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Curvature-free covariant derivatives are given for the O(N) and CP(N) supersymmetric nonlinear models

in two dimensions. The derivatives are used in a differential algorithm to explicitly construct sequences of
nonlocal conserved currents. Properties of these currents and their charges are briefly discussed.

I. INTRODUCTION

At present there are few techniques for confi-
dently extracting nonperturbative information from
q'uantum chromodynamics (QCD). An interesting
observation' ' which may lead to new techniques
is that four-dimensional Yang-Mills theory is in
many ways simulated by nonlinear o models in two
dimensions. For example, nonlinear models are
self-coupled systems which are asymptotically
free, ' possess instanton solutions, "and exhibit
dynamical mass generation. ' ' All three of these
properties are believed to be important charac-
teristics of four-dimensional gauge theories. In
addition, 0 models have a renormalization struc-
tm'e similar to that of Yang-Mills theories. "

More recently, Polyakov" has emphasized an in-
triguing parallelism between the functional differ-
ential equations" satisfied by appropriately de-
fined "string variables" for gauge theories and
the equations governing the conventional field
variables for two-dimensional 0 models. This
parallelism could well lead to the discovery of
new and useful computational approaches to Ya,ng-
Mills theory by analogy with the v models.

It has also been suggested that the coupling of
fermions to gauge fields may be simulated by su-
persymmetric extensions of 0 models. "" These
extensions retain many of the features of the ori-
ginal nonlinear theory, such as those examples
cited above. In this paper we discuss some inter-
esting nonlocal features' which are also retained
by supersymmetric c models (SSM's).

The dynamics of two-dimensional cr models are
remarkable in that they yield a new class of un-
conventional conservation laws, both local" and
nonlocal. ' For quantized o models these laws
have been exploited to explicitly construct 8 ma-
trices.""For higher-dimensional gauge theories
it has been conjectured that analogous nonlocal
conservation laws will provide crucial informa-
tion for understanding large-distance effects."

However, the dynamical basis of such nonlocal

conservation laws has not been completely clari-
fied, even within the context of two-dimensional
systems. To ensure the presence of nonlocal
charge sequences in these systems, several cri-
teria have been proposed involving linear eigen-
value systems, ' dual symmetries, ""and zero-
curvature conditions for the Noether currents. "'"
Most of these criteria do not directly accommo-
date those nontrivial enlargements of the 0 models
which are needed to produce supersymmetric
theories. Nonetheless, nonlocal charges for the
O(N)-invariant SSM have been found. ""

In this paper we clarify why these charges exist
for nonlinear supersymmetric models by presen-
ting an improved method for their construction.
Our new construction illustrates that some of the
previously offered criteria may be relaxed if only
a suitably defined, curvature-free, fundamental
vector functional can be found. Our discussion
also shows the compatibility of the two previous
methods used by us " to obtain the nonlocal
charges of the SSM.

In Sec. II we briefly review the O(N) SSM and
exhibit those algebraic properties of the model
which yield a fundamental curvature-free family
of currents, C„(a).

Section III is devoted to a straightforward re-
cursive derivation of nonlocal currents by an al-
gorithm closely related to that used for ordinary
0 models. ' A generating functional for the
nonlocal currents is obtained and then converted
into a charge-generating functional G(z). A sim-
ple explanation for the conservation of the charges
is given, and G(~) is related to the functional found
pr eviously using elegant contour techniques.
Our results are shown to reduce in a simple way
to describe either the plain 0. model or the Gross-
Neveu' sector of the theory.

We present in Sec. IV the details of another ex-
ample, the supersymmetric CP(N- I) model, and
we comment on the general applicability of our
approach. We conclude the paper in Sec. V with a
brief discussion of additional features of the non-
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local currents: their supersymmetry transfor-
mations, their charge algebra, and the constraints
they impose on the S matrix of the model. We
close by commenting on the possibility of explicitly
diagonalizing the SSM Hamiltonian.

II. PROPERTIES OF THE O(N) SUPERSYMMETRIC o MODEL

egAab (AP )acBcb (gf )acAcb + 2 (naC, b C,anb )

S P ~b L(AP )acBcb + & (+ )acAcb (qayb ~qb)

~""e A;"=- ~""A"A'"
v (2.6)

~llue Bab ~guB acB'cb lellu(AacBcb+ BacAcb)
v P v v 9 v

S = d'x —,'O„n'e" n'+ —,'i ' '+ -,' (2.1)

The O(N)-invariant SSM in two dimensions is a
hybridization of the plain nonlinear v model, "for-
mulated for real scalar fields n', and the Gross-
Neveu model, formulated for Majorana spinors

Constraints are imposed on both n' and (' to
ensure equal numbers of degrees of freedom in
the Bose and Fermi sectors of the model. The
properties of these two sectors are closely inter-
related through supersymmetry transformations.
Originally, the model was constructed using su-
perfields. "'" Such superfields are not used in
this paper for reasons of transparency and ac-
cessibility. However, in our discussion in Sec. V,
we provide those ingredients needed to see how
the nonlocal currents could be expressed in a su-
perfield framework.

