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, We develop here inverse scattering techniques to compute functional integrals. The usual functional
integration variables are taken as "potentials" of an auxiliary linear problem. This linear differential

problem defines the new integration variables through its scattering data and bound states. The functional
integral becomes an infinite sum over the number of bound states and a continuous integral over all

scattering variables. The integration bounds on these new integration variables are found. The functional
measure in the new variables (scattering data and bound states) is found semiclassically in general and more
complete results are given for specific systems. We apply this approach to the X-component anharmonic
oscillator. By computing the imaginary-time path integral, an analytic expression is found for the ground-
state energy, This expression accurately exhibits some of the known properties of the ground state. In
particular, the three-sheeted structure in the coupling-constant plane (g) and the large-order behavior in the
X ' expansion are well reproduced by our formula. We compute from it the discontinuity across the cut on
the negative g axis, finding the exact leading behavior for g ~0 and arbitrary ¹ We also obtain the power
series in g of corrections to this leading behavior for large ¹

I. INIODUCTION

Since the discovery by Gardner, Greene, Krus-
kal, and Miura' of the inverse scattering method,
important work has been done in two-dimensional
classical fields in connection with it. ' Within this
approach Faddeev, Zajarov, and others have found
angle-action variables for several field models. ' '
A natural way to extend this method to quantum
field theory appears to take the canonical variables
that completely solve the classical theory as inte-
gration variables in the functional-integraL ap-
proach. In this way, one can hope to compute
functional integrals other than Gaussian integrals.
However, little has been done in this direction.

Inverse scattering techniques have been used to
find stationary points of functional integrals in
several problems. " Recently Bergknoff and
Thacker, "' Faddeev, Sklianin, and Tajtadyan, "
and Honerkamp et al." in a series of beautiful
papers find eigenvalues and eigenstates of the sine-
.Gordon-massive-Thirring model and of the non-
linear Schrodinger equation by diagonalizing a
complete set of operators. They also compute the
8 matrix. , In these works, inverse scattering
techniques are used whether implicitly through the
Bethe ansatz' or explicitly'~" in an operational
approach.

In this paper we deal with the problem of com-
puting functional integrals by integrating over
suitable scattering variables (SV). Two main
difficulties arise in this problem: (i) What are the
integration bounds for the SV? (ii) What is the
functional measure iri SV?

In this paper, problem (i) is essentially solved.

In what concerns (ii), ' we have general expressions
for the mea, sure in the semiclassical regime and
we have more complete results for specific cases
(the N-component anharmonic oscillator and the
quantum pendulum).

%e consider a, functional integral like

r D&( )&-& L'o &. )]/ll (1.1)

New variables (SV) are defined in terms of the
scattering data and eigenvalues of an auxiliary
linear problem where v plays the role of a potential.
Of course, these new variables are useful only if
S[v] completely separates when expressed in terms
of them.

Moreover, Gelfand-Levitan-type equations' tell
us what are the independent magnitude. s that we
should take as SV and over what we should then
integrate. Typically, the SV consist of the eigen-
values of the auxiliary linear problem plus the
normalization constants of their respective wave
functions and the modulus and pha, se of the re-
flection coefficient as a function of the wave num-
ber.

It is, in principle, hard to compute the functional
Jacobian associated with the change from t/(. ) to
SV. However, in several cases we can do better
by noting that the transition from the original field
variables to SV can be recast as a canonical trans-
formation. ' ' Hence, the Jacobian of this trans-
formation is rigorously equal to one at the classi-
cal level.

In this paper we sha1.1 consider quantum-me-
chanical problems, i.e., u(x) in (1.1) depends only
on one continuous variable. It is also possible to
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use SV in two-dimensional field theories. In this
case, the SV will have an additional dependence on
time.

The integration bounds in SV turn out to be as
follows (Sec. II). The path integral becomes a
discrete sum over the number N~ of bound states
of the auxiliary linear system (0 ~Nz&~) because
this number is arbitrary for a generic shape v(x).
[The number of eigenvalues Na plays the role of a
"topological. index" labeling the field configurations
v(x). ] For each Ns one must integrate over all
values of the SV compatible with the boundary
conditions on v(x). For example, each bound-
state eigenvalue varies from zero up to + ~ if
v(+~) =0. The phase of the reflection coefficient
goes in this ease from 0 to 2z and its modulus
f rom 0 to 1, and so on. The normalization constants
of wave functions can vary in principle from zero
to infinity. A closer analysis shows that this in-
finite variation is proportional to the infinite
length of the x axis, the proportionality coefficient
being calculable [Eq. (2.13)]. In this way, "volume
factors" appear in the integration over SV.

