V(0®), Suppose (39) is satisfied for all . spacelike

V(0®) is obtained from the effective potential

V(G) if the G’s are restricted in a particular di- Anco )\n=f‘"=="‘

rection in G space specified by C;;. So 0% is a
minimum solution of V(0®) because (39) tells us
that in G space V(G) does not decrease in any di-

FIG. 2. The typical behavior of the trajectory A, (P2).

rection around the solution G;. We conclude that stant a techyonic bound state is formed. It has
the quantum numbers of the color singlet and
An=0(0) =2 <0. 41 JP=0" which produces a spacelike pole in the
In the next subsection the condensation of the normal Green’s functions in the color-singlet
composite operator O of up to fourth order in channel. In general it also has a branch point due
the field is discussed. There we get the same to, for example, the contribution of the graph
condition (41) for the spectrum of the normal shown in Fig, 3.
vacuum if O’ condenses nonperturbatively. Thus we conclude that any Green’s function
Taking this result in advance, we now discuss the evaluated in the normal vacuum has an imaginary
case of QCD. The fact that (41) leads to the part if all the external momenta are set equal to
existence of the tachyonic bound state has been zero, The asymptotic state of a normal gluon
shown in Ref. 14 for the massive theory. Here does not exist because it forms a color-singlet
we will see that it is also the case for QCD. tachyonic bound state and condenses in the vacuum
From Sec. II we know that Gm,2 condenses for simply because it is energetically favorable,
arbitrarily small coupling . (We identify X in We mention here the result of the ladder cal-
this subsection withg2 of QCD.) It means c'ulations,4 where the solution to the color-singlet
Ayeo(0)=0 (42) tachyonic bound state has been explicitly given.h
n=0 : In this approximation the equation A =X, ((P?) is
The only assumption we need to prove the state- shown to give P2= A%~/ (c>0) for small P2,
ment of this section is that as the coupling con- where A is the cutoff and A is identified with g2.
stant is increased the binding energy of the bound The tachyon bound state exists for arbitrarily
state is increased. There is no rigorous proof of small coupling constant. It agrees with the con-
this statement, but any physically sensible solu- clusion of this subsection and of Sec. II based on
tion to the BS equation is known to enjoy this nonperturbative arguments.

property. Then as 1, is increased P? moves
toward the spacelike region and from (41) we
conclude that the trajectory )\,,=0(P2) becomes

. . . B. Inclusion of three- and four-body operators
tachyonic for 1, >0. In Fig. 2(a) schematic form

of A,(P? is given. Setting A,=x and n=0"in (32) We define, following De Dominicis and Martin,!®
it is seen that for arbitrarily small coupling con- the effective action T'(G,C ®, C) where
]
< ¢i(p)¢j(q)¢k(r» = Gii'(pyp,)G],J'(q; q’)Gk,k' (T, r’)cig}'lz’(p,y q,, v ') ’ (43)
(9:(D)P5(0) 07D ()= Gy (P, 9)Gpy (7, 5)
+perm + G, (0,0")G;5:(@, 9" G 7, 7")G 112 (S, SYC FJopr o (D7, 77, 87) . (44)

C® and C® are the connected part of the Green’s functions with external legs deleted. I'has the form as
shown in Ref. 15,

rG,Cc®,C®)=~;TrinG™!G,- ; TrGG, ! - 51[— CGGGC™® ~ —éél—lcmcccc‘a’
1 11
- = CcWw cw_l21 cw CcW 4 (G Cc® cWw
ar ©o GGG 5 4] GGG ' (G, y ), 45)
r

where C{® and C{* are the bare three- and four- and four-particle vertices by C® and C® re-
particle vertices, respectively. I'“ represents spectively. I'® contains extra diagrams to avoid
essentially the four-particle-irreducible vacuum multiple counting of the vacuum graph but we need

)

graph with internal line replaced by G and three- not specify [''*’ explicitly. The stationary re-
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\gluon

\’rochyon

FIG. 3. An example of the diagram which gives rise
to the branch point in Green’s function in the spacelike
region of the momentum. The wavy line represents a
gluon and the solid line a color-singlet tachyon bound
state.

quirements 5T'/6G=64/6CP=5r?W/5CW
=0 reproduce SD equations for G, C®®, and C¥,
the solution of which we denote by G,, C{®, and
C¥®. Writing G=G,+6G, C® = c<3’+5c<3’ cw
=C®+5C“ ang defmmg C,=(G, Cm, C(‘“), 5C,
=(06G,5C*®,6C“), and C; = (G,, CP, C) with
1=1,2,3, I'becomes

I‘(C‘)ﬁF(C“)+ §6C‘M”5C1. (46)
Explicitly for example
M23 — 52 F/GC(S)GCM) ,
5CZ M23503 = Gci(;;(Prpq)Muk.lmm:(Pqu! rSt)
X 6C4) (P, »st),

Imny

We have used the translational invariance of the
vacuum and so (46) is already diagonal in P, For
the diagonalization of (46), the following coupled
3X 3 BS equations are solved:

Gy =y KXy 47)

where G is diagonal and G;; =G,™'G,™ 1, Gy,
=G,G,G,, and G33=G,G,G,G,. K is given by

K, =(1/)82T®/5C,6C, | L =Ce

and x,= (x, @, x®). we have introduced X
which is related to M by M=- G+ K, K= (1/0K.
The kernel K or K has the property of four-par-
ticle irreducibility. (It is not irreducible in the
sense of Faddeev.!®) The orthogonality relations
are

X G X =[2/0,(PY)]6,, . (48)
As in the two-body case we expand 5C, in y,,
8C, =) AnPNGPA(PY/N . (49)

Then (46) becomes

I(C,)=T(C,)+% Z‘A;(—)\—;—)\—L>An )

For the effective potential V it becomes

2_g)—
vC)=vC,)+ 33 a2 EE0=

(50)

so that the stability of the solution C,; requires

(39).

