
PHYSICAL REVIE% 0 VOLUME 21, %UMBER 2 15 JAR UARY 1980
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We derive an infinite set of conserved nonlocal currents for two-dimensional chiral models with fields
assuming values in an arbitrary Lie group G. Explicit formulas are presented for the Minkowski metric, but
with slight changes described in the text the analogous results are valid for the Euclidean case as well. The
Poisson-bracket algebra of conserved charges is further analyzed for 6 = SU{2). We expose the geometric
structure of chiral models, and outline the relation between models described in this paper and chiral
theories corresponding to lower-dimensional homogeneous spaces.

I. INTRODUCTION

The rich geometric structure of nonlinear chiral
theories is mathematically well understood. In

two spacetime dimensions, at least, it leads in a
natural way to the linear equations associated with
equations of motion, thus leading to the conjecture
that all two-dimensional chiral models are solv-
able by means of the inverse-scattering method. '
By chiral theories we mean here model field theo-
ries with fields taking values in a Riemannian ho-
mogeneous space of a Lie group |", with dynamics
determined by the Lagrangian which is proportion-
al to the 6-invariant Riemannian metric. The pro-
totype for all such models is the principal chiral
field assuming values in the Lie group itself' with
the Lagrangian given by the bi-invariant metric on

the group: Any 0-homogeneous space can be real-
ized a,s a quotient G/H, where H is a subgroup of
G, and the relevant mathematical structures on 6
can be mapped into G/H.

The basic objects in chiral theories are currents
corresponding to the group G. Geometrically,
they describe the integrable 6 connection on the
field manifold G/H treated as an associated fiber
bundle with spacetime as a base space. More irn-
portantly they give rise to a on.e-parameter fam-
ily of integrable connections, and the associated
linear problem is then interpreted as equations for
a corresponding one-parameter family of parallel-
transport operators. The latter belong to (a rep-
resentation of) the Lie group G. Therefore, each
solution of the chiral theory, say P(x), determines
a one-parameter family of G-valued functions

g '"'(x), and it turns out that by means of the group
action on the field space we obtain a one-parame-
ter family of solutions to the field equations,
Q ~'(x) =g ~'(x) P(x). This has been shown for a
particular ease of n fields [corresponding to the
homogeneous space S~'=O(N)/O(N —l)] by Pohl-
meyer', below we prove this for principal chiral
fields, but for the reasons explained above we be-

lieve that this is a general statement.
The distinguishing feature of theories solvable

by the inverse-scattering method is the existence-
of an, infinite number of nontrivial conservation
laws. In this paper we relate them to the one-par-
ameter family of connections described above, and
we derive their explicit form (in the sense of the
recursion relation) for principal chiral theories.
The construction proceeds as follows.

Given a one-parameter family of solutions, we
can form the parametric family of currents out of
the known currents corresponding to the Noether-
type symmetries of the theory. In d =2 chiral
theories they are the already discussed internal-
symmetry currents and the conformal currents,
expressible in terms of the energy-momentum
tensor 0 „, We can then expand the currents in
(formal) power series in the parameter, thus pro-
ducing new conservation laws. In this paper we
show that power-series expansion of the internal-
symmetry currents does indeed give rise to an. in-
finite set of nonlocal conserved currents, while
the parameter dependence of the energy-momen-
tum tensor is trivial.

The plan of the paper is as follows. In Sec. II
we describe the model and we derive the recursion
relation for the coefficients of the formal power-
series expansion of the solution matirx of the as-
sociated linear problem. The calculations are
done in Minkowski spacetime but at the end of the
section we give the Euclidean version of the linear
problem leading directly to the Euclidean recur-
sion relations. This is used in Sec. III to con-
struct the infinite set of nonlocal conserved cur-
rents. Next we set up the canonical formalism to
analyze the algebra of conserved charges.

Although we have stressed the differential geo-
metric nature of the chiral theories in the intro-
duction above, because it provides a basis for gen-
eralizations, in the body of the paper we specialize
to principal chiral fields. The method also can be
applied to other homogeneous spaces described as
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submanifolds of G by imposing additional con-
straints on the fields (i.e. , using the reduction pro-
cedure of Ref. 1).