As is well known, functional integrals can be
defined as the continuous limit of a multiple inte-
gral. on a lattice. " 'That is, an integral associat-
ed with each point of a discrete lattice that re-
places the space-time or the Euclidean-space
continuum. 'These integrations should be per-
formed before letting the lattice spacing approach
zero. So, rigorously speaking, one should intro-
duce SV for a discretized system, only taking the
continuum limit after integration. In other words,
one is not allowed to use the value one of the
Jacobia, n. Classically, the Jacobian is equal to
one, but quantum mechanically one can consider
that it fluctuates around its cia,ssical value. In
the semiclassical regime (A-0), the functional
integral is dominated by the factor e +; the
Jacobian, being of order I', we ean approximate
by some constant. In this approximation, the
evaluation of the functional integral reduces to a
finite number of simple integrals. In this paper
we do slightly better by assuming that the Jacobian
is nonconstant, but factorizable when expressed in
SV. Therefore, we can take into account some
quantum effects. A number of nontrivial checks
show that the formulas obtained in this way are
correct with order estimates for their validity.

We deal in this paper with the N-component
anharmonic oscillator. Its action, for imaginary
time x, reads

(1.2)

where Q = (P„.. . , P„).
By introducing a I agrange multiplier n(x) con-

jugate to P', the generating functional for this
system ean be rewritten as"

d2 g 1 /2
D n exp ——log det. -=---;-+ 1+4i—

2 dh' N

dion g' . ]3
We recognize in it the Fredholm determinant of

the linear Schrodinger operator. This already
suggested the application of SV to the problem of
large orders in the N ' expansion. ' Here we use
integration over these SV to compute the ground-
state energy of this O(N)-symmetric anharmonic
oscillator. The final result reads (see Secs. II,
III, and IV)

Eg (N, g) = [I+—z (g)]'~' — + C„(g)
8g g

RS~ gS '
x exp ————

3 2

(1.4)

Here, z(g) [Eq. (3.7)] is related to the constant
stationary point of the path integral (1.3) through
Eq. (3.5). The simple integral over S in Eq. (1.4)
comes from the integration over the bound-state
eigenvalues of the auxiliary Schrodinger equation.
The factors of order N andy in the S integrand
has been adjusted by using the large orders in
N ' of EG(N, g).'" C„(g) stands for the contri-
bution of the scattering" part of SV (essentially,
the reflection coefficient). It is of order N' for
large N and it does not contribute, at least for
leading behavior, to the large orders of the N'
expansion.

Several results follow from Eq. (1.4). First, we
find the correct analytic structure for E~(N, g) as
a function of g. That is a. three-sheeted niemann
surface with cuts from g=0 tog=~ (see Sec. IV
and Figs. 1 and 2). Second, for g-~ and fixed N,
we get E~-g'~' as it should be.

For large N and fixed@ the dominant term (of
order N") is the correct one in Eq. (1.4). The next
term (of order N') may come from C„(g) because
the integral over S is of order N ' for large N.

'The better results that we have extracted from
Eq. (1.4) concern the discontinuity of Ec(N, g)
across its cut in the g plane. We find for small
negative g-=-h and fixed N (see Sec. V)
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)md (N-,0+ (0)=(—) 1+2). (N)(—)

1 —D(S)+0(—,), (1.7)

we find that the correct T, (N) (Befs. 16, 19) is re-
produced if D(1) =—", [see Eqs. (5.15) and (5.16)].
By using this value we obtain as output the coeffi-
cients of N' and Nd in 2', (N) and T, (N), respective-
ly, in agreement with their numerical values ob-
tained in Ref. 18.

Inverse scattering techniques can also be applied
to the quantum pendulum and to the anharmonic
oscillator for A = 1 and N = 2. In the first case,
the appropriate CSV are those associated with the
sine-Gordon model. 4 In the second case, the CSV
of the nonlinear Schrodinger equation' can be used
to compute the functional integral without appealing
to the o. representation (1.3). We obtain a simple
expression for the ground state of the simple
pendulum (Mathieu's differential equation). It
correctly reproduces the tunneling contributions
(nonanalytic in h) for h-0, and also the large or-
ders of perturbation theory. "

Future progress may arise from a more careful
treatment of the space discretization. In parti-
cular, it will be very interesting to discretize in
such a way that the complete separability of the
Euclidean action continues to hold on the lattice.
The present paper is a first step in this line.
Work in this direction is in progress.

