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The quark and gluon propagators of massless quantum chromodynamics are studied in the Landau gauge
using renormalization-group techniques in combination with the analytic properties which follow from
Lorentz invariance and spectrum conditions. The investigations include the possibility of a spontaneous
breakdown of global color symmetry with mass generation for quarks and gluons. The explicit asymptotic
behavior of the propagatory for large momenta is determined along all directions in the cut complex plane.
It is found that the propagators cannot be entire functions except possibly in the infrared-stable limit. The
existence of branch cuts drawn to infinity is verified. Projected propagators are introduced where
contributions from negative-norm states are omitted. The original as well as the projected propagators
satisfy unsubtracted spectral representations. The positivity condition of the transverse projected weight
function leads to a restriction for the anomalous dimension of the gluon field, which implies a lower bound
for the number of flavors.

I. INTRODUCTION

The small-distance behavior of the quark-gluon
system can be described by the asymptotic ex-
pansions of Green's functions in the limit of
vanishing coupling (g-+0). Due to asymptotic
freedom, the theory is well defined in this limit.
On the other hand, we know that the long-distance
behavior cannot be obtained without contributions
which are not seen in the asymptotic expansion.
It is expected that the long-distance structure of
the theory gives rise to the complete or partial
confinement of quarks and the screening of color
charges.

In the confined phase of the field theory, only
color-singlet systems should be associated with
asymptotic fields. Consequently there are no
such fields in colored channels. The question then
arises as to what is the expected structure of the
Green's functions in these channels. In particular,
we are interested in the quark and gluon propaga-
tors and related vertex functions. A priori, we do
not need to have the usual analyticity properties
in colored channels, as long as these are pre-
served in color-singlet amplitudes. However, in
quantum chromodynamics' it is assumed that quarks
and gluons can be associated with local quantum
fields, and hence we can analyze colored Green's
functions within the framework of relativistic
field theories.

In our work the model of massless quantum
chromodynamics will be studied with a Euclidean
normalization mass as the only dimensional para-
meter. Though there are no intrinsic masses in
this model, it is possible that spontaneous sym-
metry breaking via a dynamical Higgs mechanism'
leads to mass gaps4 for gluons and/or quarks. ' A

gluon mass gap may be related to the screening
of color charges and the confinement of quarks. '
In this paper we consider quark and gluon propa-
gators, and in a sequel we discuss the effective
coupling and the quark-gluon vertex function.

In a covariant gauge, particularly the Landau
gauge, we use Lorentz covariance and some mini-
mal spectral properties in order to obtain cut-
plane analyticity for the structure functions of the
propagators. With the help of these analytic pro-
perties, together with the consequences of the
renormalization group, ' we derive the explicit
asymptotic behavior of the propagator functions in
all directions of the complex plane, as well as
along~ the positive real axis. For all structure
functions, we find sufficient boundedness for the
existence of unsubtracted Lehmann representations.
We also obtain superconvergence conditions, which
have important implications for the theory.

As a first application of our results, we show
that the propagators cannot be entire functions ex-
cept at an infrared-stable fixed point. Even in the
case of complete confinement, there must be
colored eggts drawn to infinity. '

Furthermore, we find that the asymptotic be-
havior of the transverse gluon propagator and of
its discontinuity is critically dependent upon the
sign of the anomalous dimension of the gluon field.
We introduce covariant, projected propagators,
where all negative-norm states are omitted, and
assume that these projected propagators approach
their free-field values in thy weak-coupling limit.
Thus we obtain certain conditions which lead to
a restriction for the anomalous dimension of the
gluon propagator. This restriction implies a
lower bound for the number of flavors.

The plan of this paper is as follows: The nor-
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malization conditions are introduced in Sec. II,
followed by a discussion of the renormalization
group in the presence of global symmetry breaking
and for projected propagators in See. III. Section
IV contains the asymptotic properties in the
Euclidean region and Sec. V the spectral repre-
sentations for full and projected propagators as
well as a discussion of mass gaps. In See. VI, a
detailed proof is given of the asymptotic behavior
in all directions of the complex plane and along
the positive real axis. Our conclusions are found
in the final section.

II. NORMALIZATION COND1TIONS

The formal power-series expansions of the
time-ordered Green's functions are uniquely de-
termined by imposing certain normalization con-
ditions on the propagators and the vertex func-
tions. ' These conditions serve to define a finite
renormalized coupling constant and to norma-
lize the field operators. Apart from some
general requirements, it is a matter of conven-
ience how the specific form of the normalization
conditions is chosen. In this section the conditions
for the propagators will be formulated which de-
fine the normalization of the quark and gluon field
operators. The precise definition of the renor-
malized coupling constant will not be relevant for
the discussions in this paper.

For the propagators of the gluon and quark fields
in the Landau gauge, structure functions are in-
troduced by

O'= K'&O.

Similar conditions are imposed on the ghost pro-
pagator.

Due to the indefinite metric of the state space,
propagator s may become negative for some&'& 0.
At such points it is not possible to normalize a
field operator in the proposed way. In order to
avoid difficulties of this kind, we introduce pro-
jected field operators

A =PA:& 0"=pl'p, (2.5)

where p denotes the projection operator on a sub-
space X' with positive- (semi-)definite metric. "
The decomposition of a space with indefinite metric
into subspaces of positive- and negative-definite
metric is not unique. If the asymptotic fields form
a complete system and the gluons are massive, the
choice of the subspace X' is obvious. A Lorentz-
and gauge-invariant X is then constructed by ap-
plying polynomials of all those incoming fields to
the vacuum state which describe physical particles.
If colored particles are confined, corresponding
asymptotic fields do not exist and asymptotic
completeness does not hold. But it should still be
possible in this case to define a subspace X' of
states with non-negative norm excluding ghost or
unphysical Goldstone modes. Suitable definitions
of K' will be discussed in a separate paper.