The SSM is defined by the action

gag(0)ab p

In the following we suppress all O(N) indices.
In general, the construction of nonlocal currents

for a model requires examining integrability con-
ditions for certain vector functiona. ls. To this end
we define "covariant" derivatives involving arbi-
trary local- vector fields:

(2. I)

D~ =8~+ V~ . (2.8)

All cases of. interest for the O(N) SSM concern
vector fields which are linear combinations of

A„, B„,and their duals e"'A„, e"'B„. The vector
field is a "pure gauge, " i.e. ,

Note that on-shell, where C and 4 vanish, each
of these derivatives is a bilinear in A„and/or B„.
Furthermore, observe that the local O(N) currents
are conserved on-shell as a, simple consequence of
the first two relations in (2.6):

together with the constraints

nana 1 napa 0 (2.2)

V~ =U BpU,

if and only if the covariant derivative satisfies

(2.9)

C, a & na+na(S nbapnb)+itt'a(n'gab) =0,
if''+ ,'=y'(pgb) ——in'(nba(p~) = 0 .

(2.3)

The model is invariant under the supersymmetry
transf ormations

5n' = a(', 5g' = [-iPn' 'n+'((blab)]e, (2.4)

as 'well as under O(N) rotations.
For reasons to become apparent, we split the

Noether currents generating the O(N) rotations
into boson and fermion components,

~(o~gb A~5 + 2gPb
V

Our Lorentz index and Dirac matrix conventions
are summarized in the Appendix. All fields in the
action transform as vector representations of
O(N) with a = 1, . ~ . , N. The equations of motion
for the fields are

[D», D„"]=0. (2.10)

This is referred to as the "zero-curvature" con-
dition. The commutator in (2.10) may be written
as

[D„,D„]= B„V„—B„Vq + [V„, V, ]

= —e~u(e" D, V~) . (2.11)

The second of these identities is peculia. r to two
dimensions.

If V„ is a conserved pure gauge, a sequence of
nonlocal conserved currents can be simply con-
structed using the algorithm of Brezin et al." For
the plain 0 model, where B„=O, or for the Gross-
Neveu model, where A„=O, this algorithm can be
applied [cf. (2.6)]. For the SSM, however, A„sat-
isfies (2.10) but is not conserved, B„ is neither
conserved nor curvature-free, and the conserved
Noether currents J"' do not yield zero curvature.
Instead we have"

gab 2nag nb (2.5) uu(S +J&o&)J«'= —2e""9 Bfl p v 0 vr (2.12)
~is = i0 'Ygk ~

Derivatives of these components may be evaluated
with the help of the identities in the Appendix.
Using (2.2) and (2.3), we find

and so the algorithm of Brbzin et al. is not applic-
able to the SSM. Nevertheless, because the right-
hand side (RHS) of (2.12) is a curl of a local field,
it is still relatively straightforward" to construct
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the first nonlocal current. " Higher nonlocal char-
ges could possibly be generated through the
charge algebra (cf. Sec. V), but as we show in
the next section, the full nonlocal charge sequence
emerges from a much more elegant algorithm.

III. NONLOCAL CURRENTS AND CHARGES

We previously noted tha.t there is a curvature-
free covariant derivative in the SSM, D„". Unfor-
tunately, the currents involved, A„, are not con-
served, so the methods of Brbzin et gl."cannot
be used to construct nonlocal currents. However,
there is an alternate method for constructing non-
local charges, which was found by Polyakov for
the plain cr model. ' In this other method a one-
parameter family of curvature-free derivatives
is the sole ingredient. The currents involved in
this family need not be conserved. Motivated by
Polyakov's method, a curvature-free family of
derivatives was discovered for the SSM by investi-
gating arbitrary linear combinations of A.&, B„,
and their duals. " This new family of currents al-
lowed the construction of the nonlocal charges for
the SSM using techniques similar to Polyakov's.