Now suppose we know that a composite opera-
tor O’ involving up to fourth order of the field §,
shows the nonperturbative condensation. In terms
of ¢n O™ can be written as

ow=3 ay bib,+ Z AR PR

A A A

3 aum‘£a¢j¢k¢z . (51)

The effective potential V(0O®) of O =(OW),
which is a function of C; by (51), can be obtained
by V(C,) of (50). In particular, the stationary
point O of V(0®) is determined by that of V(C,).
The small oscillation of 0’ around 0> =0
can be written as a linear combination of the
small oscillation of C; around C;=C;,. Thus if
(39) holds 0¥ =0 1s a minimum point (at least
locally) of V(O), Taking O{* as a normal solu-
tion leads to the contradiction so that (41) must
hold.

IV. THE PRESENCE OF COLOR ELECTRIC FIELD

A. The local expansion

Up to now we have discussed the situation where
color sources J§ are absent, In Sec. II, we have
seen that for J§ =0 there are two kinds of
vacuums (J =0) satisfying A¢ =0 or Ap =A¢d, > 0.
The former solution corresponds to the normal
perturbative vacuum which also satisfies A% =0,
[Recall the definition of A¢ given in (24).] In
this section the color electromagnetic properties
of the condensed vacuum satisfying A¢ =A¢_ are
discussed. The condensed nonperturbative vacuum
is filled with gluons forming a color-singlet com- -
posite state so that it will have a color electro-
magnetic property substantially different from
the normal vacuum,. For the strong color electric
field (near the source, i.e., quark) we know from
perturbation theory that the vacuum has an anti-
shielding property because of asymptotic freedom.
For the small electric field (away from the quark),
nonperturbative condensation of A¢ is expected to
play an important role.

In the presence of a color source, we need the
effective action I'(¢,A,) of two variables ¢ and
A,, which is defined in the following way. (We
neglect for the moment the renormalization
problem and also use ¢ instead of A¢ for sim-
plicity.) We introduce W(J,J,) by

e‘W(""‘ru)zf exp[—iif d4x(1+J(x)) éWZ(x)

+i f d“xJ;“(x)/i?,(x)][dfi], (52)
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and I'(¢,4A,) by

I‘(¢,An):W(J,Ju)—f d*% J(x) 52(?:)

_ f d'x J4(x) GJG“ch) ,

ow 5[:’ 53)
¢(x):" 6J(x)’ Afz(x):éJz(x)-

Because we are interested in long-range phenom-
ena, we need the expansion of I suitable for the
study of the soft region. For this purpose I'is
first expanded around ¢ =A§ =0, the coefficients
being the Green’s functions which are 1PI in the
field A,. In order to obtain a relevant series,
these Green’s functions are expanded around zero
momentum and then terms with the same number
of powers of momenta are summed up. Each term
of this expansion suffers from infrared diver-
gences in perturbation theory so that only the sum
has a meaning. The situation is the same as
Coleman and Weinberg’s!” discussions on the
massless A¢* theory. As was pointed out by
them, zero-momentum expansion yields a local
expansion in ¥ space.

The gauge we choose in this section is the
background Lorentz gauge!®

DAY= (0,6% +gf%AS)AY =0,

where A,’, is the quantum part of the gauge field.

In this gauge (with corresponding ghost interac-
tion of course) I still has a local gauge invariance
and we get a gauge-invariant local expansion of

T,

T(¢,4,)= [ d% T %0(6), K,

+ f d'%2,$8,0x)T V(o @), K;(x)

+ f d'%D,G,, D, G+, &) T V(¢ (x), K, (x))

+eee, (54)
where the K;(x)’s are independent local invariants
formed by A%: K,;(x)=(G,,2(x),(G,,G ), **).
For SU(2) the number of K, is known to be nine
but we do not need their explicit form. In Sec. VI
we discuss the validity of the expansion (54).

In the presence of quarks, the rule of calculating
the effective action tells us that we should solve

19

oI or .,
56w~ SAie 4 )

(55)

where j 4(x) represents the quark source, which

we take to be
78 @) =08,50,,0(X). (56)

This means that quarks are assumed to be in-
finitely heavy and their direction in color space

is specified by 6,,. Specifically we put the quark
and antiquark at infinity, i.e., p(X)=ed%(x)

x[6(z —a)— 5(z +a)] with a—~, Here e represents
the charge of the quark. In this case, Eq. (55)
has a solution with A% =6,,5,;4, so that G(x)

=- 4G, =3E’= L(VA)? is nonzero while all other
K,’s vanish.

In the following the first term I'*? is dis-
cussed with the above Abelian configuration of
A%. We'neglect other terms of (54) having higher
derivatives, which is justified a posteriori; as we
will see in the following, I'®? gives us a flux-
tube solution. In the limit of an infinite vortex
(@ —~ ), E becomes (E,, E,, E,)=(0,0, E) with E
constant throughout the whole space. For this
solution the terms I'‘**? with j=1 vanish and the
terms I'“+® with i > 1 contribute to the surface
energy of the flux tube and give nonzero thick-
ness to the skin region. To the extent that we
neglect surface energy our solution becomes exact
in the limit of an infinite tube.

The above procedure of taking only the term
I'®® can be reinterpreted as follows. We just
calculate the effective potential I'(¢,A%) with
constant ¢ and with static Abelian form for A}
which gives constant electric field E=VA, This
involves no approximation and is calculated in-
dependent of the quarks, Now the quark and anti-
quark are introduced at spatial infinity. Then the
flux configuration can fully be discussed in terms
of the above I'*"?  apart from the contribution of
the surface energy. :

The infinite flux tube is of course unrealistic
because of qg pair creation which. we neglect in
this paper. However, as for the gluon pair crea-
tion its effects are already included in the effec-
tive action I' so we can discuss them in terms of
the ¢ number A%, By taking Abelian configuration
of A}, as is the case in this paper, it seems that
we are missing the solution in which the color
flux of the source is shielded by the gluonic color
charge. As has been discussed in Ref. 20 the
shielding charges due to gluons are gauge depen-
dent and they can be gauged away: There is a
gauge choice in which there is no gluonic charge.
The elimination of the gluonic charge has been
studied in explicit examples in Ref. 20. In this
gauge, the quarks are the only sources of the
color, The color content of the quark system is
classified in this gauge, and we look for the
Abelian solution iz this gauge.

There is still another complication due to the
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non-Abelian character of quarks. This can

easily be taken into account by changing J,; in
(56) and in the solution A% =0,,5,; A into A%/2
where A% is the Gell-Mann matrix in the case of
SU(3). The only change in the final results is to
replace the square of the quark charge €? into
e?,(0%/2) =4 €%, In this case the above shielding
problem becomes irrelevant.