Although the projected field operators need not
be local, the vacuum expectation values of their
commutator or anticommutators vanish at space-
like distances:

-iD"„„(b)=(8„„— ." D )8 ), a, b='), '2, . . . , 8t'+zo

(tA":( ), A (y)])=0

((P'(x), ti)'(y))) = 0, if (x —y)'(0.
(2.6)

i' '(k-) =A "(k ) + y k B"(k'), j, / = 1, 2, 3 .
(2.1)

(2.2)

-k D"(k )=1, a=1, 2, .. . , 8 (2.3)

D~ ' and S„"'denote the Fourier transforms of
(TA'„(x)A'„( y)) and (T)t)'(x))I)'( y)), where flavor in-
dices have been suppressed. It will not be as.
sumed that the propagators are multiples of the
unit matrices 6„or 5,.„respectively, since we
want to include the possibility that the global color
symmetry is spontaneously broken. We propose
to normalize the color components of the quark
and gluon field operators separately by imposing
the conditions

The Fourier transform G p py
of its propagator

(TA „„(x)A;,'( y)) (2.8)

only involves the transverse structure function
D+ab.

-iG",„D„(k)= (k,k, g~ —k Dk„g„,

—k„kD g„~+k„k„gDD)D"'(k') . (2.&)

As a consequence, the propagators are Lorentz-
invariant distributions. The propagator of A"
need not be transverse in the Landau gauge. In
order to eliminate the longitudinal contribution, we
form the field operator

("2.7)

-k B'~(k ) =1 j =1,2, 3 (2.4)

For the Fourier transform of the projected quark
propagator (T)t)"(x)T))"(y)), we introduce structure
functions by

at the Euclidean normalization point fS,"'(k) = A "(k')+ y k a"'(k') . (2.10)
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In Sec. V it will be shown that D ' and 8'~~ satisfy
unsubtracted Lehmann representations with non-
negative weight functions. Since these structure
functions are positive for Euclidean momenta,
the gluon and quark fields may be normalized by
the conditions.

-k'D"'(k') = 1,
-k2a'f'(k2)=1 atk'=«2

(2.11)

(2.12)

III. RENORMALIZATION GROUP

In this section we first briefly summarize some
familiar aspects of the renormalization group"
in the way we prefer to formulate it. Then we

adapt the methods to the situation where the glo-
bal color symmetry is broken and we discuss the
applications to the projected propagators.

The renormalization group of quantum chromo-
dynamics is defined as the group of transforma-
tions

for any negative value of z'. This suggests re-
placing Eqs. (2.3) and (2.4) by the modified nor-
malization conditions (2.11}and (2.12). With the
new conditions, the normalization of the field
operators may be possible for parameter values

g and g' at which the conventional normalization
fails.

In perturbation theory, coupling parameter and
normalization mass uniquely determine the
Green's functions in the Landau gauge of quantum
chromodynamics as formal power series. ' Inde-
pendent of perturbation theory, this uniqueness
property need not hold. Ne will, however, postu-
late existence and uniqueness of field operators
for sufficiently small values of g below an appro-
priate bound. Within this domain, it is assumed
that the parameter values g and I(' uniquely deter-
mine the field operators

A;{x)g) K ) ) $ ( gx)K)), C'(x, g, «'), (2.13)

and their time-ordered functions. These quantities
are determined by Eqs. (2.11) and (2.12) or pos-
sibly by Eqs. (2.3) and (2.4), the normalization
conditions of the ghost propagators, and the de-
fining equation of the coupling constant.

if the corresponding field operators are related
by an equivalence transformation (3.1), namely

A;(x, g', « ~) = Q 2,A'„(x,g, «'),

P'(x, g', «")=~K; (t)'(x, g, «'),

C (xi g ) «) = ~g~ C (x)g) K ) .

The effective coupling or invariant charge

Q=Q(&'. (( «')=Q —„,, (,)

(3.3)

(3.4)

is usually defined in terms of time-ordered func-
tions as a dimensionless invariant of the renorma-
lization group which satisfies

Q(k', g, «') =g at k'=«'. (3.5)

In the following, we quote some general proper-
ties of the invariant charge which are independent
of the chosen definition for the renormalized coup-
ling constant.

In the Landau gauge, invariance under the re-
normalization group means that

Q(k', g', «~) =Q(k', g, «2) (3.6)

holds for equivalent parameter pairs (3.2). Equa-
tions (3.5) and (3.6) yield

~f2
(,"=Q(~'*,g, ~*) =Q —., z) (3.V)

as the value of g'. From Eqs. (3.6) and (3.7), the
relation

sQ2 sQ2 k2
u = p(g'), , u= ~,~Q ~g K

(3.8)

follows. With Eq. (3.5), this differential equation
can be solved by

QQ

u = exp dx p '(x)
g

2 W

(3.9)

for sufficiently small values of g and Q. Equation
(3.9} is only valid in a domain where Q is mono-
tonic. The function Q may have extrema which
are integrable singularities of p . See Ref. 12 for
the modification of Eq. (3.9) in this case.

The first two coefficients of the formal power
series

A'„-Qz, A;, P'-Q g, g', C'-~~, C',

z„~„~.& 0, (3.1)

p(g')=g'(p. p g" ") (3.10)

are independent of the chosen normalization condi-
tions. " In the Landau gauge, their values are"

which multiply the fields by finite positive factors. .

Such transformations are called equivalence trans-
formations; they only change the normalization of
the field operators. Parameter values g, z' and
g', z" are called equivalent:

1 2
P ()

= - 6, (11—3 Nf),1 7r

1
P) 2 (8 2)2 ( 3 Nf 51)

(3.11)

(3.2) with N& being the number of flavors. Here we



have assumed that the gauge group is SU(3) and
that the quarks are in the fundamental (triplet)
representation. For N& ~16, the sign of P, is
negative. This is the case of asymptotic freedom
to which the discussion of this paper will be re-

stricteded.

In the absence of integrable singularities of P ',
the relation (3.9) is valid in the domain

with the dimensionless function

fk'
B"~ —,,g) = I*D--(k', g, ~'). (3.20)

(3.2i)

On the other hand, if the normalization condition
(2.11) is imposed, we have

Q(g&g (s.i2) where
where g„ is the smallest, positive zero of P at.
which P is not integrable. If there is no such in-
frared stable zero of P, we set g„=~, with P

'
being nonintegrable at infinity. Then Eq. (3.9) is
valid for all positive values of the coupling con-
stant. We have

g„= lim Q(u, g) = lim Q(k', g, g'),
A2-+-0

(s.is}

with the limit being independent of g. In particular

lim q(u, g)=~ if g„=~,
g —++0

(3.14)

with P
' being nonintegrable at infinity.