II. INTEGRATION. MEASURE AND INTEGRATION
BOUNDS FOR SCATTERING VARIABLES

I et us consider a path integral over a single
functional variable v(x) like

fjt dv(x)e-s(:v(. ))/h
~ id' (2 1)

(27) ' '&h)0. (1 5)

The leading factor (in front of the brackets) is
exact. ' ' Moreover, we have computed the
coefficients Tx(N) for large N and arbitrary K.
We obtain that the TE(N) are polynomials in N of
degree 2Kwith rational coefficients. This is pre-
cisely what Zinn-Justin recently found by
numerical computation. " Explicitly, we get

~) (-1) (()x,x 41K —104 2K 1
Zt '

I 49
(1.6)

his is in exact agreement with the available
numerical values (1 &K & 4)."

Finally, by assuming that the last factor on the
S integrand in Eq. (1.4) is of the form

—d, +v(x) g(x;k)=k'((x;k).

he scattering variables in this case are"

(2.2)

SV = fr (k), k (=8 '; z„C„ I = 1, . . . , Ns (Na ~ 0)) .
(2.3)

Here, r(k) stands for the reflection coefficient,
-~,' is the eigenvalue of the lth bound state, and

C, is the corresponding normalization coefficient
of the wave function. N~ stands for the total. num-
ber of bound states. That is, we define the lth
bound-state wave function such that

g, (x) ~ e")", (2.4)

Then,

d~ , ~ '
~

~ OO

One can consider directly the SV as new inte-
gration variables because they are in one-to-one
correspondence with v(x) under some regularity
hypothesis. " Then, the corresponding Jacobian
should be computed. However, one can do better
by noting that the change from, v(x) to SV given
by Eq. (2.3) can be recast as a canonical trans-
formation. This is shown in Ref. 3, where the
canonically conjugated variables

v(x), v(x)= f v(v)dv
~ OO

are considered together with the associated
Poisson bracket

(2.5)

(x, l))= Jdx 0 d- (0 )
—(v —0) (0 0)

We can trivially introduce the variable 7((x) by
rewriting our functional fntegral (2.1) as

X 1
dv(x)dv(x)& v(x) — v(y)dy e ""'

x ~ 00

s(y) 2

These kind of integrals appear in quantum
mechanics, v(x) being the particle position for an

imaginary time x. Our aim is to solve it by using
a new set of integration variables that completely .

separates S[v(.)]. In that case, the functional in-
tegral will essentially factorize into an infinite
product of simple integrals.

Such types of variables can be found in some
cases through an auxiliary linear problem where
v(x) plays the role of a potential. They are typi-
cally the scattering data and the bound states of
this linear problem.

To begin with, we consider as auxiliary linear
problem, the Schrodinger equation
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Then, we change from the canonical pair (v, v)
to the set defined by Faddeev and Zajarov'

q, = 2 In[ic,E(i~,)],

positive value and the reflection coefficient r(k)
any complex value within the unit circle. Then,
from Eq. (2.8) it follows that

(2 8)
P (k) = ——in[1 —

~
~(k)

~

'1, Q (k) = »gb (k)E(k)]
0 ~P~&+~, j = 1, . . . , NB

0-P(k)&+~, 0~Q(k)&2m.
(2.i2)

I.Q(k), P(k')]= &(k -k'), (q„p,j=6„, (2.9)

all other Poisson brackets vanishing. Then, the
Jacobian of the transformation

[m(x), v(x); xc R]-CSV-=[P(k),P~, Q(k), q~, k cR',
1 &j ~1Vsptis c X] (2. 10)

has unit value. Here CSV stands for "canonical
scattering variables. " 'The Jacobian is equal to
one only for v(x) sufficiently smooth which is not
necessarily the case for the integration variable
in a functional integral. Consequently, one should
expect that quantum fluctuations will modify the
classical unit value of the Jacobian associated to
(2.10).

This problem can be overcome by introducing an
ultraviolet regularization (e.g. , by defining the

system on a lattice). A finite volume regulariza-
tion can also be necessary. Of course a discreti-
zation procedure is not unique. One can write
many different discrete systems all of which have
the same continuous limit. The best thing to do
would be to define the discretization such that
exp[-S(v)) continues to be completely factorizable
when expressed in terms of the discrete variables
analogous to the CSV. One cannot know a priori
if such discretization exists. However, completely
integrable systems defined over infinite lattices
are known.