As the quark and antiquark approach each other
many terms in (54) begin to contribute and in the
extremely opposite case, i.e., near the quark,
the expansion (54) becomes a bad one because
terms with more derivatives become more im-
portant than terms with fewer derivatives.

B. The color electric property of the condensed vacuum
In order to discuss I''®®  we can take the
source J of ¢ to be x independent, i.e., Jx)=J,
Then as has been discussed in Sec. II, the J de-
pendence can be absorbed into the coupling con-
stant g and the field A%. The quantity we discuss
in the following is just V(J, A%) of (20) or (21) in

the static Abelian configuration of Af, which gives

a constant electric field. It is more convenient to
work in the J representation.

To be. explicit we discuss here the process of
absorbing J, Let J°, A%, g be unrenormalized
quantities. The J° dependence can be absorbed
by the change (1+J°)1/24% =A%, and g%(1 +J)!/2
=g9%. In the background gauge, the renormalized
J, A% ,, and g, are defined by

A= Z(g,, A/ )] 2AS,
=(VZ)1+724(g,7,0/W)] 12AL,  (57)
where g, is defined by (10). Thus
Gus'=@,A%, -8,A%, +g, fi2AL, Ac,)

1+JZ
=z, )0 A - 0, AL +g Fe AP AT,

g A%, =g A%

and hence

£:°G,=¢g%G (58)
or

Gy=(1+J)G. (59)

More generally,
Al ,=(1+J)1248, (60)

We have defined G, =-3G,,,? and G=G,.,. AV
of (21) is now AV=AV(g,, G, 1). Note that for
fixed J, AV(g;,G,, 1t) is the generating functional’
of the 1PI Green’s functions evaluated at zero mo-
menta.

Now we are in a position to discuss the color

electrostatic properties of the vacuum. Because
there is no source for ¢ or A¢, J can be set equal
to zero after the calculation. When J=0, A¢ and
G are not independent, A¢ =A@ (G). The dielectric
constant is defined to be

G(G):-— aAV(gJ;G.I’y IJ')

e o (61)

so that e becomes a function of A¢, This relation
tells us how the condensation A¢ affects the di-
electric constant e, To see the relation between
A¢ and €, we first note the renormalization-group
equation satisfied by AV(g,, G,, 1),

2 3 d
—+ —— o =
(u an P8 ~ 2v(85)Gs ac,)AV 0.

(62)
In the background gauge, it is known that
B
gy =LE) 63)
8r
Then
AV
8¢ =70 (64)
_3G, 3aV 3, 9aV
T oJ 3G, oJ adg,;
__1_< AV g, 04V
T1+J\ 7 3G, 2 og,
1 _& K
=1+7 28(gy " 3u 2V
4 gr ]
= -G, —Ja ’
147 Zﬁ(g,)(l Cs ac,) v, (64)

where we have used (62), (63), and the fact that
AV=u'F(g, G/u") with some function F. Equation
(64) is exact in our configuration of the electric
field. Putting J=0 in (64”) and using (59) and (61),

2, 0

_28
= Be) (AV + Ge) (65)
;O%%(AV+ Ge). (65")

Equation (65) shows that fA¢/2g is the Legendre
transform of AV, By differentiating (65) with .
respect to G,

A 2g 9€

3G ~B(g) 3G (66)
2 o€ ’
35,67 %3G (€69

at J=0. In what follows we need a negative
character of B(g) which is known to be correct
at least for small g.



One can derive a closed equation satisfied by
AV,., which is given in Appendix B. There it is
shown that the sourceless (stationary) condition
J, =0 is satisfied by perturbative solution G=0
or nonperturbative solution e =0, Note that at
these values the term Ge in (65) vanishes. On the
other hand, from Sec. I we know that at J, =0
there are two kinds of vacuums satisfying A¢ =0
(normal, perturbative) or A¢ =A¢_ >0 (con-
densed, nonperturbative). The main purpose of
this subsection is to show that the condensed
vacuum has the property of € =0.

It is easy to see that the normal solution G=0
satisfies (65’) and (66’) perturbatively and that
Ad —0as G—0. Indeed up to the order g2, ¢ is
given by

Ree(G)=1- b,g2In(G/pY), (67)
Ime(G)=-T3b,87%, (67)

where Savvidi’s renormalization condition?!
Ree(G=pu? =1 is adopted with the subtraction
point taken in the electric region (G>0). AV is
then

G

AV=- f’ €(G)dG
0

=-G[1- 5b,g?%- 5b,g2In(G/uY] + sinb,g%G.
(68)

On the other hand, A¢ =(4:G,,%) is given by the
tree graph up to this order so that

Ap=_G. (69)

When the color electric field is applied to the
normal vacuum, the response of €, AV, and A¢
is given by (67), (67’), (68), and (69). In par-
ticular, as G goes to zero A¢ and AV vanish as
they should. Equations (67), (67’), (68), and (69)
are easily seen to satisfy (65’) and (66').

Now we look for the nonperturbative solution of
(65’) or (66’). In doing so the following observa-
tion should be made. The perturbative solution of
€ has an imaginary part corresponding to the fact
that a pair of gluons is created out of the vacuum
and runs away to infinity because the asymptotic
states of gluons do exist in perturbation theory.
But if we include nonperturbative effects, gluons
cannot be in the asymptotic states as we remarked
in the end of Sec. I A, Thus € should not have
such an imaginary part for the physical branch of
solution, We therefore classify the real solution
of (66’), which has two types of solutions depending
on the following two situations,

A Oe
Case I: 3C #£0, aG#O.