With Eqs. (3.9) and (3.10), it can be shown that
the product Q' lnu approaches the finite positive
limit p0

' for n -~. Hence

ln —,Q —,, g =~P, ~, for k—2 (3.16)

q'=g'+ P,g'ln —,+O(g'). (s.i6)

Under the renormalization-group transformation
(3.3), the gluon propagators (2.1), as well as the
projected propagators (2.9), are multiplied by a.

factor (z, z,)'~', the corresponding quark propa-
gators by a factor (P,.P,)'~'. For example, the di-
agonal elements of the gluon propagators trans-
form like

D-(k', g', ~")=z.D-(k', g, ~'),
&"'(k', g', ~")= z, D"'(k', g, ~'),

(s.iv)

represents the leading asymptotic behavior of the
effective coupling for large Euclidean momenta.
Here and in the work that follows, the symbol =
indicates that the ratio of two functions approaches
unity in the limit.

The formal expansion of Q' with respect to
powers of g' follows from Eqs. (3.9} and (3.10)
in the form

R+ag y2D+aa y
2 + 2 (3.22)

@ab~ab 0 7

~jl~ jl
F

g)jrB jl=0,F

~abD+ab QV

m'X'». = 0,F

~jlB+jl 0F

(3.23)

In the Landau gauge, the differential operators
are

8 8.+ P, + l (r', + r', ),8 ff 8g

8 8+zz2+P2+2(rp'r+)8g 8g

(3.24)

It should be noted that the differential equations
of the original and the projected propagators have
identical coefficients p and y~ or yF', respecti-
vely, provided the same type of normalization [in
our discussion either (2.3) and (2.4) or (2.11) and
(2.12) J is used for the field operators.

With the conventional normalization conditions
(2.3) and (2.4), the r functions have formal power
series with respect tog2. In the Landau gauge
considered here, they are given by

r v=g (rvp+rvzg + ' '')
~

YI = g' (rsi+rzpg +'''} ~

(3.25)

(3.26)

The coefficients, as computed in perturbation
theory, are, of course, color independent. For
the differences r~v —r~v (aw b), rz' —rz' (jw l), all
coefficients in the power-series expansion vanish.
The coefficient y~0 is"

depends on k'/z' and g only, provided the definition
of 3C' does not involve new dimensional parameters.

The differential form of the transformation laws
on the propagators are the Callan-Symanzik equa-
tions"

(3.18)
ir~ = — 6, (13-+N~) .

i6m
(3.2V)

'=R",g (3.19)

By the conventional normalization condition (2.3),
the factor z, is determined to be

The value of y«does not depend on the chosen
type of normalization conditions. We discuss this
point in some detail for the proposed modification
(2.11) and (2.12) of the conventional normalization
conditions (2.3) and (2.4). For given parameter
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values g and g', the conventionally normalized
field operators A", g" and the field operators
A„"', )t)

"~ normalized according to Eqs. (2.11) and
(2.12), are related by

coupling limit"

P&, PX eb P~ A, &

g~+Q
lim S~"'- 6),SF,

g-++ Q

(3.37)
A"(x g x'}=~dA"'(x g ~')

tt) "(x,g, ~') =)) 5, )r)"'(x,g, )).") .
(3.28) and that their derivatives do not behave stroriger

than g'" " for some positive q.

The normalized factors are determined by the
values of the un-normalized projected propaga-
tors at the normalization point:

d, (g ') = -I 'a"'(a2),

6,.(g ') = -u'a "(u'), n' = ~' & o .
(3.29)

Under the change of normalization as given by Eq.
(3.28), the coefficients of the differential equations
(3.23), (3.24) transform like

8 G+a)) 0(g 2 ( E-1))
gg2 &i', PX

8

Bg
S'"'=0(g'" ") O&e ~1

These assumptions imply

S,"'= 6„S,+ O(g") .

(3.38)

(3.39)

pit pf

P' dd,
Yv Yv+

a

P' d5,.
y+ yg +

(3.30)

(s.sl)

(3.32)

The leading behavior of the y functions in the new
normalization is then given by

eg y
2 ~ 0(g2(l+ c))

0(g2(1+ 6)) 0 &~ ( ]

Again the y functions of the gluon field approach

If the projected propagators can be expanded
with respect to powers of g', we have the series

(s.s4}

Since P is of order g4, the first coefficients of
y" and y"' are identical:

try rg
ypp yap (s.s6)

Thus the y functions of the gluon field have the
same leading behavior for g-0 in both normali-
zations. This statement holds under more general
conditions. If the projected gluon propagator and
its first g' derivative converge for g'-+0, the
transformation (3.31) implies

~,"'(g') = ~„.g'+ o(g') .
Next, suppose that the expansion of the pro-

jected gluon propagator involves powers of g' and

lng, with leading terms given by

G '„'„„(0,g ') = 6,„G~+„' p, (k)

+g'In"g'G'„'„";,"(a)+, n= 1., 2, . . .
(3.36)

as is typical for nonrenormalizable formulations. "
In this case, the g' derivative of (3.36) becomes
logarithmically divergent for g-0. Then y~ and
y~' still have the same behavior for g-0 up to
terms of order g4ln"g'. More generally, we will
assume that the projected propagators (2.9) and
(2.10) approach their free-field values in the weak-

y,"'-y,"-y,.g' «g'-+0
in both normalizations up to terms of order g'" ".

The assumptions (3.37) and (3.38) imply that
states of negative norm should not contribute to the
transverse propagator of the free gluon field as
defined by the limit g

' -+ 0. Even though gluons
may not be observable as free particles, in quan-
tum chromodynamics, because of asymptotic
freedom, the g'-+ 0 limit is nevertheless physi-
cally relevant as a high-momentum limit. "

A priori, the limiting properties (3.37) and
(3.38) in g

' have been assumed for real values
of the variable O'. Since the propagators can be
defined as Fourier transforms of retarded space-
time functions (distributions), these limiting pro-
perties can be easily extended to the analytic con-
tinuations into the complex k' plane.