8= tr d x88 "g '. (2.1)

Correspondingly, the field equations written in the
matrix form read

8 g+8„g8 g g=0 (2.2)

together with the accompanying equation for g
The model (2.1) has a global G x G invariance,

corresponding to left and right translations of g:
(2.3a)

(2.2b)

withe(= G. Correspondingly, there exist conserved
currents —here written in a matrix form as ele-
ments of the Lie algebra of G

&I, = 8„gg

A.„=g '8,g.
(2.4a)

(2.4b)

The appealing feature of chiral theories —from
the point of view of geometric interpretation and
physical applications as well —is that they can be
entirely reformulated in terms of currents (2.4).
The system of equations satisfied by the currents

8„A~= 0,

8„A„-s+„—[A„, A„j=0
(2.5)

or the corresponding system for S„has the same
content as Eq. (2.2).

In recent papers ' Zakharov and Mikhailov have
found that Eqs. (2.5) can be treated as integrabili-
ty conditions of a one-parameter family of over-

II. PRINCIPAL CHIRAL FIELDS AND ASSOCIATED

LINEAR EQUATIONS

We shall deal with fields g(x', x') defined on the
two-dimensional spacetime, and assuming values
in a real Lie group G realized by matrices in some
fixed representation. Since we wish to discuss the
Euclidean and Minkowski cases simultaneously
whenever possible, we use the summation conven-
tion throughout. In physical applications a restric-
tion on the choice of G or a representation thereof
is usually made to guarantee the reality and the
existence of a lower bound for Euclidean action or
energy, respectively. Our procedure, however,
is general, and deliberately we do not choose any
particular. example before discussing the canoni-
cal formalism, when independent variables must
be specified. Our Minkowski metric is g«= -g» = 1,
and t.pg p = 1. The dynamics is specified by the
action integral

determined systems of linear' partial differential
equations. They restrict the discussion to the
Minkowskian case, using the light-cone coordin-
ates; we will treat both Minkowskian and Euclid-
ean cases, using the Cartesian coordinates. We
will treat the Minkowskian case in detail, and the
corresponding Euchdean formulas will be pre-
sented at the end of this section. We find that the
associated linear problem can be written as (in
matrix notation)

s„4 = (1-x') (A„-~~ A') 4. (2.6)

For real values of X the matrix@ is an element
of G. Following the reasoning outlined in the In-
troduction, we would like to use it to construct a
one-parameter family of solutions with the group
action defined by (2.3). It turns out, however,
that one cannot generate new solutions with the
help of 4'(A) only, and one should take into account
also another linear problem, corresponding to the
right group action:

(1 —X') '(A, —Xe„Q")4'. (2.7)

= -(1 —x') '4 '(x'A„—2ze~" +A, )4, (2.9)

which will be treated as a generating function for
the infinite number of conservation laws associ-
ated with the linear problem (2.6). All we need to
know is the X dependence of C, and now we shall
proceed to determine it in the sense of a formal
expansion of% in a power series in X at X =0. We
set

(2.10)

Substitution of (2.10) into (2.6) yields the differen-
tial recursion relation, immediately signaling that
the coefficient matrices @„will be represented
nonlocally in terms of g(&).

Explicitly, we get

(s, -A„)+,=0,

(8„-A„)4,= -e„g"4, ,

(s„-A„)@„=s„4„~—e„Q" „4„n~ 2.

(2.11)

Recalling now that the full symmetry group of the
model (2.2) is a direct product G x G, one finds af-
ter a straightforward calculation that for any solu-
tion g(x), the quantity

g"'= e(X) 'g4(X) (2 6)

satisfies field equation (2.2) for any real A..
Now the parametrized solutions g"' can be sub-

stituted into the expression for the currents (2.4).
We get then a parametric family of conserved cur-
rents

g~~- 8 Q ~++ Q j+ +++ &g8 ++ jg~+



408 A. T. OGIELSKI 21

These expressions can be simplified if one intro-
duces matrices y„by

trices ((()„. Further simplification is obtained by
substitution p„=e„g ', and finally we get

~.=gx. , (2.12) s„e„=s,e„, e„~„+e„,~„~". (2. 16)

for which relations (2.10) transform into

~,xo= o

s.xi = -&.P"xo

B„x„=(6, +A, )x„~—&,Q"x„„n)2.

