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The large-N limit of the two-dimensional U(N) (Wilson) lattice gauge theory is explicitly evaluated for all
fixed A =g?2N by steepest-descent methods. The A dependence is discussed and a third-order phase
transition, at A = 2, is discovered. The possible existence of such a weak- to strong-coupling third-order
phase transition in the large-N four-dimensional lattice gauge theory is suggested, and its meaning and

implications are discussed.

I. INTRODUCTION

One of the useful approaches to the study of
the large-scale structure of non-Abelian gauge
theories, and in particular quantum chromody-
namics (QCD), is via the lattice formulation in-
troduced by Wilson.! This approach is especially
useful if the lattice coupling is sufficiently large
so that one can employ the strong-coupling ex-
pansion. This expansion! provides, in an easily
calculable fashion, a simple picture of the large-
scale structure of QCD including the phenomenon
of confinement. Although this picture is reason-
able if, as we expect, infrared slavery drives the
effective coupling in QCD to large values at some
appropriate scale, in order to establish its con-
nection with the continuum theory one must con-
trol the behavior of the lattice theory for arbi-
trarily small lattice couplings. The issue of
whether QCD confines or not is equivalent, in
the lattice formulation of the theory, to whether
there exists a “phase transition” as one de-
creases the coupling (which plays the role of
temperature in the analogous statistical-mechanics
problem) from large to small values. The agb-
sence of a second-order phase transition would
establish that QCD is both asymptotically free
at short distances (weak coupling) and confining
at large distances (strong coupling).

Another approach to QCD has been to exploit
the only free “parameter” of a pure gauge theory,
namely the order N of the gauge group. As
shown by 't Hooft? there is a remarkable simplifi-
cation of the perturbative expansion of QCD in
the “large-N limit,” i.e., N~ for fixed x=g2N.
The resulting topological structure of the sur-
viving Feynman diagrams in the large-N limit—
namely that of planar surfaces in index space—
led ’t Hooft to suggest that in such a limit one
would recover a string model of hadrons. Re-
cently it has been argued that such a string model
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might emerge in the lattice formulation of QCD
either when one performs the large-N limit for
sufficiently large values of A,% or when the di-
mension of space-time is large enough.*

In this paper we shall solve for the behavior
of U(N) lattice gauge theories in two space-time
dimensions as N - for fixed A=g?N. The choice
of U(N) instead of SU(N) is irrelevant in the N
- limit. The choice of two dimensions is dic-
tated by our inability to solve the four-dimen-
sional theory. Two-dimensional gauge theories
are, of course, somewhat trivial. There are no
transverse degrees of freedom in two dimensions,
and the evaluation of most observables in the pure
lattice gauge theory can be reduced to finite-di-
mensional integrals. The two-dimensional theory
clearly confines for both weak and strong coup-
ling (the Coulomb potential is linear in two di-
mensions), and there is no possibility of a se-
cond-order phase transition. On the other hand,
the very simplicity of the theory allows one to
calculate many interesting observables (the
vacuum energy, the expectation value of a Wilson
loop operator) as explicit functions of A for N =,
What is perhaps surprising is that even in two
dimensions the dependence on A is highly non-
trivial —in fact, we find a third-order phase
transition for a finite value of .

It was shown by Brezin, Itzykson, Parisi, and
Zuber® that the functional integrals in the large-
N limit can be calculated by steepest-descent
methods. In this limit, a particular configuration
totally dominates the functional integral. In the
lattice gauge theory we find that the elementary
plaquette variables, which are unitary matrices
W, have a determined distribution of eigenvalues
ei® at the N =« saddle point. For weak coupling,
x=g?N, one would expect this distribution to be
peaked about @ =0, corresponding to W=1. We
find that the eigenvalues are not only peaked about
a =0, but restricted to lie within a finite domain:
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|a1 <2sin"'(3)1), for all A<2. As X increases,
this domain increases in size, and for A=2, e
can range over the whole unit circle. At this point
there occurs a phase transition, i.e., the ob-
servables of the theory are described by different
functions of A for A> 2 and for A <2, which are
not analytic continuations of each other. For
large X the distribution of eigenvalues becomes
increasingly uniform, corresponding, as A -,

to a totally random [with respect to the Haar mea-
sure on U(N )] unitary matrix.