IV. ASYMPTOTIC PROPERTIES IN THE EUCLIDEAN

REGION

As an important ingredient for our later deriva-
tion of the asymptotic behavior of the propagators
in all directions of the complex k' plane, we derive
in this section the limiting behavior along the
negative real axis (Euclidean region). We note
that, apart from the coefficient, the asymptotic
expressions for the structure functions are inde-
pendent of the normalization. Vfe can therefore
choose a normalization which is convenient for
later discussions. This will be the conventional
normalization (2.3), (2;4) for the regular propa-
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gators, and the normalization (2.11), (2.12) for
the projected propagators.

Let R be one of the dimensionless functions

Rab R+a& $ j& $+j& yi & T+j&

defined by

exp
Q ~2

dxy, (x)P '(x)

2
( Q2 ) r vo(oo t. o

exp ( dx r'(x)
Eg ) )rr P

$ '=v' u'A ' $+jl g y2~+ jl

T~'= -&2' j' T'~'= -u2a'j''

R"= —u2D" R"'= -a2D"'

(4.1)

where the exponential converges to a finite limit
and the asymptotic form of the coefficient follows
from (3.15).

The asymptotic behavior of the normalized
structure functions is thus given by

These are functions of the dimensionless vari-
ables k'/((' and g. We write

Q y~ -w yo/8O
R-=exp dxy„"(x)p '(x) =C" ln —,

R =R(u, g), u =k /)(: (4.2) (4.5)

At this point it becomes important to note that
the projected functions R', $', and 7' also de-
pend upon u and g only, provided we use a defini-
tion of X' which does not involve new dimensional
parameters. For the dimensionless functions R,
the Callan-Symanzik equation becomes

Q2

B"=exp dxyv'(x)P '(x)P '(x)
2

with normalization (2.3) and (2.4) and

(4.6)

BR ~R
.u — = p 2+yR.

~u ~g
(4.3)

R"'=exp J( dxy"'(x) =C"'~ ln —,
e f K

(4.7)
instead of u we introduce Q' as a new independent
variable by using Eq. (3.9). Regarding R as a
function of g' and Q', Eq. (4.3) can be converted
into an ordinary differential equation with respect
to g' at constant values of Q'. The unique solution
1s

Q2

&(r, ()=&((,O)~m f«r(r)() ,(x), (4'4)
g

valid for sufficiently large u and small Q', g'.
From Eq. (4.4) the asymptotic behavior of the

propagators follows as mell for g-+0 and 4'- -~
The discussion is particularly simple for D",
L"', B", B"', since then R(1, Q)=1 with the
appropriate normalization. In the other cases,
the leading behavior of the coefficient R(l, Q) for
g-+ 0 or u —~ is determined by the asymptotic
form of R(l, g) for small g. The behavior of the
exponential expression in Eq. (4.4) follows from
the behavior of Q and the ratio y/P. The asymp-
totic relations (3.10), (3.36), or (3.40) for P and

y~ imply that the limit
Q2

lim exp ~l dx yz'(x) P '(x)
M

converges. Since y~ is of order g' for g -+0, the
integrand y'„/P is not integrable at x=0. After
separating the singular part,

y;P ' = y,oPO '~ '+ 7',

the remainder 7' is integrable at x= 0 according
to (3.10), (3.25), or (3.40). Hence

C = exp J dx y~( ) p '( ) & o, (4.10)

yp ylj or ytf j

Finally, some results concerning the behavior
of the propagators for g-+ 0 are listed which will
be used later. %e first note that

im g-2nGf2b 0 ]im g-2n$ ijl 0gV, p)t pg~+o g~+0
(4.11)

for any n&0 if ahab, jt/. Hence, the color off-
diagonal elements of the unprojected propagators
fall off faster than any power of g' for g-+ 0.
Similar statements hold for the projected propa-
gators, provided they possess perturbative ex-
pansion with color-symmetric coefficients. How-
ever, under the assumptions (3.37), (3.38), nothing
can be said beyond Eq. (3.39).

The asymptotic behavior of the color diagonal
structure functions for g-+0 is found to be

Q2

B"'=exp j dxyv"(x)P '(x) =Cv", k'--~
2

(4.8)

with normalization (2.11) and (2.12). The coeffi-
cients are positive and given by

0
C' =(g'~ po~) vo( oexp ' dxv'(x) &0, (4.9)

2
Ir

&a 7 ia or 7 a
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kD"(k', g, x') =-k ' 1+ y«g'In —,+O(g')
If expanded with respect to powers of g', the func-
tion X2 has vanishing coefficients because of the
essential singularity. On the other hand, we have

4B»(k', g, ((')=-k ' 1+y„',g'ln —,+O(g'), (4.12) for g-g„, (5.6)

A»(k', g, ~2) = (-k ')' ~'[S,.g'+ O(g') ]
[with normalization (2.S) and (2.4)];

)

D"'(k', g, )(') = —k ' 1+ y«g ln —,

+ o(g2((+e))

+1)(k2 g K2) k-2[1+ O(g2(1+&))]

a'»(k' g ~2) = (-k ')'~2O(g"), 0 « ~ i
(4.is}

()0 ab(y ~23

D"(k')= dk" P '
y p2 y20

~, (~) f „~ &(' ~((' )-a, ,(( )
k0

00 j&( ah
B"(k') = dk" k' —k0

(5 1)

(5.2)

(5.s)

The representations follow from Lorentz invari-
ance and spectrum conditions, provided the func-
tions have the appropriate boundedness proper-
ties. It will be shown in the following section that
the behavior of the propagator functions for large
momenta in all directions of the complex k' plane
is controlled by asymptotic freedom so that the
representations (5.1)-(5.S) are indeed valid.