We wish to note that we are using CSV in a
different way than they have been used in the liter-
ature. ' '"" For us, they replace v(x) in the
functional integral, where x is the imaginary time.
Usually, scattering variables depending implicitly
on the (real) time are associated with fields that
are functions of space and time.

Let us now discuss the integration bounds on the
CSV corresponding to a v(x) varying between -~
and + ~ for all finite x and subject to the boundary
condition

v(+ ~) = 0. (2.11)

In this case the eigenvalues xz' can take any

Here E(k) stands for the Jost function of the
Schr'odinger equation (2.2) and

' (. )
dE(k)

dk „-.
These new variables are canonical for the Poisson
bracket (2.6), i.e.,

The number of bound states AB being arbitrary,
one must sum over AB from zero to infinity. 'The

variable q& can take, in principle, any real value
from -~ to + ~. In fact, this infinity can be shown
to be proportional to the infinite length of the
imaginary-time axis as follows. Suppose one does
a translation x-x+X. This changes v(x) into
v(x+X) and does not affect p, , P(k), and Q(k). On
the other hand, the coefficients C~ transform like

e~Kgx

Q =—(7f/L)~ Qt(k2) P = (7//L)~t2P(k ) (2.14)

together with the (q&, p.). Here k = ~o/L and n is
an integer between -M and+ j/t. Here the dis-
tinction between "continuum" and "bound-state"
variables disappears. One should integrate over
2M tis pairs (Q-, P„) for each%a, because the
total number of independent variables is 2M.

In conclusion, we write our integration measure
as

2N-NB NB
dp, =~ i I

dQ dP dp~dq~
f=l

(2. iS)

times an unknown Jacobian that tends to one in the
0, L-~ limit. The integration over all v(x)

because of the asymptotic behavior of the bound-
state wave functions (2.4). Hence q& changes as

q, -q, —2vp. x.
If we put the system into a large box of length 2L
we have

2gp) L )q~ ) -2gp~ L . (2. iS)
P

We shall now proceed to discretize our function-
al integral (2.1) as well as the SV variables without
attempting to-preserve the canonical nature of the
mapping from (w, v) to the CSV on the lattice. This
will introduce a nonunit Jacobian. Their effects
will be taken into account a posteriori (see Sec.
IV).

In the semiclassi. eal regime (k-O), the function-
al integral is dominated by the factor e " while
the Jacobian is of order O'. 'Then the integration
procedure over CSV will work semiclassically as
will be explicitly confirmed later.

We discretize the imaginary-time axis as a,

lattice of 2M points (2M» 1) over a length 2L.
That is, &=L/M is the lat—tice spacing. The scat-
tering variables become
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and 7((x) =f 'v(y)dy corresponds in the CSV to sum
over Na from zero to 2M (» 1) and to integrate
over (P, Q, p, , q/) in the intervals (2.12}and (2.13).
%e are integrating independently over X~ different
eigenvalues p&

-—x& and then we must divide by
A~ & in order to avoid double counting of configura-
tions.

III. THE N-COMPONENT ANHARMONIC
OSCILLATOR IN IMAGINARY-TIME SCATTERING

VARIABLES

We a.pply in this section the imaginary-time
scattering variables considered in Sec. II to the
specific problem of the N-component anharmonic

oscillator with O(N) symmetry. Its generating
functional for imaginary time x reads

z(s(, z) ff=set)exp(-s[d]) z„ (3.1)

s(d) f -=..q "4
'.:4,',—(4)-'

x
(3.2)

where &f&(x) = (P„.. . , (II)„) and g is the coupling
constant. Z, is a normalization constant fixed by
g (N 0) —&-(N /2) (2/)

The generating function (3.1) can be recast as a
functional integral over a single function n(x) by
using the identity

(3.3)

(3.4)

'This functional integral has a stationary point at

I. /2
exp ——

Jl dx(T()2)' =
J X)n(.) exp — dx n(x)' —2i — n(x)P'(x)dx

N

Upon placing E(I. (3.3) into (3.1) one gets, after performing the integration over T(), whichbecomes Gaussian,

1 N ' d' fgZ(N, Z) =— (.) eXxenp ——tv det —,+ 4 + 4(( — n(. ) —f dx n(x)'I .g 2 ~ n

1 N '~'
n(x}= n, = — —z(.g),4i g

where z(g) verifies

z'(1+ z) =4g'.