The phase transition at A =2 turns out to be of
third order—the B function does not vanish (in
fact, is always negative) but has a kink at A=2,
and the derivative of the specific heat is discon-
tinuous at A =2. We speculate on the existence of
such a weak to strong third-order phase transi-
tion in the N =« four-dimensional theory, and
argue that ¢f a noninteracting string picture
emerges by interchanging the N - limit with .
the strong-coupling expansion, then a phase
transition must occur for x> 1. The existence
of such a phase transition has implications, as
will be discussed below, for the problem of in-
terpolating, even for finite N, between weak and
strong coupling.

In Sec. II we review the structure of two-di-
mensional U(N) lattice gauge theories. In Sec. III
we apply the method of steepest descent to eval-
uate explicitly the large-N limit of the theory, and
calculate as a function of A many physically in-
teresting observables. Finally, in Sec. IV, we
discuss some of the aspects of the third-order
phase transition and present some speculations
about four-dimensional QCD for large N.

II. SU(N) GAUGE THEORY IN TWO DIMENSIONS

Pure gauge theories in two space-time di-
mensions are essentially trivial. This is due to
the lack of “transverse” dimensions and the re-
sulting absence of physical gluons. The trivial
nature of two-dimensional gauge theories mani-
fests itself in the fact that one can reduce the
calculation of the relevant physical quantities,
i.e., the vacuum-to-vacuum amplitude, the
vacuum expectation value of the Wilson loop op-
erator, the B function, etc., to the evaluation of
simple integrals. Indeed, having solved the
gauge theory in a world consisting of but one
plaquette one has essentially solved the full two-
dimensional gauge theory.

Let us consider the lattice formulation of the
two-dimensional U(N) gauge theory, as formula-
ted originally by Wilson! The dynamical variables
are unitary matrices Uy 1, associated with links
on the lattice, where afi is a lattice site (1

-

) 3 i . 3
=nyi,+n,1,), 1 is one of the lattice vectors i, or
>

i,, and a is the lattice spacing. Uy i is a unitary
matrix in the fundamental, N-dimensional, rep-
resentation of U(N) that parallel transports a
matter field [in the N -dimgnsional representation

of U(N)] from site i to 1+1, and
(U3, =Uzz,.1= W3, D" (1)

mri,~i

The Wilson action is defined to be

S(U)EZ ;}ng‘(HU+H.c.) . 2)
7 P

where the sum runs over all plaquettes (squares)

~on the lattice and

IIv- Uz, 1,Un10,1,Usip 10011, -
P

Ground-state expectation values of physical ob-
servables, i.e., functions of the U’s, are given
by

W)= 3 [ PUlex[s@NO@), 3)

where Z is the vacuum-to-vacuum amplitude

Z= f [DU] exp[S(U)]

3,1, where dUs 1
is the Haar measure on the group U(N) which
satisfies

DU=D(UV)
=D(VU),

where V is an arbitrary unitary matrix, and
which we normalize so that | du; ;=1.

Some quantities of physical interest are the
“free energy” F, which is proportional to the
vacuum energy density E,

_FAN) 1

Ey= =5l Gz, 4)

and the measure is DU=1I; 1 dU;

where V =volume of the two-dimensional world,
and g?N plays the role of the temperature
(g°N=FT) and the expectation value of the Wilson
loop operator

WL(gZN)=A17 Tr[ILI U] ) (5)

where II; U is an ordered product of U’s on the
links belonging to a closed loop L. In particular,
for a rectangular loop of time extent Ta and spa-
tial extent Ra, W (g?N) is related to the interac-
tion energy €(R) of static sources separated by
distance Ra:

1 ..
E(R)=_—T7 ly.lm InW,, ¢, 5)(g°N) . ©®)
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The calculation of F or W, can be reduced to a
single dU integration by exploiting the gauge in-
variance of the theory, i.e., the invariance under

Uz 1~ VaUs 1V (7

for arbitrary unitary matrices V;. We then have
the option of making a gauge choice. A conven-
ient gauge is the one in which U,1,=1 for all i,
i.e., the A;=0 gauge. In this gauge

s) ——Z Tr(Us 1. UL

i, +H.c.).

iy nnoy

‘Z can then be easily evaluated by the change of
variables
Us3 1.=WalUs 3

mio.il 70,1

so that
z= [T (aw) éxp[Z S TE(0,+ WIJ]

2
=)V,
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where V is the “volume” of our world (with free
boundary conditions), V/a? is the number of
plaquettes, and

(g°,8)= L ],
z(g% N) f[dW]expLg2 Tr(W+W)J (8)

F/g2N=—‘%—1nz.

Similarly, the Wilson loop operator can be
written

W, (g2, N) == <TrII T,(,,,zu,u>
—-—<Tr 1] jI;[ “oml> ©)

where we have made the further gauge choice
(UO‘WI‘0 I). Since the action only depends on
Tr(W, + W), it is invariant under W,~ VW, V' for
each W, separately. Therefore, consider the in-
tegration over a particular W, appearing in Eq.(9),

) aW, exl(/g®) Tr W, « W) Tr@WB) = - [ av [ awexpl(1/2?) Tr (W, + WD) Tr(AVW,V'B)

where A and B represent the remaining products
of W’s. Using the fact that

1
_[dVVijV;Fﬁonéjk, (10)
it follows that Tr(AW,B) can be replaced by

(1/N) Tr(W,) Tr(BA). Iteration of this argument
then yields

W, (g2, N)=[w(g?, N)]*T, (11)

where w is the Wilson loop operator for a single
plaquette

w(g? N) =;—f dW%TrW exp[(1/g?) Tr(W + W")].
(12)
Correspondingly,

cR)= _:;mw(gz,zv) . (13)

Thus the two-dimensional gauge theory is re-
duced to a single integral, Eq. (8), which char-
acterizes the one-plaquette world. The resulting
physics contains no surprises. Since w(g? N)
=w*(g? N)< 1, it follows that the string tension
o=€(R)/Ra=-(1/a?)1nw(g?,N) is always positive
and one is in the confining phase for all values of
the coupling.

III. THE LARGE-N LIMIT

For any given N, the free energy F and the
Wilson loop operator w can be explicitly cal-
culated. In fact, Bars and Green?® have derived
an explicit expression for z (g%, N),

z(g% N)=detM,
M), ,=I,_,/g?), i,j=1,...,N

This follows by noting that the integrand in Eq.
(8) only depends on the eigenvalues o, i

=1, ,N, of W, and that W can be written as
W= TDT'r where D;;=0,,e? and T is unitary.
Furthermore, dW consthTHN da,8%(a,)
where

A% () —-II sin?

i<j

(A)j,k = exp[l(]ak)] .

(14)

=47%|deta|?,

o —ay
T2

(15)

Thus the evaluation of z reduces to the integral

2r
z2(g% N)= constf ) § CLRSICH)
0

N
x exp(z—zz: cosozi> , (16)
g

where the constant is chosen so that z(»,N)=1.
Expanding the determinant, one can evaluate all



the integrals in terms of modified Bessel func-
tions of the first kind and reexpress z as the
"~ above Hadamard determinant.