In this case G can be eliminated in favor of ¢,
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g _ 2

o€ - bogz
In the presence of the electric field (G >0), 3A¢/
9e < 0. This means that as A¢ increases (recall
that A¢ > 0 for the condensed solution) e de-
creases, which means that the condensation has
an antishielding effect. It is simply because A¢
is made up of gluons (in a color-singlet composite
state) which we know from perturbation theory
possesses the antishielding property. Now from
the RGE we know?! that ¢(g, G)=e(g (1), u)g?¥/
g, with dg/dt=B(g), t=1In(G/u"), and

B=8/(4+2y), v(2)=8(e)e. (71)

Ge). (70)

Thus for large G, due to the asymptotic freedom
we have e ~In(G/p?). As G diminishes, ¢ de-
creases while A¢ increases along the trajectory
shown in Fig, 4. The vacuum satisfies the source-
less condition: either G=0or e=0, At G=0,
there is a solution corresponding to the normal
vacuum with A¢p=0 so that the trajectory passes
through the point N in Fig. 4, where ¢ will be com-
plex because of the presence of tachyonic singu-
larities. The question is whether the condensed
vacuum satisfying A¢ = Ag, is realized by G=0

or by e =0. Suppose it satisfies G=0 as is shown
by C in Fig. 4. This means that at G=0 there are
two vacuums satisfying J=0 so that AV (g,, G,
=0, i) is a two-valued function of J, However,

AV (gy,G;,=0, u) satisfies RGE (62), without the
last term, i.e. (23), so that

AV:Au“exp[— 4f‘J dx/B (x)]

with some constant A, At J=0 there is a solution
giving AV=0. Thus A=0 leading to AV=0,
Therefore G=0 corresponds uniquely to the
normal vacuum satisfying A¢ =0. The same
conclusion is obtained if A¢ is considered as a
function of J and G. At G=0, A¢ satisfies (26')
with the change g —~ g, from which we get A¢ =0.
The discussion in Sec. III therefore shows that if
we expand the effective action I' around A} =0
(or AV around G =0) corresponding to the normal
vacuum, the tachydnic singularities are present
in the Green’s functions,

The condensed solution A¢ =A¢, thus corre-
sponds to the other solution e =0: The condensed

o =G
FIG. 4. The trajectory € (G).



496 R. FUKUDA 21

vacuum has the property of the perfect “diaelec-
trics’ e =0.

This leads to the crucial consequence of flux
squeezing. The solution € =0 leads to the relation
A¢p,=(2/b,g%)AV as is required by (26). In Sec.
V the same condition (€ =0) is derived by the con-
sistency of the phenomenological Lagrangian or
by the stability of the nonperturbative vacuum.

There are two cases for the allowed trajectories
of ¢(G) as shown in Figs. 5(a) and 5(b). At some
G,, € vanishes [¢(Gy)=0]. It is easy to see that G,
cannot be magnetic in sign (G, <0). This is be-
cause 8A¢ /3 > 0 for G, <0 so that A¢ cannot take
the value A¢  at G=G,<0. Therefore G,>0. More
complicated trajectories are possible than those
given in Figs. 5(a) and 5(b), but what we need in
the following are e ~ InG (G~ «) and €(G;) =0 at
G,>0.

We see from (66) that the applied color electric
field partly breaks the tachyonic bound states
which condense in the vacuum. This becomes
clear if we adopt Savvidi’s renormalization con-
dition.?! Then we have e(g, G) =g ¥ g%(t,g) where
g is governed by B of (71) and ¢=1n(G/p%. Thus
Goe /3G =-2(g?/2*B(g), which is positive in
the region where B is negative. It follows from
(66) that 8A¢ /3G <0, which implies that if the
color electric field is increased then A¢ de-
creases, :

A¢ ¢

289 _ o B _
w6 > 56T

Case II: 3G

In this case ¢(G) =C; where C; is a constant in-
dependent of G, It is easy to show (see Appendix
B) that the equation 8A¢/3G =0 holds if and only
if C;=0, in which case A¢=A¢,. This solution
is not analytically connected with the solution of
case I. The fact that €=0 and Ap=A% can be
solutions is physically understood as follows, If
e=0 for any applied field G, the displacement D
defined by D=¢E is identically zero. In Appendix
B we show that it is D, not E, which acts as an
effective source and couples to quantum fluctua-
tions of the gluon fields. So in case D=0, tach-
yonic bound states which condense in the vacuum
are not affected by the applied electric field and
Ap=A¢, for any G so that the energy of the
vacuum does not change in the presence of G.

€ A €
A

/A increases

B
G 0 G
¢ Go Go A=A,
Ap=Ag¢
(a) (b)
FIG. 5. Two possible trajectories of € (G).

The solutidn €=0 is also shown in Fig. 5(a) or
5(b) which passes, of course, through the point
G =0, This is also required by the Lorentz in-
variance of the vacuum state,

Note that in the Legendre transformed space,
both case I and case II can be expressed as a
single solution A¢p=A¢ () which takes the value
Ag,ate=0.

Next we discuss the flux configuration for each
of the two cases shown in Figs. 5(a) and 5(b). In
Figs. 6(a) and 6(b), £(G)=-AV(J=0,G) is shown,
where we have defined £=0 for Ap=A¢ ,

C. The flux configuration

We discuss the case corresponding to Figs. 5(a)
and 5(b) separately.

(a) The case where €(G) behaves like Fig. 5(a)
has been discussed by Callan, Dashen, and Gross.
We give a brief argument to show that it leads to a
tubelike solution of the color electric flux, We are
discussing the situation where a static quark and
antiquark of charge + ¢ are introduced at z=%x,

In the axially symmetric (about z-axis) solution,
the electric field is directed along the z axis and
the magnitude is constant over the whole space
because the tangential component of the electric
field is continuous. (This is simply because we
are discussing the situation where quark and anti-
quark are separated infinitely apart.)

We calculate the energy per unit length of the
tube of the cross section o and see if there is an

8

- optimal value of 0. If ¢ is infinite, the flux is not

squeezed. The Hamiltonian is defined by

0L
H=E 5= - $=ED- g,

where £(E)=-AV(J=0,G), G=5E? and the dis-
placement is given by D=38£/3E =¢E. The flux is
nonzero only for the region where €#0 so we
minimize the following Ho under the condition
Do=e,
Ho = (ED- £)o
:e(E - £/D) s

where E is a function of D, The optimal value of

O uz/ C
B

(a) (b) ,
FIG. 6. Two possible forms of £(G).
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0 is given by

d(Ho) 3D3(Ho) e & £
e

=73 2 oD ot (e T

Thus £=0 determining E or G, which is denoted
by E, or G,. 0 is determined through Do=e, The
equation £=0 is nothing but the Maxwell- equal-
area rule as shown in Fig. 5(a). The finite meta-
stable branch (BB’) is present. The structure of
the tube is shown in Fig, 7. The color electric
pressure in region I is balanced by the condensa-
tion energy AV (or the binding energy of gluons in
the color-singlet channel in the terminology of
Sec. III) due to the discontinuity ¢ in the magni-
tude of the condensation at the surfaces. The dis-
continuity 6¢ is easily seen to be given by

00 = (Ad), — (Ad)y=(2/b,81)Ge(G,) <0,

where the points 1 and 2 are indicated in Figs.
5(a), 6(a), and 7.
By using (65) £ can be eliminated to give

_1pp+ P&
H_.ZED+2g [Ap(E)-4¢,].