(2. ia)

1

X,(x) = dsA, (x',s)
« Ie

1«
+ ds, ds, e(s, —s, )A, (x', s, )A, (x', s, )

«oo

i.e. ,

«'

x, (x) = ds A„(x', s)

These equations are integrable, and the integra-
bility conditions for the equation for y„are given
by the field equations (2.5) and the preceding equa-
tions for y~, k=n —1, n —2, .. . , 0. The solutions
are given in terms of n-fold line integrals, and
are path-independent. We can normalize the ma-
triz+ to be set equal to unity at x'= -~ so that
y0=I, and we evaluate the line integrals over
straight lines parallel to the x' axis extending
from -~ tothe point x= (x', x'). For n =1, 2, 3
we have

«'
x, (x) = dsA, (x', s),

These relations can be integrated similarly as
above.

If the field matrix g is in a unitary representa-
tion, there is a simple relation between the co-
efficients of expansions (2.10) and (2.15): 8„=x~,
and one need not solve the recursion relations
(2. 16) separately.

Now let us turn to the Euclidean case. To ac-
count for the sign changes in the field equations,
we have to replace the linear equations (2.6) by

8„4 = (1+ I') '(A, + A.&,g„)4',
j..e. ,

8, 4d = (1+ x') '(A, + xA„)4',

8, )ld = (1+x') '(A, —LA ) fd.

(2.17)

Wjth analogous sign changes in (2.7), one can fol-
low the same procedure to derive Euclidean coun-
terparts of formulas (2.9)—(2.14) without much

difficulty.

III. CONSERVATION LAWS

With the expansions (2.10) and (2.15) we can pro-
ceed to the corresponding expansion of the con-
served current (2.9) in powers of X. The factor
(1 —X') plays no role in the continuity equation,
hence we omit it, and the generating function for
the infinite set of conservation laws is rewritten

«1

dS,dS2P A0 X', S1 +0 ~
& S2 2.14

2f
gu) = e(X) (A, —2&~,Q'+ X'A„)4(X). (3.1)

and

«1

X,(x) f (x"d, xx)d
«co

«'
+ +S1GS2P 1 X, g Q0 X

Now we make the formal power-series expansion

(3.2)

y (o )

@Q ) ~ yn@(n)

and inserting into (3.1) the expansion of g(X) found
in Sec. II and collecting the terms at the same
power of X we obtain

1
1

x&
—dx, dxddx, p, (x', x, )d, (x', x, )d, (x', x,)I«oo

4 ',"= A„X,+ 8,A, —2c„g",
n 2

„x.~-)

(3.3)

e '(x) = gx "p„
n=0

into the differential equation satisfied by 4 ' we
obtain the recursion formula for coefficient ma-

(2. 15)

The P ordering here refers to the spatial varia-
bles.

We also need the coefficients of the power-ser-
ies expansion of 4' ' [cf. Eq. (3.1) below]. Substi-
tuting

n-1

kgv Xn-1-0 '

=0

If the field g is in a unitary representation the ex-
plicit form of the first two currents is

J'."= [A. xi1- 2&.P"
2~„„[A",x, ] (3.4)

+A, xo+ xA, + xiA„xi.
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The first nontrivial conservation law is a continu-
um limit of the corresponding equation for a lat-
tice chiral theory which was stated in Ref. 4.

Another set of conserved Noether currents in
this theory is constructed with the energy-momen-
tum tensor

8„„=trAQ„- ', g„—,trA A (3.5)

However, the method described above does not
produce any new conservation laws here because
of the trace: Upon insertion of (2.9) into (3.5) the
term (1 —X') ' factorizes, and the remainder is a
fourth-order polynomial in X with coefficients pro-
portional to the energy-momentum tensor itself.