We are interested in the large-N limit, i.e.,
N-— = for fixed A=g®N. The above expression is
rather unwieldy for large N. We shall therefore
adapt the method employed by Brezin, Itzykson,
Parisi, and Zuber in their analysis of the large-
N anharmonic oscillator > In the large-N limit
the steepest-descent method can be employed,
and to leading order in 1/N we have

-E,(\) =lim }2’2—(1532#&

N-o

. 1 2 u . ai'-— aj l)
=lim —( = cosa, + In|sin
Now N? <g2 iz; i ,Z; 2
+const, 1)

where the eigenvalues @; are given by the sta-
tionarity condition

g—sinaz.:Z cot g"—_—ai-’ . (18)
P 2

Also, in the large-N limit these equations can be
replaced by their continuum version by intro-
ducing a nondecreasing function a(x), 0Sx<1
such that

o,=a(@/N), i=1,...,N, (19)

in which case

. Inz (g% N)
-E. (N)=1 Lo 9 7
o) Lim =5

2 1
=ff dx cosa {x)
0
1 1
+Pf dxf dyln
[\] 0
(20)

[the constant is adjusted so that E()=0], and
a(x)-apy)
2 ’

sin ﬂ—)——z——(—lﬂ + const

1
i—sina (x)=Pf dy cot (21)
)

where P refers to the principal part of the inte-
gral.

This equation can be solved by introducing,
following Brezin et al.,® the density of eigen-
values

pla)=dx/da=>0,

o 1
dapl@)=[ dx=1.
N CN)

Here we allow for the possibility that the eigen-
values lie in the region |a|<a, a ,S7. Equa-
tion (21) then becomes

(22)

a

2 X #ac
sina _Pf_ac B p@) cot(

;5 ) (23)
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For large A we expect that the eigenvalues of
W will be spread uniformly over the whole circle
and @, =7. In that case, Eq. (21) can easily be
solved by using

a-B
2

with the result that
pla)=(1/2m)[1+(@2/2) cosa]. (24)

This indeed is positive for all @ provided that
A= 2, and yields the unique solution of Eq. (23)
and Eq. (22) for A»>2.

For 1< 2 one must allow a_ to be less than 7.
In that case, to solve Eq. (23) define a function

Fz)
F(Z)Efmcdﬁ p@B) cot

=2 2 (sinna cosnB — cosna simB)

n=1

cot

zZ-8

(25)

which possesses the following properties:

(1) F(z2)=F(Z +2n).

(2) F(Z) is analytic for complex Z outside the
real intervals (-a +27N, @ +27N).

(3) F is real for Z real outside the intervals
(-a,+2Nm, a +2N7), and when these intervals
are approached

F(a iie)=i—sina Fi2mp@), (26)

since cotz(Z - B) is analytic in the Z plane ex-
cept for simple poles at-Z =8 + 2N,

(4) F(Z)~ 1 as |Z| - < in any direction ex-
cept along the real axis, and ImZ=Z0, as a con-
sequence of Eq. (22).

There exists a unique function which satisfies
all of these properties:

_2 . i g . 23 . 2a_c>l./z
F(Z)-)\ sina - +-cos 3 (sm 5 —sin’ 5 @m)
where

sinf(z @) =2\ (28)

The square root is defined in the (multiply) cut
a plane and chosen to be positive for a <a<2r
—a,. It then follows that F(Z) is periodic, since
when & ~ & + 27, both cosza and [sin®(3a)

- sin*(za )]*/2 change sign. The discontinuity of
F(Z) then determines the density of eigenvalues
to be

1/2
p(a)=n2—hcosg—<72\—— sin2;—> . (29)
We note that this solution only makes sense for |
A< 2, and for A=2 it equals (1/7) cos*@za)
=1/2m(1+ cosa) which coincides with our previous
solution derived for A>2.

To summarize, we note that the density of
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eigenvalues in the N— « limit is characterized
by two separate analytic functions, one appro-

. priate for large coupling (A >2) and one for small
coupling (A< 2):

dx
T
2 cosa(x .2a>1/2 AS 2
—_ =—~sin®—
by 2 ’ 1/2
" 2 2 IOL | <2 sin‘l(—;—->

A=2

1 2
517(1 +X-—COSOl), (30)
la f ST,

Thus there exists a phase transition (for N =)
at A =2 between weak and strong coupling. The
origin of the phase transition is clear. For very
large A the functional integral is dominated by
the term A%(a;) which causes the eigenvalues to
repel, the Wilson action can be neglected to first
approximation, and the density of eigenvalues is
uniform, p=1/2m. On the other hand, for very
small x the Wilson action dominates, and the
saddle point corresponds to @ =O(x ). In fact,
as A— O, the distribution of eigenvalues is given
by Wigner’s semicircle law,