Hence z(g) is a three-valued function of g. In the physical sheet

z Q)
t

+ [g+ (g2 ~)l/2]2/3+ [g (g2 4 )(/2]2/ 3

and

lim =+ 1.z )

2g

(3.5)

(3.6)

(3.7)

(3.8)

The systematic expansion of the exponent in the integrand of (3.4) around this extremum gives the I/N
series. " For the ground-state energy we get

Ec(N, g) = —lim —In Z(N, g)
1

i"

where

(1+z) ———lim Inf (N, g),
Ã „, z
2. 8g I, „2L (3.9)

t(es)= ff sttn(. )exp(—s„,fv(.)I),

Gj'
, + t ~ e+ v(.))

S,«[v) = —indet, —— dxv(x) —— dxv(x)
2 d' 8g ~ 4g

and where the following shift of the integration variable has been done:

(3.10)

(3.11)

n (x) = n, + — v (x), —v. (+ ~) = 0.
4i g

(3.12)
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We identify this v(x) with the potential of the auxiliary linear problem of Sec. II. The crucial advantage
of this representation lies in the fact that the S,«[v] expresses in a separable way in terms of the SV
associated with v(x). Thus, explicit computation of the integral (3.10) will be possible in the CSp
if we disregard the Jacobian problem. This Jacobian will be clearly N independent, that is of order A for
large N, and consequently much smaller than S,«[v] which is proportional to N. N/g plays the role of k '
here.

'The effective action can be written in terms of the CSV' by using the identity between the Fredholm
determinant and the Jost function for the Schrodinger equation and the trace identities. One finds a com-
pletely separated expression:

8 P+ so

S„,[~]= NQ-I (p,)+N, akf(k)I'(k), (3.13)
~QQ

1+z(g) '~' iv p'~' zvpI" (P) = argtanh — - — +—+—---— (3.14)

k 1 z
4g 4k[(l+z)'~'+ik] Bgk

'

For future reference we note that

P'~' 1+-2z " z~p '"" 1

3g jL. +8 ~ 2 2g 2++ ~

(3.15)

(s.15)

(3.19)

By using the integration measure dp, given by (2.15), I(N, g) reads

2~ 2M-Ng +2~p. r.

I(N, g)=lim — —, I I
—dP(k )dQ(k )e" " '~'~ '

] [dp~dqjexp[NI"(p~)]. (3.17)
3f~ ~ 0 Ng=0 8 0 0 ~=]. 0 -2~p. ~ f= j.

The integrals in (3.1'I) are elementary except the one over p&. Then, we obtain

~L Egt P Ng 2'-Ng
I=limZ, ' — —,+ dp ~ps»™ TINI, . , y(k. )'

Furthermore, in the &-0, M -~ limit

~Ng y L g/ d

I~ =exp —— dklnf(k) 1+0—
y(k„) v

and we get for the ground-state energy

E (N, g) =—(1+z)'~' ——+ lim —lnf(k) —lim in 8, — ' +—
J~ MPdpB(P, N, g)e" ~',

2 . Bg. . .g
2 „2L 2

(3.19)

where we have inserted B(P,g, N) to try to take
into account the effects of quantum fluctuations of
the Jacobian. B(P,g, N) should be of order N' for
large N as we shall see explicitly in the next
section. The limit of the expression within braces
in Eq. (3.19) is easily seen to be zero from the
relation

'"ak, f(k) (s.20)
2tT f, (k)

Here f,(k) —= -k/4g. We then get
P

E,(N, g) =—(1+z)'~'

t oo

+ C~(g)+- —, 8 asB~(s~g)8
(3.21)

where we have used the definition of ZO and we
have set s = ~P in the integraL Also, we added a
contribution C„(g) for the same reason we intro-
duced B„(s,g) C„(g) mus. t be of order N' for
large ¹

The integration variable s in Eq. (3.21) corre
sponds to an eigenvalue of the auxiliary Schro-
dinger problem. This suggests the following in-
terpretation. The functional integral (3.1V) is
formally similar to the grand partition function of
a gas of free solitons at temperature 1/N in one
dimension. -E(p) being the ' kinetic energy" of a
soliton with momentum P and atpositionq, N ' in(N/v)
can be identified with the chemical potential. %e
label "soliton" the configuration defined in SV by
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Na= 1, z, =s, c, =c, and r(k) —= 0 which takes the
form

2s2
v(x) =-

cosh'(sx —5)
(3.22}

IV. THE GROUND-STATE ENERGY AND ITS
PROPERTIES

'The evaluation of the ground-state energy of the
N-component anharmonic oscillator by an imagi-
nary-time inverse scattering method led to Eq.
(3.21).