In this section we use this same family of zero-
curvature covaria, nt derivatives in a differential
algorithm for directly constructing nonlocal cur-
rents. The method is reminiscent of that used by
Brdzin et gl. , but more general. The basic tech-
nique was introduced by Luscher and Pohlmeyer'
and further discussed by others" in analyses of
the plain v model.

A convenient parametrization of the curvature-
free current family for the SSM is given by

. —K 4z
C)) (K) =

2 KA)) +6))Q + 2 B)(
~e

This equation has a series solution obtained by
substituting

x(K;x, t) =P K"x'" "(x,t)
n=0

(3.5)

where

+2~ B"!:x'""+x'" "+ "] (3.6)

0 n& —1

x'"'(x t) =

d~J(n) y t n) 0

(3.T)

The two terms in Eq. (3.6) involving explicit series
of lower-degree potentials correspond to the
&&""s employed in the recursion relation of Ref.
22.

The currents J„'"")are manifestly conserved by
(3.6) and are nonlocal functions of currents of a
lower degree:

g(n+). ) g(0) (n) + ~ /2J (n)v An (n-1)) g(n-1)

(3.8)

For example, the first two nonlocal currents are
x

J„" ( &tx) =J'"&(x t) dy Jo('&(y, t)

To each order in I(, , the potentials X'"' on the left-
hand side (LHS) of Eq. (3.4) are then of higher de-
gree, n, than those on the RHS. Consequently, the
X'n"s may be constructed iteratively through a re-
cursion relation. Defining the current J„'"' as the
space-time curl of X' ', this recursion relation is

J(n+1) ~ gv (n+1)
~pv X

=(s +&(")X(")+2B(X(" "+X'" "+"']

2(1+K')
+ ~ 2 Ep Bv

~

1 —K
(3.1)

D„=8„+C„(K;x, t ) (3 2)

Using (2.6), we find these currents to be noncon-
served on-shell for all nontrivial If.. More impor-
tantly, defining

+~„„[Z(0&"(x,t) +2B"'(x, t)],
x

Z' (x, t)=ZP (x, t) j dye, ' (y, t)

+2&„B'(x,t) J" dy J('&(y, t)

(3.9)

D() X (K; x, t ) = 0 (3.3)

is satisfied, and the solution X(K) can be obtained.
It is convenient to write Eq. (3.3) in the equiva-

lent form

2
E))„s x(K) = K (8)) +A)))+ 2 (B)) +KG))nB) x(K),

(3.4)

and using (2.6) again, we find these covariant de-
rivatives all give zero curvature, (2.10). Thus the
integrability condition for the equation

+ e„g('&'(x, t) +2B„(x,t) .

( f'x
X(K;x, t)=Pe p! —xJl dy C, (K;y, t)! (3.10)

is a. solution satisfying the boundary condition
X(K;-~, t) =1. The exponential is path ordered
with y decreasing to the right. This solution per-

The reader may find it instructive to show direct-
ly these are conserved using Eq. (2.6)."

Formally we ma, y also solve Eq. (3.3) without
recourse to a I(. expansion by using ordered expo-
nentials:
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mits us to obtain a generating functional for the
nonlocal currents.

&
)
„8'y (i&; x, t ) = —e „„C"()&; x, t )

expanded around different values of K. For in-
stance, X = 1/(& leaves invariant the form of the co-
efficients of B„and ~„„B".Alternatively, p
=2Kj(1+K ) gives

&&P exp — dy Cl K;y, t

KnJ(n-1)
n=1

(3.11)

Integrating the timelike component of E&I. (3.1.1)
produces a generating functional for the nonlocal
charges:

G(~ t) = g ~"q&"-')(t)
n =1

dXC1 K)X) t

T'x

xI' exp — dy c, K;y, t . 3.12

Because of the zero-curvature condition, we may
simplify this expression by writing C„ in pure
gauge form,

slnIl~ =
2 ) cosh6—

2K 1+K
1 —K. 1 —K

(3.17)

so that

C„(8)= ——,
' [(cosh8 —1)A.„+sinh8c „Q"

+ (cosh28- 1)B„+sinh28e„„B"] .

4«' p' 2«(1+ «') p(1-")' 1-p"
and produces p-dependent coefficients of B„and
its dual of the same form as the original K-depen-
dent coefficients of A.„and its dual. This enables
us to recover the structure of the Gross-Neveu
theory through the restriction C„(p;A„=O, B„),
in complete analogy to the recovery of the plain v
model through C)( (&&;A)(, B)( =0). The singularities
in parameter space (I& =+ 1) may also be moved to
infinity by defining

C„((&;x,t) = U '(K xt)B~ U'(K xt), '

from which we obtain the relation

~exp — Cldy =U ' 5 Ua .
a

(3.13)

(3.14)

(3.18)

With this parametrization, the recovery of the
Gross-Neveu model is more transparent (28- 8).