In order to analyze the Poisson-bracket (Pb) al-
gebra of the charges corresponding to conserved
currents (3.3), one must first solve the constraint
gg =I by introducing group parameters as inde-
pendent variables. For instance, taking G = SU(2)
and using Euler's angles as independent variables,
the unconstrained form of Lagrangian (2. 1) is

2=-', (&,o'"+ P„P"+y„y")+o.'„P'cos2y. (3.6)

Then one can verify that Poisson brackets of time
and space components of A, and A, give the usual
SU(N) xSU(N) chiral current algebra. This is suf-
ficient to calculate the Pb s of the nonlocal cur-
rents (3.3). The calculations are tedious, and
care must be taken of the boundary terms. Using
the reasoning similar to that of t,useher and Pohl. —

meyer' we find that
(i) the multiplet of charges Q~' corresponding to

the matrix current 8 '"' of Eq. (3.3) transforms un-
der the adjoint representation of the global sym-
metry group, and

(ii) (Q',"', Q '~'} is expressed by Q',", l ~n+m+ 1.

IV. FINAL REMARKS

We have shown that the infinite set of conserved
nonloeal currents in two-dimensional. chiral mod-
els is essentially generated by a one-parameter
transformation group (2.8) of the solutions of
field equations. This transformation is in turn de-
termined by the parametric family of associated
linear problems. The conserved charges Q',"' can
be deduced directly from the linear equations (Lu-
scher and Pohlmeyer'); however, the currents are
more fundamental objects, and only currents have
meaning in the Euclidean formulation.

Now let us turn to chiral theories defined on ho-
mogeneous spaces different from the group G it-
self. They can be described as submanifolds of G

by imposing additional constraints, ' and corres-
pondence with the usual description is achieved by
using explicit parametrization of this submanifold.

However, if we keep the matrix notation, then the
whole procedure of finding the conservation laws
is virtually unchanged. For instance, the theory
of unit vector field q(x) = (q„... , q„)(Ref. 3) corres-
ponding to the homogeneous space O(N) jO(N- 1)
= S" ' can be east in the form (2.1) by takinggc O(N)
and imposing the additional constraint g'=I. Then
g can be represented as g=I —2P, with P a projec-
tion operator. ' Requiring the projection to be one-
dimensional, g can be parametrized as g,-~= 6,~—2V~Q'~. It is easy to see then that the matrix cur-
rents (2.4b) reduce to the corresponding formula
for the q field, giving the O(N) currents J',"
=2q'B,q'. It follows that in this case the nonlocal
charges obtained from the currents of form (3.3)
are directly related to those obtained straight from
the linear problem. '

In this paper we have concentrated on particular
nonlocal differential conservation laws simply re-
lated to the associated linear problems. This
choice is not unique, and one can find different sys-
tems of conservation laws still before expressing
the theory in terms of action-angle variables,
which may, be difficult in constrained systems The
other method of construction of conservation laws
is based on the Backlund transformation, and has
been applied to many systems [see, e.g. ,

' the non-
linear O(N) o model has been treated in this way in
Ref. 3J. The Backlund transformation is rather
trivial from the point of view of the linear equa-
tions of the inverse-scattering method and corres-
ponds to a simple change of scattering data. ' The
.Backlund transformations leading to soliton solu-
tions are characterized by the addition of one eig-
envalue in. the inverse-scattering data.

The relevant Backlund transformation for the
principal chiral field theory (2.2) can be easily ex-
tracted from the results of Zakharov and Mikhai-
lov." These authors reformulate the problem of
finding the soliton solutions for systems (2.2) from
the inverse-scattering equations as a particular
version of the Biemann-Hilbert problem for matri-
ces on the complex X plane, when the spacetime
variables are treated as deformation parameters.
The addition of one eigenvalue in the inverse-scat-
tering method is replaced here by changing the
number of zeros of the Riemann-Hilbert problem
by one. The two different solutions of Eqs. (2.2)
are then related by

(4.1)

where P is a Hermitian projection operator satis-
fyin. g an integrable system of first-order differen-
tial equations, which allows us to express P in
terms of the solutions of the linear equations (2.6)
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with coefficients corresponding to the "old" solu-
tion g. Equation (3.1) is nothing but an integrated
Backlund transformation and its diff erentiation
gives a system of first-order equations. Then it
can be analyzed in a way almost identical to that
used by Pohlmeyer. ' It suffices to note that our
matrix%'~' corresponds toR'"' of Ref. 3, and (2.6) can
be brought to this form using the above-described
relation between currents and the substitution
&= (&+ r)/(& —~).
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