Thus the Hamiltonian consists of two positive
terms, the usual color electrostatic energy ;ED
and the energy which is required to break the
condensation. In the equilibrium configuration of
the flux tube these two terms have equal magni-
tude and the bag constant B can be identified as

_L _Bg) -
=B, D(E) =L (A0 (E) - a¢,] .
E, satisfies the RGE
d
W/En g5 Ee=-7(8),

i.e.,

Ec=uzeXp[—fg 2;(;)(96)‘1 ]

This is derived by noting that £ satisfies (62) with
J=0 and has the form £(,g)= &¢,g¢,2)(g?/
229G, with =1n(E%/u). So £=0 is realized for
£ =c with ¢ some numerical constant and hence
In(E 2/t = f dx/B(x). One can also derive (1/

D )u.(d/dp.)D =%(g). In the limit of a static quark,
0 can be shown, using the above relations, to be
renormalization point independent, do/du=0. If
E_ == then we get an infinitely thin flux tube, a
string with 0 =0, which corresponds to infinite

O €:=0 E=Ec A¢=(A¢d),
L Ll dl Lt L Ll Ll Lssd

1 €<6(E.), E=E; Ad=(Ad),
77 777 T77777777777777777

o
FIG. 7. The structure of the flux tube.

binding energy for the gluons.

(b) The case given in Fig. 5(b) or Fig. 6(b) is
the limit of case (a) where ¢(G,)—~0. Thenoc=e/
D(G,)=e/e(G,)E,— «; the flux is not squeezed.
In this case if we include the derivative terms of
¢ in the local expansion (54), which we have neg-
lected so far, they contribute to the surface ener-
gy and prevent the flux from spreading out. Let us
consider the term 9,¢3,¢. For small g this can
be approximated by Afd4 (62— (V)?] with A

=r%9¢=0,4,=0). If A>0 the energy is not
bounded from below so that A should be negative.
Neglecting the thickness of the skin, we are led
to the problem of minimizing the following Ho
under the condition Do =e,

0H=0(E3L/3E - £)+ SVo ,

where Sv0 represents the surface energy with
some positive constant S. It is easy to see that
0H is minimized by nonzero D or o, In the pres-
ent case flux squeezing is a combined effect of the
condensation phenomenon (volume effect) and the
surface effect. Surface energy, which is shown as
E  in Fig. 6(b), makes it possible for £ to take a
nonzero value inside the flux tube without de-
stroying the mechanical equilibrium. By con-
trast, in case (a) flux squeezing is caused by the
condensation phenomenon alone and the derivative.
terms I'®® (> 1) provide the thickness to the
skin of the flux tube,

D. The mean-field approximation

Up to this point, the arguments were formal. In
order to get the trajectory ¢(G), we need some ap-
proximation which takes into account the effects of
condensation. In this subsection an attempt is
made to discuss €(G) by the mean-field-type ap-
proximation, thereby in particular, determining
which of the two cases given in Figs. 5(a) or 5(b)
is realized. We define first the local color elec-
tric field in the color dielectric medium, which
is done classically.

We make a cavity with the dielectric constant ¢
in the three-dimensional dielectric vacuum which
has the dielectric constant e, If the electric field
is supplied from the source, the electric field in
the dielectric medium is defined to be the one in
this cavity. If we take a spherical cavity,?®

A}f"’" :f(e,‘eo)Au s (72)
with
fese) =30 (73)

We have denoted by AL’** the potential in the di-
electric medium. Equation (73) depends on the
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shape and the size of the cavity, but what we need
in the following is the fact that A}°®! vanishes at
€ =0 and A=0 and this is independent of the shape.
Now in the above approximation it is the local
color electric field constructed from AX®! that
acts as an effective field in the medium. Our as-
sumption here is that if we calculate the effective
potential V (A1) of A1°%! neglecting the con-
densation and then substitute (72) for A°®! then
it will be a good approximation to the effective
potential V(A,), V(A,)=V (A°*!), We take the
limit of the constant electric field (in the z direc-
tion) and because we are discussing the case
J=0, € is a function of G. Thus we are led to a
nonlinear self-consistency relation,

((0)=- O __ PR VG g
where

Gl = — 32, AP - 9, AP 2= G, (75)

v g’ (76)

Equation (76) has been given by Savvidi.?! Here

tzln(Glocal /ud,) ,

-2
[ avrb=t,
L4

B(»)=gB(g),

y =g2 s
and B is given by (71). The renormalization is
performed with respect to the local field, With
(72), (73), (75), and (76), we see that (74) has the
following two types of solution, corresponding to
the two cases in Sec. IV B.

(£) e(G)=0. This corresponds to case II in Sec.

IV B.
(7) The secownd type:

2% _[g%¢e) % ](26 +e)®
.G aG"[ g27 - (2€ +€°)2 1860 . (77)

This second solution (77) corresponds to case I in
Sec, IV B, To discuss the latter solution we need
£ which is governed by B.2* Now we know from
Sec. I that the effective potential V(G), when ex-
panded around G=0, has an imaginary part due to
tachyonic singularities in its expansion coeffi-
cients, This leads to a condition on B such that
ﬁ(y) has no zero in the region 0 <y < and that
f”dx/ﬁ(x) is finite, The reason is that if the above
conditions on B do not hold 8V/3G, for example,
has no singularities in 0 <G <« and is real when
G approaches zero.