IV. ANOTHER EXAMPLE: THE CP|N -1)MODEL
Thus (3.12) may be rewritten as

G(«; t ) = U '((&; ~, t ) U(«; —~, t ) —1

=P exp — dy Cl K;y, t -1. 3.15

Note that G()&; t)+1 is the inverse of the contour
integral l((&; t) defined in Ref. 23. Also, G()&; t)+ \

could be obtained directly from y((&;x=+~, t),
as is clear from (3.5) and (3.10).

Since the argument of every exponential vanishes
at (& = 0, the direct expansion of G()&; t) immediately
gives

G(.;t) =~ Jt dxZ&'&(x, t)

In this section we discuss a U(N)-invariant su-
persymmetric nonlinear model, the CP(N- 1) the-
ory." We emphasize those system properties
which are relevant to the construction of nonlocal
currents. Pleasingly enough, the structure of
this theory is in one-to-one correspondence with
the O(N) model of Sec. II. The algorithm in Sec.
III may thus be applied without modification to
obtain the nonlocal SU(N) currents.

The supersymmetric CP(N-1) theory is a com-
plex extension of the O(N) SSM, defined by the
action

d'& P&' *X)Ifz'+i '

+K dz J(o) & t +2B & t +-'f(P)1')' - W"~ )t')'-(0'r (t')(g'y" p)]]

+ 0 ~ ~

+8' (~'t) I dye' (y't))

(3.16)

with the constraints

z'*z'(= 1 ~&my& = 0 —P&~

(4 1)

(4.2)

as expected. We note in passing that G(I&; t) is
obviously t independent when A„, B„,and hence
C„vanish at x=~ ~, since U((&;a ~, t) is then a con-
stant.

The fundamental functional C„(«) in E&1. (3.1)
may be reparametrized in a variety of ways, or

Here z' is a complex scalar field transforming
as the fundamental representation (a = 1,... , N) of
SU(N). z* is the complex conjugate of g. The
field (t' is a Dirac (complex) spinor also transfor-
ming as the fundamental representation of SU(N).
The covariant derivative appearing in (4.1)-in-
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volves an auxiliary vector field bilinear in z: 5Cq =, e(1 —gy, )(s»E+ [C», E]), (5.2)

X)p = Bp z ~pz. ~ (4 3)

g(0)~b g~b + 2gpb

A"=2[z'*(u z') —(u z')*z'] (4 5)

iPru ~

These currents are all anti-Hermitian, A.&' = -A.&',

etc. , as compared to the real, antisymmetric cur-
rents of the O(N) model.

With the definitions in Eq. (4.5), one can use the
field equations (4.4) and the constraints (4.2) to
obtain exactly the same results (2.6) for the di-
vergences and curls of A.„and B„,with obvious
substitutions of the above SU(N) expressions for
the previous O(N) quantities. Thus the construc-
tion of a. full sequence of nonlocal currents for
the CP(N-1) model follows directly from the
analysis of Sec. III using the same definition for
the curvature-free currents (3.1). This sequence
of nonlocal currents has precisely the same form
for either the O(N) or CP(N-1) models, when

written in terms of the appropriate A&'s and B„'s.
We conjecture that this correspondence between

the O(N) and CP(N- 1) models can be generalized
to include other models, and that Eqs. (2.6) and

(3.1) are valid for essentially all two-dimensional
supersymmetric nonlinear theories. "

V. DISCUSSION

We now discuss some properties and implica-
tions of the nonlocal currents and their charges.
First, consider the effects of supersymmetry
transformations (2.4) on the sequences of poten-
tials, currents, and charges for the O(N) SSM.
The on-shell transform of Eq. (3.3) is

Dp&X=- &&pX ~ (5.1)

This equation is easily solved for 5y upon obser-
ving that

This model is locally invariant under phase chan-
ges of z and g, globally invariant under complex
supersymmetry, "and also chirally symmetric.
The field equations for z and g are

C' -=6' (u„z') + [(a)",.")+X)„z']z'+i (Pg z') y' = O,

(4.4)

+' -=Ail' +'[I"-0")—(tt"rsvp')r5 (P-r& 0')r']q'

+iz'y„(u"z')*y'= O.

These may be obtained using standard Lagrange
multiplier techniques to maintain (4.2).