1 a2 \1/2
p(a)zn_<1_§5\—> , la|svax, a=0. (31)

The phase transition occurs precisely at the point
at which the eigenvalues fill the whole unit circle.
We are now in a position to calculate E (1) for

all a:

2 +ac
-E,(\) =< dap(a) cosa
-a,

sin2 -8 l

+P f :dadﬁ p(@)p(8) In|sin>

1 /‘{ﬂ'
~om . da ln

The integration is easily performed, yielding

sing—l. (32)

1
=, A>2
FaZ AZ’
—EO(X);_)\NZ = (33)
PP

Here we see explicitly that the free energy is
given by two different functions of A, both analy-
tic except at A=0.

The expectation value of the Wilson loop op-
erator w(g? N) is easily constructed, since
w=—M2/2N?)8 Inz/8\ we have

w)=1limw(g?,N) = { U A=z2 (34)
N-w 1-)/4, rs2,

and the string tension o(g?, N) is given by

1
—-lnx, X=2

o(A)=limo(g? N)=0? (35)
L2t <2
&g e

It is also instructive to construct the 8 function
for the N== theory. We imagine varying the lat-
tice spacing and the value of the coupling A so as
to keep the string tension [or €(R)] fixed. This
determines the effective coupling A(e) so that
ola,\a)]=0, namely

2

ac A=

x(a)={e’ 2 (36)
41 -e7°), rs2,

The B function, which yields the variation with
length of the effective coupling,

231y, A= 2

=-B()= { @37)

4
2(4—)\)1n4_x, A< 2

dxa)
“dlna

is plotted in Fig. 1.

The fact that 8(2)# 0 means that the phase
transition is not of second order. A second-order
phase transition requires that the string tension
vanish at the critical coupling, and that the weak-
coupling phase is nonconfining. A naive extra-
polation of the strong-coupling result [Eq. (37)]
to A =1 would predict such a phase transition;
however, before this point, at A=2, a phase
transition of higher order occurs.

The order of the phase transition is easily seen
to be three, namely the free energy, its first and
second derivatives are all continuous but the
third derivative of F is discontinuous at A=2. In

T T T T
—
~
/
\J 1 1 i
) 2 3
\ pa
1 \\ / i
& /
44—00 \ /
2+ 2, \ / B
<//l/o \ e
B - _ -
[
ab % _
%
sk %C i _
<
%

1 1 1 1
i 2 3 4 A

FIG. 1. The [3‘ function as a function of A . The dashed
lines are the (invalid) extrapolation of the weak- and
strong-coupling results beyond the phase transition at
A=2.
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C/N?
.500 .

L L L I
| 2 3 4 A

FIG. 2. The specific heat per degree of freedom, C/
N?, as a function of A (temperature).

fact, if we regard the theory as a statistical-
mechanical system with temperature T =X the
internal energy E(A) per unit volume is given by

—E=-T?3F /8T = 2N*»(\) (38)
and is continuous at A=2. The specific heat
oE 1—2, A= 2
C= T 2NZ X X (39)
3, A2

is also continuous; however, the first derivative
of the specific heat clearly is discontinuous at
r=2 (see Fig. 2).

IV. REMARKS AND CONCLUSIONS

In this section we shall discuss some of the
interesting aspects of the large-N two-dimen-
sional gauge theory and attempt to draw some
conclusions that might be relevant to the behavior
of four-dimensional lattice gauge theories.