With the above behavior of B, it is easy to

analyze the nonlinear equation (77) by the phase-
space method. For large G, € ~InG. At some
finite G(=G,), g2== where de/dG=+w, and ¢ is
finite (€ =¢,), suggesting that the solution realizes
the curve of Fig. 5(a). Ase —0, g approaches the
infrared fixed point of 8. Because B(¥) has no zero
in the region 0 <y <,
de

“3c ],
cannot be real and positive, thus excluding the
case of Fig. 5(b).

The unstable branch, corresponding to (BC) in
Fig. 5(a), depends on the behavior of B(y) away
from the real positive y ax15 [if we can use (77)
at all in the region where g is not real and posi-
tive]. In general the branch (BC) will be complex
because itis unphysical anyway, i.e., Re(9¢/9G)>0.
The imaginary part integrates automatically to
zero along BC, [;cdGIme (G)=0. Therefore the
Maxwell rule still holds. For the unphysical
branch, many cases can occur as shown in Fig.

8. The tra]ectory (BC,) corresponds to the case
where g —~0_ase—~0. Note that y=0_ is an in-
frared fixed point of ﬁ(y) Near the point C;

the solution behaves like 9¢ /0G=A/1ne with A
=¢,%/(4byg?). Different trajectories of Fig. 8
give different sizes of the metastable region but
they all lead to the flux-tube solution.

Our mean-field approximation suggests the case
shown in Fig. 5(a). We should discuss the ac-
curacy of our approximation which is not given in
this paper. The essential requirements to have a
tubelike solution in the approximation of neglecting
the surface energy term are that the solution e=0
exists and that V(G) has a singularity at G=C;> 0
at which e =3 V/9G is finite. These facts are in-
dependent of the detailed form of f(e,e,) or of
B(y) and are determined solely by the fact that
f(0,e5)=0

V. COMPARISON WITH THE PREVIOUS APPROACH

We first recapitulate the arguments’ which lead
to the phenomenological Lagrangian proposed by
Kogut and Susskind®* and ’t Hooft.?® Let ¢(x) de-
note the color-singlet J?=0" tachyonic state. It

FIG. 8. The solution € (G) by the mean-field approxi-
mation.
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can be either a paired bound state or (3G, (x)).

In our previous approach it represents the pairing
field in which case it can be seen explicitly that
the dominant constituents of ¢ (x) are infrared soft
gluons. The QCD Lagrangian £ now contains two
different dynamical degrees of freedom ¢ and A%
and it is expanded first in A%, taking the simplest
possible terms consistent with the gauge invari-
ance,

£($,A%) = 10,60, - V(@) - Le@@)C2. (78)

The potential V(¢) is shown in Fig. 9 and repre-
sents the condensation of ¢. The vacuum satis-
fies ($) = b, (A“) 0. The sign of ¢, cannot be
determined here in contrast to the discussion in
this paper (Sec. II).

For the condensed vacuum to be stable against
the fluctuation around ¢ =¢,, A% =0, €(¢) must
satisfy certain conditions. First, if e(9,)#0, the
fluctuation of A%, due to the term — 1€ (¢,)G,,%,
produces tachyon bound states again and conden-
sation proceeds still further, But this is incon-
sistent so e(¢.)=0. In other words, such an ef-
fect renormalizes V(¢) and after the renormaliza-
tion €(¢,) should vanish. We assume for simpli-
city

(@) 4%, a(_(&q;_@)za ’ 9)

with a,a>0. Next we consider the small change
in ¢, ¢ =¢_+A¢, Then the change in the energy
density AE can be estimated as follows:

AE~ ;V"(¢,)(A9) - a(Adp/9,)*°B . (80)

The term - §G,,? contributes to AE by an amount
— B which is the energy density gained by con-
densing é up to the value (¢) =¢_,. Note that the
term (G,,,,) in (78) can be understood as G

-{0]G,,2| 0y without loss of generahty
Here ]0) represents the normal vacuum, Thus for
AE to be positive, o should satisfy

a>1, (81)

The condition (81) is also the condition for avoiding
double counting, which says that after extracting
¢, gluon fields A% should no longer form ¢. In-
deed if (81) is satisfied gluons cannot produce a
tachyonic bound state ¢ because its condensation
is energetically unfavorable. Now £(¢,A%) in (78),

v

0 -

FIG. 9. The shape of the potential V(¢) of (78).

with (81) understood, is regarded as a c-number
effective Lagrangian with the hope that ¢ repre-
sents the dominant quantum effects of QCD.

The condition (81) is known"2%2® to guarantee the
flux-tube solution when quarks are introduced. To
compare £(¢,A%) with the results of this paper we
first neglect the term 9,¢0,¢ and eliminate ¢ by
the equation of motion,

- 1e’(@)G, - V'($)=0. (82)

Solving (82) to give ¢ =¢ (G) and taking the
Abelian configuration, £ is expressed by G
=-$G,,%, which is compared with A V(G) of Sec.
IV. We have two types of solutions of (82). One
is ¢=¢,, €=0, which corresponds to case II of
Sec. IV B. The other solution G = V’(¢)/e’ (¢)
gives the trajectories of case I. If a>1, we get
the trajectories of Fig. 5(a) with the point C at
infinity (Gy=«). For the case a=1, we define

a_ a_v'(¢)
o 46 O=Im i o)
V’"(¢ )6 u(¢ )__ V”(¢ )Em(qb )
%€ //(¢ )2 .

For £>0, the case of Fig. 5(a) is realized and for
B<0, Fig. 5(b). See Fig. 10 for various cases.

The condition (81) on @ can also be derived by
regarding £¢(G),G) as a local approximation to
the effective action. Then we know that € (¢ (G)) is
complex at G =0, which is the case if and only if
(81) holds. [As G—0, ¢ should tend to the nor-
mal value zero so that V’(¢)/e’(¢) is required to
approach zero as ¢ —0.]

We have neglected the term 9,¢$3,¢. As has
been pointed out in Sec. IVC, in the case a=1
and B<0 the tubelike solution is realized by the
combined effects of the kinetic term 9,¢9,¢ and
condensation energy.

We have obtained the solution € =0 by the equa-
tion of motion for ¢ which is not the case in Sec.
IV. This is due to the approximation taken in
(78).