As done for the O(N) SSM, we split the con-
served SU(N) Noether currents into boson and fer-
mion contributions:

where E"= —2y, (n'&I&' —g'n') and &y "& = eE. We

immediately obtain the solution

K
)+(1 ~r )EX (5.3)

= 5$(K) + ~) i ) —5)((K) —~
q i) ~ (5.4)

Consequently, if g and hence. E vanish at spatial
infinity, we have

5G=O, (5.5)

so all nonlocal charges commute with supersym-
metry.

We also observe that the potentials X'") and their
currents are components. of a system closed under
supersymmetry (i.e. , a superfield). This follows
from (5.2) and (5.3) upon noting that 6E is linear
in J'~&'& and tI&'y, g', while the transform of the latter
is linear in E.

Next we note the consistency of the invariance
(5.5) with the nonlocal charge algebra. The alge-
bra may be obtained using the Dirac brackets
given in Ref. 22. The Dirac bracket of Q&"& with
Q'"' yields Q'"'"& plus a polynomial of lower-de-
gree charges, generalizing previously noted re-
sults for the plain 0 model. ' Thus the algebra
bears an intriguing resemblance to the internal
symmetry sector of generalized Virasoro alge-
bras. " [Similarly, the generating functional of
Eq. (3.15) is reminiscent of vertex functions in
dual theory, but a precise connection has not been
established by us. ]

An interesting question for the supersymmetric
nonlinear models is whether the nonlocal currents
and their charges survive quantization, as do their
counterparts in the plain 0 models. " We have not
completed an investigation of this question. Nev-
ertheless, we expect that the charges do survive,
since only rather general assumptions about
short-distance expansions and the renormalization
properties of the theory are needed to show this.
In this regard, we note that the supersymmetric
models are asymptotically free, like the plain 0

model, and can be renormalized in a way compat-
ible with the supersymmetry. ""

Given their existence in the quantized theories,
the nonlocal charges would prohibit particle pro-
duction and would provide the "factorization"

We may use this result to obtain the supersymme-
try transformations of the nonlocal currents
through (3.11). This then gives the transform of
the charge-generating functional upon integration:

5G= Jt dx8, (5q)
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properties" needed to construct the SSM's S ma-
trix (e.g. , as proposed in Ref. 18).

We believe it is also interesting to ask whether,
because of the nonlocal currents or equivalently
the zero-curvature derivatives in (3.2), the SSM
Hamiltonian might be exactly diagonalizable Using

quantum inverse scattering techniques. " In par-
ticular, we conjecture that a supersymmetric ver-
sion of the Bethe ansatz" exists and that it will

play a role in this diagonalization. This subject
is under further study.
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r =r'r' (r )'=1. (A5)

The two-dimensional charge conjugation matrix
C has the properties

tzanspose ~ ~transposea.y C =-y C= —C

An explict realization of these matrices is

(A6)

0 -z
y =

'ii 0 i

0 i

.z 0.~

(A'7)

1 0 = C-'.
i0 -li

0 ~transPoseC (AS)

Thus, if g and X are both Majorana, the three
types of spinor bilinears have the following prop-
erties:

kx =+x4 Aux= xrp0 -A.x= xr,4- (A9)

Spinor trilinears may be rearranged using the
usual completeness properties of (l,r„,r,). We
have

By definition, Majorana spinors satisfy the con-
straint

APPENDIX

~ KX~jf V gKVg~jf gKP g~V

gK "~~V+gK&~V ~ +gKV~ ~& - 0

(Al)

(A2)

which are easily checked by choosing specific
components.

Dirac matrices are 2x2 in two dimensions and

satisfy the relations

r r =8 1+& r5~

r" =y,~""y„
where the pseudoscalar matrix is

(A3)

(A4)

We record here our conventions for two-dimen-
sional theories and give some useful Lorentz in-
dex and Dirac matrix identities.

The timelike metric is g pp = —g"= 1, and the
antisymmetric symbol is E = E'yp = E' = 1 From
these we obtain the bilinear identities

rpk(xr" 4)

.rA xr.4) -1 1 -1

4 (x4)

&& rpy(xr" 0)

.r,A(xr, y),

(A10)

These rearrangement relations immediately give
the identity

0'(P4') rA'(0'r, —4') = r& 0'(Pr"—0'), (A11)

where a sum over b=1, ... , N is understood. The
pseudoscalar term on the LHS of this equation
vanishes by (A9) if the g' are Majorana spinors.
The identify in (All) is useful in computing
e""s„B,for the O(N) and CP(N- 1) models, as dis-
cussed in Secs. II and IV of the text.
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