First we remark that the large-N limit of the
theory could have been derived, for large g°N
=) (actually A= 2), by interchange of the N— «
limit and the strong-coupling expansion. Consi-
der, for example, the evaluation of z(g%,N)
[Eq. (8)] and expand the integral in powers of
1/1 (for fixed N). Thus

z="Z: f [dW](—nl—l>z(g>2n(TrW)"(TrW*)". (40)

Now it is easy to prove, by expanding (TrW)" in
characters of UW) that

[ @wiewy(rewhr=nt, n<n. (41)
Therefore, if we interchange the large-N limit

with the strong-coupling expansion we would de-
rive

lim z(x,N) =i: ‘%’(’;i:_)" = exP[N?(Xlz)]

N+ n=o 1

(42)

and thus —E,(A\) =1/A%, in accord with our exact
result, Eq. (33) for A > 2.

The interchange of perturbative expansions with
the limit N— « is commonly employed to define

i
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the large-N limit. Thus in continuum QCD the
equivalence of the large-N limit and the sum of
planar graphs is established by interchanging the
N -« limit with the perturbative expansion in
powers of A. There is no known reason to sus-
pect this interchange. However, in the case of
the strong-coupling expansion the interchange is
highly suspicious. The terms in Eq. (40), for
n>N, that one is dropping are of order (N/A)%*
(1/N™) (¢ >N), and thus while suppressed, com-
pared to the leading terms, are not at all negli-
gible.

Our result shows that while it might be the
case that the N -« limit and the strong-coupling
expansion are interchangeable for sufficiently
large coupling (here A= 2), they will not be so
for small coupling. In fact, it is clear that Eq.
(42) could not be valid for all X, since it implies
that

1> W(A)=<Z—3}—TrW> - (43)
and therefore must fail for A< 1, A,>1 (in fact,
A,=2). Furthermore, the existence of our phase
transition follows once one derives Eq. (42) for
large coupling, since the resulting w(A), Eq. (43),
is analytic for all A>0 and yet cannot be the cor-
rect w(\) for A<1.

In the real world (four-dimensional QCD), life
is much more complicated. However, if one
could interchange the large-N limit with the
strong-coupling expansion one could derive (for
large ) a lattice version of the string model. As
shown by Bars and Green,® if one uses the “ap-
proximation”

[ du explV/3) Tr(UA + ATU")] = expl /3 TraAT,
(44)

which would follow from exchanging the limit
N— = with the expansion of Eq. (44) in powers of
1/X, then one can integrate the four-dimensional
U(V) gauge theory link by link. One then derives
the noninteracting lattice string model where the
expectation value of a Wilson loop operator is
given by

(rem)=2 (1),

Sr

(45)

where the sum runs over all planar surfaces S;
bounded by the loop L, and A(S;) is the area of
the surface.

As indicated above we have no reason to trust
Eq. (44), except for A~ , and indeed there are
corrections for a generic matrix A#1I for finite
A. Thus there is no solid reason to expect the
string model [Eq. (45)] to emerge in four dimen-
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sions as N -, If, however, one did prove that
Eq. (45) was correct and convergent for A=),

(it is reasonable to expect that 3= 6),4 then it
must be the case that there is a phase transition
at x=2x,>Max(xy,1). This follows by considering
a one-plaquette Wilson loop given by

A(Sq)
1>€%Trm>:g;<%) 2%, (46)
which is a sum of positive terms, is greater than
1/X, and becomes greater than one for some X
>2.

Therefore, we conclude that if the noninterac-
ting string model is valid on the lattice, as N
- for large A, a phase transition of the type dis-
cussed in this paper must occur. It is therefore
unlikely that the continuum theory in the large-N
limit is described by a noninteracting string mo-
del. This is hardly surprising. ’t Hooft’s analy-
sis of the large-N behavior of the continuum
theory?® only ensures planarity in index space and
not in real space-time. Furthermore, it is hard
to see how the soft behavior at large momentum
of the string model could possibly be consistent
with the pointlike interactions that hold in an
asymptotically free gauge theory.