Summarizing, the phenomenological Lagrangian
(78) leads to qualitatively the same physical pic-

FIG. 10. The relation between G =—%G,,% and ¢
given by (82).
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ture of the condensed vacuum and its stability con-
ditions as discussed in Sec. IV,

VI. DISCUSSIONS

The assumptions we have made are that (23) has
a nontrivial solution and that the effective action
I" has a gauge-invariant local expansion (54).
The latter assumption can be verified, of course,
perturbatively but it automatically excludes the
possibility of a massive phase where gluons
acquire equal mass. Naively we expect that, if
the condensation is understood as pairing in the
color-singlet channel, the gluons become massive
in the stable phase. Indeed we have discussed
previously the color-singlet condensation in terms
of pairing, by studying the formation of the Cooper
pair® and by performing a variational calculation
of the vacuum energy by means of Bogoliubov
transformation® and we were led to the massive
phase., The same problem was discussed co-
variantly by solving the BS equation for the
tachyonic bound state! and by adopting the two-
loop approximation for the effective potential.?
The BS equation for the color-octet Goldstone
mode has been discussed by Smit.%’ They all led
us to the massive phase. But as long as the color-
singlet condensation is discussed in terms of
pairing, we cannot study the problem gauge in-
variantly so that it is not known whether the mass
thus generated is produced by a dynamical effect
of condensation or simply by the reason that we
have taken a gauge-noninvariant approximation,
This is the reason we have adopted G,,* to mea-
sure the color-singlet condensation. With the
condensation of G,,? it is rather hard to imagine
the mechanism of mass generation. In this way
we are led to assume the gauge-invariant local
expansion (54), that is, we are looking for the
stable ground state in which gluons do not acquire
mass after the condensation of G,,2. This im-
posed the condition e =0 on the stable vacuum be-
cause the normal solution G =0 corresponds to the
unstable vacuum. If the massive solution is al-
lowed the solution G=0 can be a solution corre-
sponding to the massive stable vacuum. We can
clearly see this situation if the term proportional
to (A2)? is added to (54) or to (78). Then the con-
dition € =0 does not follow from the stability re-
quirement. Also in the example of A¢* discussed
in Appendix A we have two phases at ¢ =0: One
is the normal massless vacuum and the other is
the massive stable vacuum. The exclusion of the
massive phase in QCD is equivalent to the ex-
clusion of the possiblity of the formation of the
octet Goldstone bosons which supply longitudinal
components to the gluons. We do not yet have the

answer to the question whether or not the massive
phase is one of the solutions to QCD.

We have also assumed implicitly that € is not
negative., This is required in order for the theory
to give any sensible answer: If ¢ is negative the
energy of the ground state of QCD is not bounded
from below so that there is no stable vacuum,
There is, however, at the moment no rigorous
proof of the non-negativeness of €. The same re-
mark applies to the coefficient I'™*? of the
9,¢9,¢ term in (54).

In this paper only the case of infinite separation
of qq is discussed. When the separation becomes
finite, the approach based on some phenomenolog-
ical consideration will probably be more effective
rather than the approach taking more and more
terms of (54) into account. .

We have discussed the condensation of Gw2 and
its physical effects. There are of course in-
finitely many gauge-invariant operators such as

P

D,G,,D,.G,.,, etc.? or even nonlocal gauge-in-
variant operators. Our conclusions here will not
be modified if these operators are shown to ex-
hibit nontrivial condensations since our arguments
are based on the instability of the normal vacuum.
We do not know, however, at the moment how we
can discuss the condensation of these complicated
operators,

However, as pointed out in Ref. 12, the vacuum
energy density is proportional to the vacuum ex-
pectation value of the trace of the energy-mo-
mentum teansor which is determined by that of the
operator G,,% [Eq. (26) in our paper]. So one is
led to the very important conclusion that the
vacuum enevgy is detevmined solely by (G, ?) and
that othev complicated operators do not affect it.
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APPENDIX A: THE CONDENSATION OF THE LAGRANGIAN
IN A¢* THEORY

As a solvable example we consider the con-
densation of the Lagrangian in O(N) x¢? theory
in the large-N limit.!® Its condensation is rather
trivial as we shall see below, but the purpose of
this appendix is to show how the method of ab-
sorbing J into the coupling constant and field



operators works, The Lagrangian is

A -~ ~ -~ k -~
L=- 53,0',0" - 3m¢* - 510\7 @%?, (A1)

where
N .
$?=D, o'
i=1
£ is the equivalent to
A aia a N (2N A g 2 2
i3y M [ eV s a2 4 2) _ ss4
«53(<¢>,><)—»‘3+81\,<7\0 ¢ Mm) i564(0) Imx,
N . ~ 2y Nmy?
_ L i iy 2 _ L 2 _ ) 2
2au¢ a“‘P 2% X o X
-i54(0) 1y, . (A2)

We must keep the Iny term in the fbllowing dis-
cussions, The effective potential V to leading
order in 1/N is

Nm,y?
V@, x)=- 5N+ §X¢Z+To°~x+ia"(o)1mo

4
+ ng(%;’)‘%m(kux). (A3)

The mass and the coupling-constant renormaliza-
tion are introduced as

m?  my® d'% 1

2 7 4L S

oo 2 emiEr (a4)
11, (4% 1

a2 @mf @R (45)

corresponding to the renormalization conditions
3V/0x | =0, =0 =NmM*/1, (A6)
92V/8%% | guoyx=u =~ N/, (A7)

respectively. Then V(¢,X) becomes
N Nm?
V(,X) ==z X+ X+ X

N .
+ 572 X n(x/p%) = 3) - 854 (0) 1, .