In this section we shall use the known large-
order behavior of the N ' expansion of this ground-
state energy to determine as far as possible the
unknown functions B„and C„.

The N ' expansion of Eo(N, g) has the form

E(N )=Q
X=-].

(4.1)

The coefficients Az(g) behave for large K as""
1(K+-',) (~ 3i~

[p,(g)]"""«
(3z+ 2)'i'~z

N g[(3z+ 2)"'+ (2+ 2z)'"]'+

where

x [1+O(1/K)], (4.2)

in the v representation. ' Here &= —,
' In(c/2s). In

this analogy with classical statistical mechanics
the ground-state energy Eo(N, g) corresponds to the
gas Pressure divided by its temperature (i.e.,
times N). In this language, the quantum effects
contained in the Jacobian of the change of variable
(2.10) can be perhaps treated as "interactions"
between the solitons.

,(, I (K+ —,') 1x (gzS())' (,N„l, 1+0—
OI

(4.6)

We note that the leading factor I'(K+ ,')F(S—,)
in Eq. (4.2) is correctly reproduced by this ex-
pression. The identification of (4.6) with the actual
behavior (4.2) of Az(g) gives us the constraint

2S,' 1
0 g)[S+ (I + z)). /2]2 (4 7)

In other words, by fixing the function B„(S,g) on
the curve S =S,(g) we obtain that Eq. (3.21) for
Eo(N, g) also reproduces the determinant of small
fluctuations around the instanton of Ref. 8. More-
over, Eq. (4.7) suggests

2s' 1

g [s+ (1+z)'"]' (4.8)

for a/l s and g. In the following section we shall
see that this last conjecture is correct.

As we see, the assumption that C„(g) does not
contribute to the large-order behavior of the N '
series is consistent.

Let us now consider the small orders in the N '
expansion of Ec(N, g) The fir.st term can be
easily computed from the functional integral
[(3.9)-(3.11)]by the stationary-point expansion'
or by the Rayleigh-Schrodinger perturbation theory
in radial variables" with the result

This is precisely the bound-, state eigenvalue that
defines in SV the instanton for the large orders on
N ' in the original functional integral (3.9) and

(3.10).'
We obtain from (4.4) by the steepest-descent

method

(„)
w $2@'

p+ (g) = —,
' lnz(g) —ln[(2z+ 2)'i'+ (3z+2)') ']

——(1+ —,z) +—.1

3g 2
(4.3)

)

Ec(g, N) =—(1+z)'i'—,„, + (-,'z+1)"'
2 2 1+z)"'
-(1+z)' '

On the other hand, we get from Eq. (3.21)

A (N)= I N 'N~(N, N)

2 dN s'ds B (s,g)e"~"'
71 2~ p

(4.4)
where we assume that C„(g) does not contribute
for large K. The results will confirm this as-
sumption.

'The integral over s has a stationary point where

F'(S,) = 0.
'This gives

3z(1+z) i 1+—,",z

0() ) (4 9)

On the other hand, we see that in Eq. (3.21) the
integral over s is dominated by the origin for
large ¹ This is precisely what one should expect
because s = 0 corresponds to a null configuration
v(x) =0, i.e., s = 0 is associated with the stationary
point n(x) = a„previously discussed. Then from
Eqs. (3.16) and (3.21), it follows that

2N )))y ( ) 12g (1+ z}B (0 g)

S,=+ (1+ zz)'i'. -.(4.6) (4.10)
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This shows that Eqs. (4.4) and (4.8) are consistent
with the 1/N expansion (4.9) of Es(N, g) although
there is too much freedom in the functions C„(g)
and B„(s,g) to make more precise statements.
Equations (4.9) and (4.10) suggest, however, that
one could have

0

C (g)=(-'z+1)' '-—(1+ )' ' (4.11)

Equation (4.10) also gives the limiting behavior of
EG(N, g) for g-0.

Concluding the preceding discussion, we have
from Eqs. (3.14) and (4.8)

2

E,(N, g) =—(1 i z)'" ——+ C„(g)G

'~g &, [s+(I+z)~'P '
N

(1+z)"'+s "~' N s' z
X exp ————~

(1+z)"' —s g 3 2

(4.12)

Rigorously speaking, the O(g/N) in the integrand
may be nonuniform on s for small s. For this
reason we cannot be sure that Eq. (4.11) is true.