Second we note that the phase transition dis-
cussed in this paper is quite different from the
second-order phase transitions whichone normally
searches for in lattice gauge theories. The lat-
ter are characterized by a discontinuity, or di-
vergence, in the specific heat, an infinite correla-
tion length at the critical coupling =temperature,
and a qualitative difference in the behavior of the
Wilson loop for large loops in the two phases.
For example, the naive extrapolation of the strong-
coupling result would predict such a phase transi-
tion at x=1, where 8(\) and the “string tension”
vanish, resulting in the lack of confinement for
A<1l. Our phase transition is of a different na-
ture. It arises in the “thermodynamic limit”

N — oo, which yields an infinite number of degrees
of freedom even in a finite volume. Its origin
resides in the fact that for small X the functional
integral is strongly peaked about plaquette ma-
trices close to the identity whereas for large A
the integral receives contributions from arbi-
trary, random, unitary matrices. For N=

a particular unitary matrix, up to similarity
transformations, dominates the integration, and
the above tendency is so enhanced that for x <2
the matrices that contribute are restricted to a
finite portion of the group manifold peaked about
W=1I. This region increases with increasing
and for x=2 fills the whole manifold. At this
point there occurs the phase transition to the
strong-coupling phase, where the distribution be-

comes increasingly uniform as A -, It is ap-
parent that the phase transition will be third or-
der; namely, the internal energy or the expecta-
tion value of the Wilson loop is clearly continuous
at A=2 and there is no reason at this point for the
string tension to vanish. Itispossible to find other
“order parameters” which illustrate in a more
dramatic fashion the nature of the phase transi-
tion at A=2. Consider, for example, the expecta-
tion value of a power of a single plaquette ma-
trix, w,=(1/N){Tr(W¥)). This variable is a mea-
sure of the randomness of the distribution of W’s.
For a uniform distribution all w, would vanish.

In the large-N limit, w, is easily calculated:

+Q

w,= k{r& ‘da coskap(a)
R =2 e
0, x=2
N Pi(1=N) , PL(1-%) 40
1-4 [Je - =i\t T ] <9.
@=2N e+ FReon 10 M2

Thus for A > 2 the distribution of W’s is as ran-
dom as could be—all w,>2=0 and w; =1/,
whereas for X <2, w,(A) #0. Note that all w, are
once differentiable, but their second derivatives
are discontinuous, at A =2.

We see no reason why such a third-order, weak-
to strong-coupling phase transition would not
occur in, the large-N limit of the four-dimensional
gauge theory. The occurrence of such a phase
transition would not mean that the large-N theory
does not confine. It would, however, imply that
the weak- and strong-coupling lattice theories are
not described by the same analytic functions, and
that one cannot deduce the properties of the con-
tinuum theory from the (N =) strong-coupling
theory.

Finally, we note that the limit N - «is crucial to the
existenceof the phase transition. Forfinite N, the
functions F,w, etc., areall analytic functions of A for
all0<xs e, Thusfor anyfinite N there will be no
phase transition. Clearly, as N - an infinite
number of zeros of z, which lie in the complex
A plane for finite N, accumulate to form a natural
boundary which presents the analytic continuation
from A>2 to A<2. For any finite N none of these
zeros (logarithmic singularities of the free energy)
will lie on the real axis and they will not be dense.

If there exists an analogous weak-to-strong
phase transition in the four-dimensional theory,
we again would expect it to occur only in the N
—oo limit. For finite N, therefore, one could
continue from strong to weak coupling (assuming
no other phase transitions). However, one would
expect to see a sign of N= phase transition for
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large enough N(3?) whose manifestation would
be a sharp transition at A =, from weak-coupling
to strong-coupling behavior. We note that pre-
cisely such a sharp transition is consistent with
the results of Wilson [numerical integration of

an SU(2) lattice gauge theory],® of Kogut, Pear-
son, and Shigemitsu’ [Padé of the SU(3) lattice
gauge theory strong-coupling expansion], and of
Callan, Dashen, and Gross® (semiclassical treat-
ment of the transition from weak to strong cou-
pling). Increased understanding of the possible

N == phase transition could be helpfui in probing

QCD in the region of transition from weak to strong
coupling.
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