Invariance under the renormalization group im-
plies that the position X' of a propagator singu-
larity is either fixed at the origin or has the fol-
lowing dependence on the coupling constant":

2
~o

X'(g, (('}= (('c, exp dx P '(x)
f

(5.4}

Here cp is a numerical constant which, for a given
singularity, depends only on the chosen reference
gp of the coup l ing con st ant. Sinc e we have P 0 & 0,
the singularities (5.4) move towards the origin for
g'-+0 according to"

a& &so
2

go

lim f(g', g,'))0.
+~+0

[with normalization (2.11) and (2.12)].
By analytic continuation, with the help of the re-

tarded representations of the propagators, these
relations hold also in the cut k' plane. In the Min-
kowski region, they are valid in the sense of dis-
tributions.

V. SPECTRAL REPRESENTATIONS
For the structure functions of the propagators,

we can obtain the Lehmann representations"

where g„ is the first nonintegrable singularity of
P '(g'). Hence all singularities, which are not
placed at the origin, move towards infinity in the
infrared-stable limit, or in the limit g-~ if there
is no infrared-stable point.

The relation (5.4) is of particular interest if
applied to the first singularity M', , of the quark
propagator on the positive real axis k2 ~ 0. This
singularity is either placed at the origin

M j=0,jl
or it has a positive value with the g dependence

p
g

2
0M', ,(g, )(') =a'c~, exp dx P '(x), cz", &0.

2f

(5.'?)

In the first case, the quark mass remains zero;
in the second case a nonvanishing mass is de-
veloped even though the model does not involve an
intrinsic mass apart from the normalization para. -
meter v'. Mass generation for quarks is often
regarded as being connected to a spontaneous
breakdown of chiral symmetry with the pseudo-
scala, r mesons as Goldstone particles. ' The
quantity M', , has an essential singularity at g'=0;
all coefficients of the power series vanish in
agreement with the fact that the propagator cut
starts at zero in each order of perturbation theory.
M', , may either be a pole or the starting point of
a cut. The possibility that the structure functions
have finite values or vanish at the branch point
M', , is also included. M'» may be taken as the
lower limit of the integrals in the Lehmann repre-
sentations (5.2) and (5.3). If the global color sym-
metry is preserved, the matrix M2j, is diagonal:

M j,= cj,M'.

Here M' may be interpreted as square of the
quark mass since it is the lowest value in the
spectrum of P,P" for states of quark number
one. If the global color symmetry is broken, we
may define mass parameters M j' by the lowest
value in the spectrum of P,P~ in the subspace of
all vectors 4 with

(n, ((~(x)e)~O.

M'» is then the larger of the two va. lues M j' and
M).

In ca.ses of mass generation, there is no singu-
larity of the quark propagator at the origin, and
the starting point of the cut moves towards in-
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A "(k') = gk )2 ~+j )(k c2) p+j )(k )2)
dk

(5.8)
()9 +il(y +5

B'~'(k') = dk ~ '„',', (5.9)
jl

of the projected propagator, the diagonal elements
of the weight functions now satisfy the conditions"

finity in the limit g-g„. Hence a quark propa-
gator with mass gap must approach an entire func-
tion in this limit. This will be discussed in more
detail in a sequel to this paper.

As in quantum electrodynamics, the behavior of
the Fermi propagator near M,.' is strongly gauge
dependent. Because of contributions from nega-
tive-norm states, the strength of the singularity is
not relevant for the physical interpretation. It
may, - for instance, not be used as a criterion for
confinement. It is therefore suggested to drop
contributions from negative-norm states to the
weight functions by forming the projected propa-
gator (2.7). A pole of the projected propagator at
p' =M . should indicate that a particle of mass M .

can be observed. On the other hand, a sufficiently
reduced singularity or vanishing of the propagator
at the branch point M ~' would indicate confinement.

In the spectral representations

ous papers. ' To our knowledge, it cannot be ex-
cluded that stable massive vector-meson states
exist in quantum chromodynamics which decouple
from the zero-mass states in the S matrix. It is
possible then that global invariance under the
color group is spontaneously broken, but this does
not necessarily have to be so." Further, it is
conceivable that the phenomenon of mass genera-
tion occurs with massive, confined, or screened
vector mesons. Then a branch point instead of a
pole is expected for the transverse propagator.
In general, we define a gluon mass parameter
m, ' by the lowest value in the spectrum P,P" in
the subspace of all vectors 4 with

(n, A'„(x)e)» 0, e cX'.
The first singularity m', ~ of the transverse part
D "«of the propagator (2.6) on the positive real
axis appears at the larger of the two values m, '
and m~'. D"' satisfies the Lehmann representa-
tion

k)0 "b k "~
D' «(k2) = (5.ll)

Ne now show that the positive metric of X' im-
plies that the diagonal elements p"' of the weight
function are non-negative. Ignoring color indices,
we form vectors

p ~y) 0 0(p~)P &2yg~2p y~ (5.10}

implied by the positive-definite metric of X'. Be-
low, the corresponding positivity condition will be
derived for the less familiar case of the projected
vector propagator. In the following section it will
be proved that the spectral representations (5.8)
and (5.9) are convergent even though contribu-
tions from negative-norm states to the weight
functions have been omitted. This is a general
feature of asymptotically free models where the
asymptotic behavior for large momenta is con-
trolled by the behavior for small values of the
coupling constant. In case of asymptotic freedom,
the indefinite metric of the state space is thus not
essential for the convergence of spectral repre-
sentations.

For the vector mesons, the phenomenon of mass
generation cannot be discussed as easily as for
quarks, since zero-mass modes are likely to
contribute to a cut of the transverse propagator-
starting at 0'=0. However, it is known from the
perturbative treatment of models with spontaneous
symmetry breaking by Higgs fields that the vector
propagator acquires a pole of nonvanishing mass,
while singularities corresponding to zero-mass
modes cancel each other in the unitarity equations
of the 8 matrix. A similar mechanism of dynami-
cal symmetry breaking has been proposed in vari-

using test functions c'" which may be chosen an-
tisymmetric

c"'= -c"".
A„„denotes the Fourier transform of A, „=8,A„
—B,A,. To (5.12) we apply the projection operator
p on the subspace ' of positive metric and take
the norm

(4.,4.) =f dkd)c" (k)c"( i)(k')-'"-
&(A „(k)pA,„(l)), 4, =p4.