The integral in (4.12) converges for Beg& 0 as
the original functional integral [(3.10) and (3.11)]
does for real v(x). Let us analytically continue
Eo(N, g) on the g plane for real positive ¹ We
set

and assume that the large-s behavior of the inte-
grand of (4.12) is dominated by the exponential
factor e p(Nxs'/3g)

Then, if we distort the integration path in the
s plane such that it approaches inf inity as

9 = Igle' 3m. &
2 3

FIG. 1. The integral in the ground-state formula con-
verges when the integration path goes to infinity through
one of three hatched regions.

V. THE DISCONTINUITY OF THE ENERGY IN THE
NEGATIVE g AXIS

series exhibit a cut in the g plane beginning at
g = -(27) '~' and not at the origin.

'The strong-coupling limit g-~, for fixed N,
can also be studied. It is easy to see that Eq.
(4.12) behaves like g'~' in this limit. For the same
reasons as before, for the coefficient of Ã-', we

cannot compute here the coefficient of g' '.
We can consider Eq. (4.12) as the leadmg

term of a new kind of 1/N expansion. The study
of the discretized system in terms of scattering
variables couM provide a way to compute system-
atically the high-order terms. %ork in this
di rec tion is in progre ss.

s= s e
~ s «+m~

the integral will converge for

/s' s'
0 & Re~ —= — —cos(3n —y) .

(g
This condition holds if

1T 3r—& 3a —p &—(mod 2v) .
.2 . 2

(4.13)

(4.14)

In this section we compute from Eq. (4. 12) the
discontinuity of Eo(N, g) across its cut on Re{g)&0.
As will be seen below, Eq. (4.12) results are
particularly successful in the regime h, =- -g-0'.

We assume 0)g&-(27)-' '. The discontinuity in
this interval comes solely from the singularity
[(1+z)'~' —s] "~' in the integrand (see Fig. 2).
Thus,

In other words, for each complex g, we find
three inequivalent integration paths for which the
integral converges. This is sketched in Fig. 1.
This three-sheeted Riemann structure is also
exhibited by the functions z(g) and [1+z(g)]'~'
= 2g/z(g) that appear in Eq. (4.12) [see Eqs. (3.6)
and (3.7) and Fig. 2]. Then Eq. (4.12)possesses the
correct three- sheeted Riemann structure of the
ground-state energy of the anharmonic oscillator. "
It must be noted that this property is not shared by
the usual 1/N expansion (4.9). The terms of this

/r r /rr/ / r/rr rr/////rex////////

+1/~27
r/rrr

FIG. 2. The function zEg), solution of Eq. (3.6), has
three Biemann sheets. They are connected pairwise by
square-root-type cuts. The cut from —3 to -~ con-
nects the 1st sheet (physical sheet) with the second one
and the cut from + 3 3 to + ~ connects the 2nd and 3rd
sheets between them.
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4N N)) '" s'ds s+ [1+z(-h)]' '

& s' s h.x exp ——. ———z(-h) 1+0—
h 3 2

(5.1)

where we assume that C„(g) does not contribute.
This integral is dominated for h. -0' by its lower

bound. Then, we set

s = [1+z(-h)]'"(1+ht), (5.2)

~(h, x) = [1+z (-h)]' —,
, (1+x)'

(5.4)

where t is a new integration variable. We obtain
in this way

Nm 2 N/'
ImEo(N, -h+ i0) =—sin—

2 h

x — &(h ht)e """'""1+0—
" dt N h

t ~8 ' N0

(5.3)

where

Equation (5.8) is the more interesting result we
have extracted from the expression (4.12) for
Eo(N, g). The factor in front of the series in (5.8)
is exact.""We recall that its computation by
functional integration involves the quantum deter-
minant of small fluctuations around a classical
instanton. " 'The action of this classical solution
provides the exponential factor. It is remarkable
that the simple integral (4.12) can reproduce all
that.

I et us now consider the higher-order corrections
in ImEc. Because we do not yet know the precise
form of the 0(h/N) terms in the integrand of Eq.
(4.12) or (5.9), we can compute the T»(N) only for
large N (butE arbitrary) by expanding e " and

e(h, ht). One sees in this way that the T„(N) are
polynomials in N of degree 2K. That is,

o(h, x) =—[1+z(-h)]'"(1+x)'1 7 9))= Qm, N
s=0

(5.11)

+1+x--,' ln(l+-,'x).
We have the following expansions in h:

o(h, ht)= „+t+h(t' —', t ,')-—--

(5.5)
All the numer ical coeff icients that we can compute

result in rational numbers. 'This is precisely what
Zinn- Justin found in recent numerical computa-
tions. "

Explicitly, we get from (5.9)