(A8)

In the following we consider only the case m =0
because in that case calculations can be done ex-
plicitly. We take also A <0 because the theory is
asymptotically free for this choice and the at-
tractive force is present among ¢ so that we
expect a dynamical rearrangement of the vacuum.
[For a discussion on the sign of renormalized A
in the O(N) model see Ref. 13.] Indeed it is
known!? that the absolute minimum of V(¢,X) is
realized by

2
61=0, x=r=ntem(i+2), (a9)
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which shows the pair condensation for the true
vacuum, We expect that the condensation of the
Lagrangian occurs at the same time because £
contains the term xz. To see that this is indeed
the case, the source J is introduced and £ is
changed to (1 +J)&L. ‘Then we renormalize J ac-
cording to J -JZ,. The relation (10) becomes

1+dZ5 O\, J, A1) :f;z—g(;—%ﬁ—; ) (A10)
From (A5)
CZ0, A/ =1- KA/ k) (A11)
with

K(%) Zf(ngr* i

_1/, - sK(A/ 1)
I ST A K ) (12

Because the 1/N limit picks up one-loop graphs,
the arguments following -(12) suggest that the J
independent renormalization of £ may work, In-
deed from (A12),

so

N
ITT1+d
Z,'=1- 5K(A/u). (A13)
The anomalous dimension of £ is given by
ye W=Z, " ludz, /du
A
:_16ﬂ2>0' (A14)

Now we discuss the condensation of £, In the
1/N limit, the subtraction term corresponding to
Voortld, A% = 0] in (21) is given by V(J, ¢ =0, x =0).
AV is obtained by (A8) with the replacement A — 1,
and ¢ — ¢, = (1+J)!/2p while x_(and m,?) are in-
dependent of J, Then the expectation value of

~

:L:is

’ Ap=(- :£:>.r= 0AV(dyy Xy Asy B)

aJ
__ N ,1 2
=-3 X5 +x¢*, (A15)

where (A13) has been used. (We use the symbol
A¢ and ¢ for different quantities.) There is no
-J dependence in (A15). This is because in the
large-N limit A¢, x, and ¢ are not independent
because essentially only one-loop graphs are in-
cluded. The true vacuum satisfies (A9) so that
A¢ takes the value

N2

Ap ==X (A15")

> =
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which is positive (“magnetic”) as in the QCD case.
But in the A¢? case (A15) shows that if we define
the connected part by —(: Ly, =40 + (N/20)X°

— Lx0? then (:& 9. =0 which means that the genuine
condensation of the Lagrangian does not occur in

the large- N limit, With (A9) and (A14) A¢ is shown

to satisfy
2 g2 -y, 0)ap =0
(“ e I Ye =Y,

where we have used
A2
1672

derived from (A11), The effective potential of A¢
can be constructed if we restrict ourselves to the
case ¢ =0 which satisfies 0A V(¢ ,, X, 1,)/3¢ =0.
Then (A15) is used to calculate

AV(AP)=AV(x,A;) - JOAV/AJ

A A 20\A¢
_A¢[1 *6an? ~ 6an? m( Npt )] :

(A17)

AV(A¢) of (A17) shows the similar behavior as
given in Fig. 1. The minimum value of AV is

=B\ = (A16)

r'(A")——lnfeXp[ f £(x)d4x_z fd4x ﬁA“I;x)

Al (x)]

N 64m?
AVleav/sae - 0=~ 1577 “4eXp<2+ X )

(A18)
which satisfies (26) at the minimum point
4A Vzﬁ—)(\h—)— A, (A19)

AV and A¢ are real in the large- N limit and the
difference of the factor 2 between (26) and (A19)
comes from the difference of (16) and (A13).

The Gross-Neveu model!! can be discussed
exactly parallel with the x¢* case and the La-_
grangian condenses with “magnetic” sign: (:£:)
<0. Both theories show tachyonic bound-state
poles (not cuts in the large- N limit) if we take the
normal vacuum. These are examples of the
theorem proved in Sec. III.

APPENDIX B: A CLOSED EQUATION FOR AV

The total effective action I'(A%) is known to
satisfy the following equatlon (J is set equal to
Zero):

f di% A% () — 7= GA“ (x) (B1)

We _choose the background Lorentz gauge!® D, A =0 with D% =069, +igf®®AS, so we insert the factor

A(A’ A)o(D,A

) where A’ A -A, and A(A A) detM"" M"" D, D )b _jgDev’ b’ '”’A"’ In the static Abelian

configuration, A“ 8,20, 0Au, the local expansion of I' reads

r(A;)=_f d% V(G©x) +fd4xaucu,(x)au,cu,,,(x)r‘“’(G(x)) deee (B2)

with G,,=9,4,-9,4, and G{x)=- i ,2. We insert (B2) into (B1) and use the relation

~= L AV A=
fd4x aAu(x)A:‘,(x)=§fd‘ixGw(x)é—GT(,—x—)Gz,(x)

with G8,=3, AT - 3,48,

To single out V we take the configuration where G,,(¥) has only one component

G,,and -G, =E is a constant over all space. In this limit we can derive

QV(G):ilnf exp[— ézf G (x)d4 -5 G,, BG-[d4xG

A4

)][dfl]-%ZQGE (B3)

—zlnfexp[ f £(A“ +A%)d 4% — *Gu, aGf d% G y(x)] dA] (B3")

Insertion of the term A(A A)o(D, A ) is understood.

We cannot set [d% Ga 3, (x)=0 because of the zero-
mass nature of the gluon, Indeed if (B3) is evalu-
ated perturbatively, it has infrared divergences.

Equation (B3) is an analog of the equation satisfied
by the effective potential V(¢ (x)), not the effective
action, in a¢* theory, for example, where the
equation satisfied by V is derived by taking the
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limit of constant ¢. Now we observe the following
two points.
(1) Equation (B3) says that the real source of the

electric field which couples to the fluctuation of the

gluon field is G,,3V/3G (not G,,), that is, it is the

displacement D=¢ E, not E, which plays the role

of the effective field. The dielectric constant e

depends on how much A¢ condenses in the vacuum,
(2) To show ¢; =0 in case II of Sec. IV B, we

write the expression for A¢. Now from W(J,J,)

of (52) with constant J, we define

V(J,A8) =~ W(J, T )+fJ°(x) aJa(x)d“x
with
)
=AZ(J,Ju)=gﬁ%‘)—-

Then
oV(J,A
QA¢IJ_ 0____%J_ul
J=0
_ oW(J,J%)
EN 2

where J, is expressed as a function of A, and J.
So we get, in the limit of the constant field,.

8¢,

1/0 [Lexpli [Ed% -4 cyiG,, [d G2 )[dA]
[exp(if £d % -3 c\iG,, [d*% C,)[dA] ~

where we have suppressed gauge terms, and L
=[d% £(). 1t is clear that if ¢;#0, A¢ cannot
be G(=- £G,,%) independent so that ¢, =
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