From (2.9} we find

(A„„(k)PA,b(l)) = 2(2w) 6(k+7) e(k«}

x(k„k g„), —k„k~„,

-k„king„„+k„k„gf„)ImD' .
Thus

-k (kc)' f dk c„(k)c"(k) k(i)„')(k') ')mD'(k')

=(e„e}P0, (5.12)

with

Pc~=k cp~.
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For k & 0, ko& 0 we have

c@c & 0 (5.13)

we obtain
lim R(e'v', Q) = lim R(e'",Q) = 1.Ia'I » Qv~

Equations (5.12) and (5.13) combined imply that

p
' ——ImD"'(k ) 0,

in the sense of distributions.
The mass parameters in (5.11) either vanish:

rn, ~ =0,
or have the g dependence

e 2

m'„= v'c»'p exp J dx P '(x), c»po&0. (5.14)
f

If m, ~W 0 the projected transverse propagator ap-
proaches an entire function in the limit g-g„.

It remains to be shown that the Lehmann rep-
resentations of the propagators as well as the
projected propagators hold without subtractions.
As a consequence of Lorentz invariance and spec-
trum conditions the structure functions of the
propagators are regular analytic in the k' plane
cut along k'~ 0. From this, the Lehmann rep-
resentations follow without subtractions since it
will be seen in the next section that the structure
functions of the propagator approach zero along
every direction of the cut complex plane.

VI. GENERAL ASYMPTOTIC PROPERTIES

A. Complex plane

A convenient starting point for studying the
asymptotic behavior of the diagonal gipon propa-
gators D=D", D ' is given by the relations (3.17),
which can be continued from the Euclidean region
to any point k' of the cut complex plane. With the
help of Eqs. (3.19)-(3.22), we may write Eq. (3.17)
in the form

(k2 (Kt2 ( k2 ~p2

(6.1)

for the components R =R,R ". Here and in. the
following we suppress indices aa or +aa. In (6.1)
the functions R" and 8"' are normalized by
Eq. (2.3) or Eq. (2.11), respectively.

The discussion of the asymptotic behavior for
~k'~ - ~ is particularly simple along the ray

Setting ~12= —~k2~, the relation (6.1) yields

(k' ) (lk2 ) k'
R] —„g[=RI ~,g[R(e",Q), Q=Q ~,g[.j lz i K

(6.3)

Using Eqs. (4.12) or (4.13) and their continuations,

Together with the asymptotic formulas (4.5) and
(4.7), we find then

D(k', g, K') = D„(k',g, a )

for ~k'
~

-~ along the ray (6.2), with the asymp
totic form D„given by

( k2 I )-Ixp/Bp

)

(6.4)

(6.5)
p

Cv=( g~P o~) "'"exp dxT{x) &0 ~

p
By a slightly different method, this result can

be generalized to any direction in the cut plane
including lines parallel to the real axis. In gen-
eral, we consider the propagator functions along
any straight line

k
I~ I

= C~+ C2S, S ~ 0 (6.6)

which lies entirely within the cut k plane. Since
(3.17) is valid for complex k2, the functions D
satisfy the Callan-Symanzik equation (3.23), (3.24)

2 B B, + 2+y )D=o,
B Ip Bg

(6.7)

with the same coefficients at every point k' of the
cut k' plane. Thus the differential equation

BA BA
(6.8)

Q =Q(s, g), s - 0

from which follows the asymptotic formula

D = -C„(C2S) '(InS)~»o/oo fOr S

(6.S)

(6.10)

with the same coefficient C» as in Eq. (6.5). In
particular, for lines k +is 2(k2~ 0) parallel to the
real axis, we have

D(k2+is, g, v2) = -C»k '

( k yp/sp
x( ln

l

for k'-
(6.11)

In a similar way, the asymptotic behavior of
the other propagators is obtained. We only quote
the final results. The generalization of (6.1) is

follows for

R=R{c,+c,s,g), s~ 0

considered as a function of s and g'. The solution
of (6.8) is

pQ
R(c,+c2s, g) =R(c,+c„Q)exp Jl dx yv{x)p '(x)

f
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B"(,,g)= B(&", )g
B"(, ,g)

k'
XA tatg ft

K

"('-:')="'(' )"'(: )
"'

gg ( k
xS

f
„,g

~Id

„(k'

(~"
~ -Bi . ,g),

(6.12)

with analogous expressions for the projected
functions. Along the ray (6.2), the a,symptotic
formulas for the diagonal elements of the quark
propagator are

A~~(k' g )t')= C'~ fk f
'e " '"ln '—Sy k'

t t
~P ~

E B

(6.13)

B ~(k', g, )(')=C~~ fk
f

'e ", for fk f-~ (6.14)

follows from (3.39) and (6.12).
Corresponding formulas are obtained along any

line (6.6). Hence all structure functions vanish
along any direction of the cut complex plane so
that the unsubtracted Lehmann representations
(5.1)-(5.3), (5.8) and (5.9), and (5.11) follow.

B. Minkowski region

Generally, the propagators are tempered dis-
tributions in the Minkowski region k ~ 0. How-
ever, if distribution type singularities are pre-
sent only below a finite momentum value K, the
propagators may be treated as ordinary functions
for k'&K'. In this case the derivation of the
asymptotic behavior given above also applies to
the real positive axis, and the relations (6.4) and
(6.5) and (6.13)—(6.17) hold for large Minkowski
momenta with y=+w. If distribution-type singu-
larities occur for arbitrarily large momenta, the
asymptotic behavior of the propagators should be
studied in terms of the average values which are
obtained by smearing with suitable test functions.
After substituting A, 'k' for k', we may interpret
the propagators as distributions in the dimen-
sionless variable A,

' at given positive k . We then
form the average values

with the coefficient given by Eq. (4.10). The
asymptotic expression B'~~ has the same form as
Eq. (6.14). Using Eq. (4.13), we find for A'gg the
weaker statement

tt'(k'gt') =N' f d, k',t(h')k'D(k'k', g, t'),

B'(k', g, tt') N'f dk=t(k )k'B(k''k'', g, t ), (6.18)

(k g ~ )& fk f

ke- /t)Btgln-

iK
(6.15)

along the ray (6.2) for any n&0. If the expansion
coefficients of the projected propagators with
respect to powers of g' (and possibly lng') are
color symmetric, one finds a decrease of the
color off-diagonal elements similar to Eq. (6.16),
Qtherwise, only

7PO/Bp 6D'"
fk f-'f ln —,

The symbol ~ means that the ratio of A.'~' to the
expression on the right-hand side approaches a
finite, possibly vanishing limit for fk'

f

—~. For
the color off-diagonal elements, we obtain

k'
lim ln" —, G(k', g, )t') = 0,

l 02I - ~

(6.16)

B'(k', g, ')=N'ftdk t(k )kt((k k 'g'tt')''

N= dh. tA. , k &0

and study their asymptotic behavior for k2-~.
Here t(X') is an arbitrary test function of positive
support.