+h'(-,'t' —Pt' —,'t ', )+—O-(h-'), (5.6) ( 1)» 7»
~Ã, 2E ~ ~ 23E ~ (5.12)

E (h, ht) = 1+4h(t —1)+ h'(~ t —16)t + 0 (h') . (5.7)

Then, from (5.3)-(5.7) we obtain the disconti-
nuity of Eo(N, g) as a power series in h/N,

N /2. e-N/3h
ImE~(N, -h+ i0) =

2

(5.8)

Here T9(N) —= 1 and the higher-order coefficients
foll.ow from the integral

( 1)»1 7»
m» 8» 1

(K )t 8» 1(41K 104) (5.13)

where (5.6), (5.7) and (A4) were used. These for-
mulas exactly reproduce the available numerical
values (K= 1 to 4)""for m», » and m», », . It
can be pointed out that these coefficients in the
functional integral approach" correspond to dia-
grams with (K+ I) loops (1&K&~). The success
in reproducing these higher-order quantum cor-
rections encouraged us to determine the h/N
correction in the integrand of (5.9) from the known

(N) 18, 19

Assuming that

Here

1
~(h, at) -=o(h, ht) ——„—t

is of order 5 for h, -0'.

= Z T 9))(~) (1.9)

(5.10)

(5.14)

21N'+ 54N+ 24D(1) —2
1 24

(5.15)

E„(s,g) = B„(s,g) 1+ D(s) + 0 —,~—R')
where D(s) is analytic at s = 1, we get from (5.9)
after a short calculation
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2 1N' + 54N + 20N
Tl 24

(5.16)

'Then, we conclude that

The known value for this two-loop correction is cited states of the system can be explicitly found
if we succeed in computing the functional integral
(6.2). In order to do that within the inverse scat-
tering approach, we should express g(x, x') in
terms of the CSV. g(x, x') is related to the Jost
solutions f, (x, k) of the auxiliary Schrodinger equa-
tion (2.2) as follows:

Now, by using this fitted value we get from (5.9)
and (A4) (,)

f, (im, x))f (im, x()
2mE(im) (6.6)

305 191
mQ

~ 2 9 an PE3
~ 4 4 (5.17)

VI. FINAL REMARKS

which exactly coincide with the numerical results. "
This gives a consistency check of the assumed
expansion (5.14). It must be noted that the expl. icit
form assumed for B„(s,g) in Eq. (4.8) was crucial
to obtain Eqs. (5.12), (5.13), (5.15), and (5.17).

Here E(k ) stands for the Jost function which is
immediately expressable in terms of CSV. The
Jost solutions can be related to the CSV through a
linear integral equation following Marchenko's
formalism. ' The kernel of this integral equation
has a simple expression in CSV. In this way, the
computation of the Green's function of the anhar-
monic oscillator reduces to a linear problem.

In the explicit computations of the preceding
sections, we only dealt with the ground-state
energy. As is clear, the integration bounds and
integration measure in CSV given in Sec. II are
valid for every functional integration. We shall
now discuss Green's function and excited states.
'The two-point function of the X-component an-
harmonic oscillator reads.
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APPENDIX

&(t)(t). (x)(t),(x')e-"~'= 6.,G(x —x'), (6.1)
In the calculations of Sec. V we need to expand

for large N integrals like

where 1 ~a, b ~ N, and S[(t)] is given by Eq. (3.2).
In the n representation we have

G(x —x') = f Ge (.)d(«, x')e.*.«'"' ",
where S„,is given by Eq. (3.11) and

1(f)=I, f( )dx. —

Here f(t) admi. ts an expansion like

f(&)= g n.f'

(A1)

(A2)

1
g(x, x')= x x'

, +1+v(.)
(6.3)

We can explicitly integrate order by order with the
result

C(E)=2+, ",)(0 fy. fn& (', (6.4)

On the other hand, the usual expansion of Green's
function in the eigenstates of the Hamiltonian gives

~ o!' I'(1 —'N+s)—
I (1-~N) (A3)

'Then, we can apply for large N Stirling's formula
for the I' function in (A3) and finally sum over s.
This gives, after some calculations,

where

G(d)=) e' *G(x)dx
«OO

(6.5)

'(f) =f' G(f
' lf "

) ' G.(f" '*f"~ .*f"—) ~ G(G.), ——

(A4)

and jn), E„stand for the eigenstates and eigen-
values of the anharmonic oscillator. Hence, ex-

where f, f', f ", f "', and f" are to be taken at
1t--2 ~
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