Let us first derive the asymptotic behavior for
the averaged diagonal elements of the gluon pro-
pagator. If, in Eq. (6.3), the variable k' is re-
placed by X'k' with k' & 0, we have a relation be-
tween distributions in X'. Setting w" = -k' and
averaging with a test function t(t(.'), we get

I dX't(X')X'D(A. 'k', g, )k')

k2
= -k 2R, ,g dX2t X

(6.19)

k 's'"& fk f-'ln-' —, , (6.17)
With
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and Eqs. (4.5) and (4.7), we find

D'(k', g, v') =D (k', g, v') for k'- ~ . (6.20)

We see that the averaged gluon propagator in the
Minkowski region has again the asymptotic form
(6.4), independent of the chosen test function.

In a similar way, the asymptotic behavior of
the other structure functions is obtained. As
examples, we quote the asymptotic forms for the
average values of A~', B~~, and B'~~:

/

p~~ = p ' Im B~& = F' g'& f y I' -2 ln-2

I k I pP —pP = m 'Im A"

' C,'~k~-~ln-'
fP f

t fg2f

Q2

px

(6.24)

S' C'~[k)-'In-'
Ip, l Ii') '

(6.21) for 0'-~.

k'
in- ', , O«-1,

Bt»=-C'~Iaaf-2 B'»=-C"~It' f-' a'-F r

In the remainder of this section we discuss the
a,symptotic behavior for the weight functions of
the Lehmann representations. We begin with the
case of the diagonal elements of the gluon pro-
paga, tor

m p = Ima = -0 ' ImR

(with indices aa, + aa suppressed). If p is an ordi-
nary function for large k', we set v" = -k' in (6.3)
and take the imaginary part

g2
wp(k', g, v')= lh 'R, , g)tm-R(-l, g),

'The asymptotic behavior of the off-diagonal ele-
ments of the weight functions is analogous to
Eqs. (6.16) and (6.17).

If the weight functions have distribution-type
singularities at arbitrarily large momenta, we
consider instead the a,symptotic behavior of the
average values:

p'(0', g, &') N' Idl t(1 )1=p(l '0 'g'&'), '0'',& 0,

(6.25)

with similar expressions for p, and p, . As an
example, we state the result for the diagonal
weight functions of the gluon propagator. We ob-
tain

p'(k', g, ~') = p (k', g, ~') for k' -~ (6.26)

From (4.12) and (4.13), the Taylor formula

Im B(-1,Q) = -my, Q'+ Q'k

follows with the remainder k vanishing for Q -0.
Hence

or

p(k', g, v') = p (k', g, w') for k' -~ (6.22)

lcm P =i,
pas

with the asymptotic form

-y~o i 80-~

(6.23)

At this point, it is important to note that the sign
of the asymptotic discontinuity p is determined
by the ratio yv, /P, . It is negative for y„,/P, &0.
Furthermore, we see from Eqs. (6.4), (6.5), and

(6.10) that the transverse gluon propagator is
supeyconveygent for y»/p, &0. We discuss the
implications of these results in the last section.

For the diagonal weight functions of the quark
propagator, we find

with the same asymptotic form (6.23).
From the boundedness properties we have de-

rived in this section, it follows immediately that
the structure functions of the propagators cannot
be entire functions for values of the coupling
constant in the interval 0&g&g„. In the presence
of mass gaps, all branch points move to infinity
at the infrared fixed point g„. Although the color-
off-diagonal propagators may well vanish, the
color-diagonal structure function cannot be identi-
cally zero for 0(g&.g as may be seen from
Eqs. (6.4) and (6.13). Hence the l.atter must have
singularities on the positive real 0' axis above
any given point; in pa, rticular, there must be a
singularity at infinity. It is sufficient to have one
or more branch lines drawn to infinity. From a
mathematical point of view, there is also the
possibility of an' infinite sequence of poles with
an accumulation point at k' =+ ~.24 However, even
for ghost states, one would expect that poles are
accompanied by branch points associated with the
appropriate multiparticle states, so that mero-
morphy at very large values of k' is excluded. It
is possible to give more general arguments for
this exclusion of pole accumulations, but we do not
want to pursue this point in the present paper. "
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VII. CONCLUSIONS

It may be helpful to have a summary of the as-
sumptions made for obtaining the various results
of the paper. We first list the general postulates.
'The existence of solutions to massless quantum
chromodynamics is assumed, uniquely para-
metrized by a coupling constant g and a normaliz-
ation mass ~. For small g these solutions should
be represented by the formal perturbation expan-
sion of Lagrangian field theory. Essential is the
restriction to models with asymptotic freedom,
i.e. , P, &0. The usual postulates of abstract
quantum field theory are assumed to hold, but we
allow for a state space with indefinite metric. '7 The
spectral conditions are only used in the general
sense that negative eigenvalues of P„P' and P,
are excluded. In particular, the existence of
nontrivial discrete eigenvalues of P,P" corres-
ponding to particle states is not required. Con-
sequently the postulate of asymptotic complete-
ness need not hold.

For some results additional information is used
concerning the properties of a state space K' with
positive-definite metric. K' should be a Lorentz-
and translational-invariant, linear subspace of the
full state space" which does not involve new dimen-
sional parameters in its construction. The pro-
pagators obtained by projecting the field operators
onto R' are assumed to approach their free-field
values in the weak-coupling limit g-0."

There are several interesting conclusions which
can be drawn from the analyticity and bounded-
ness properties of the propagators as obtained in
the previous sections. Let us first consider the
asymptotic behavior of the transverse gluon pro-
pagator D"(k', g). We have shown that it has an

unsubtracted Lehmann representation Eq. (5.1).
From Eqs. (6.4), (6.5), and (6.11), it is seen that
the propagator vanishes faster than (k') ' in all
directions of the complexk' plane provided y„./P o& 0.
Taking the limit of k2D"(k', g) in Eq. (5.1), for
example in the direction 0'- -~, we obtain the
superconvergence relation

dk'Im D"(k'+i0, g) = 0. (7.1)

Furthermore the asymptotic form of the dis-
continuity of D along the positive real 0' axis is
proportional to —y«/P„and it is negative for
y«/P, &0. Hence there must be a real point k'
= t(g) &0 above which ImD" (k', g) &0.

For the unprojected propagator, these properties
imply that the ghosts determine the absorptive
part for k'&t(g) if y«/P, &0. However, within the
framework of our assumptions, the same results
should be valid for the projected propagator, and
here they lead to contradictions since Ima"' ~ 0.

10 ~N( & 16 (7.3)

for the number of flavors (triplets). ' However,
it is important to remember that y« is gauge
dependent, and that all our results in this paper
have been obtained in the Landau gauge. We have
analyzed in detail the more complicated situation
for general covariant gauges, and we will report
on our results in a sequel to this paper, where we
will also discuss the flavor condition in greater
detail. Generally, we find that the results de-
scribed above are not restricted to the Landau
gauge.

In the case y«/P, &0, the gluon propagator
vanishes less fast than (k') ' at infinity, and hence
there are no difficulties. From the asymptotic
formulas for the gluon propagator, it is seen that
the structure of the theory becomes particularly
simple for the special value y«/P, = —1, which
corresponds to Nz= 12 in the SU(3) model or N&

=4N for SU(N), N~ 2. The special role of y«/P,
=-1 is also apparent in our more detailed studies
of the properties of projected propagators, which
will be reported elsewhere. "

There are no consistency problems arising from
our results for the quark propagator (at least in
the Landau gauge used here). From Eqs. (5.3),
(6.14), and (6.24), it is seen that we have a rela-
tion of the form

I dk'1m a»(k'+to, g) = k', (7.4)

with

b'=lim C~~ »g &0.
ka

(7.5)

The anomalous dimension of the Fermi fields is
given by y~(g') =yz,g'+ ' ', with the g' term
vanishing in the Landau gauge. The coefficient
y» depends upon the normalization conditions, in
contrast to the corresponding coefficient y« for
the gluon field.

We note that our assumptions, which lead to the
inequality (7.2), are connected with the short-
distance behavior of the theory. Because of
asymptotic freedom, the short-distance limit is
of direct physical relevance, and it should be
adequately described by the topologically trivial

Given the reasonable assumption' that the pro-
jected propagator approaches the free-field ex-
pression for g -+0 as described in Eqs. (3.37)
and (3.38), we find the consistency condition"

(7.2)

For the color gauge group SU(3), with all quarks
in the fundamental (triplet) representation, this
condition would correspond to the requirement
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sector of the theory. We do not expect, therefore,
that the existence of instantons, and associated
features of the theory, are important for our con-
clusions.

From a more physical point of view, the ap-
parent preference of the massless non-Abelian
gauge theory for models with a sufficient, but
limited number of flavors could be of importance
for the understanding of the particle spectrum. '
If verified, it may explain why nature presents
us with a certain number of quarks which are
rather similar to each other.

We have demonstrated in this paper the asymp-
totic vanishing of the structure functions for quark
and gluon propagators in all directions of the
complex k' plane. 'These bounds imply that the
structure functions cannot be entire unless they
are identically zero. The color off-diagonal pro-
pagators may, of course, vanish, but the color
diagonal functions cannot be identically zero for
values of the coupling constant in the interval

because the coefficients of the asymptotic ex-
pressions (6.5) and (6.14) approach nonvanishing
limits. Here g„&0 is the- first nonintegrable
singularity of P '(g').

For values of the coupling parameter g' in the
domain 0&g'&g„', the discontinuities p(k', g) of
color diagonal propagator functions do not vanish
identically for 0' larger than any given value. 'This
fact follows from relations like (6.23). Hence the
structure functions must have branch lines drawn
to infinity along the positive real k' axis, even in
the case of complete confinement. As we have
pointed out in Sec. VI, the- meromorphic alterna-
tive can be excluded.

Spontaneous symmetry breaking, for example,

via a dynamical Higgs mechanism, can lead to
mass gaps for quarks and possibly also for gluons.
These mass gaps result in g-dependent branch
points on the positive real 4' axis of the structure
functions. For the quark propagator, we get a
lowest branch point M'(g) )0. Generally, the
character of this branch point is gauge dependent,
but for the projected propagator we know that, in
the case of complete confinement, it should be
an integrable singularity as discussed above. Also
the projected gtuon propagator then has a positive,
lowest, integrable branch point m'(g) )0, pro-
vided there is also a mass gap for the gauge field.

'The g dependence of all these branch points is
given by the renormalization group. For g-+ 0,
we have an exponential approach like M'(g)

exp(1/P~2)-0, since P, &0, which shows that
the mass gaps are not visible in the formal ex-
pansion for g-+0 (perturbation expansion). If,
with increasing g, we reach the infrared limit
g„=Q (0, g) (independent of g), then the branch
points move to infinity, i.e. , M (g„)=~. g„ is
the first positive zero of P where P

' is noninte-
grable, or g„=~ if there is no such zero. It is
only in the limit g-g„ that the propagators ap-
proach entire functions, provided there is a mass
gap for g &g„.

In a later paper, we will use the yrojected pro-
pagators, together with the quark-gluon vertex
function, in order to give a definition of the effec-
tive coupling Q(k', g) for nonasymptotic values of
O'. This definition leads to a function Q'(g', g)
which satisfies an unsubtracted dispersion relation
jn Q2.
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