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scatterers

V. V. Varadan and V. K. Varadan
Wave Propagation Group, Department of Engineering Mechanics and Atmospheric Sciences Program, The Ohio State University,

Columbus, Ohio 43210-
(Received 23 .August 1979)

The coherent wave propagation and attenuation of electromagnetic waves in an inhomogeneous medium
containing randomly distributed and randomly oriented nonspherical dielectric scatterers is studied using
statistical averaging procedures and a self-consistent multiple-scattering theory. The specific geometry and
orientation of the inhomogeneities are incorporated into the T matrix'of the scatterer thus making the
formalism a convenient and computationally efficient scheme to study randomly oriented dielectric
scatterers for a range of frequencies. The T matrix of identical scatterers evaluated with respect to axes
natural to the scatterers is then transformed to the arbitrary coordinate system by introducing rotation
matrices that contain information about the orientation of individual scatterers. The rotation matrices can
be integrated conveniently for random orientations of the scatterers.

I. INTRODUCTION

In a previous paper, Varadan, Bringi, and
Varadan' gave a multiple-scattering formalism
for coherent electromagnetic wave propagation
through a medium containing an ensemble of di-
electric scatterers that had a particular pre-
ferred orientation. The frequency dependence
of the phase velocity and attenuation in such a
medium was studied for spheroidal seatterers
of various aspect ratios and scatterer concen-
trations, when the wave was incident along the
symmetry axes of the spheroids which were all
parallel.

In this paper, we extend the treatment to ran-
domly oriented scatterers. The concept of a T
matrix as defined by Waterman for single scat-
terers is generalized to relate the scattered
field from a scatterer in the presence of several
other scatterers to the field that excites or is
incident on the scatterer. Ensemble averaging
over the position of the scatterers taking into
account the hole correction results in a set of
homogeneous equations for the average scat-
tered field coefficients. The determinant of the
coefficient matrix then yields the dispersion rela-
tion for the average propagation vector K in the
macroscopically homogeneous medium. The vec-
tor K is complex, and the real part is related to
the coherent phase velocity in the medium whereas
the imaginary part gives the attenuation in the
medium due to geometric dispersion as well as
absorption, if any, by the scatterers.

The advantage of using the concept of a T matrix
is that it allows us to conveniently include all
factors relating to the geometry, dielectric pro-
perties, and orientation of the scatterer within

the T matrix itself leaving the rest of the forma-
lism uncluttered by the specific features of a
particular set of scatterers, To this end, the
formalism given in Ref. 1 can be used as is for
the case of random orientation of the scatterers
and the only change will be a reinterpretation of the
T matrix as it appears in Ref. 1. This time, two
averages have to be performed, one an ensemble
average over the positions and the second an
average over all possible orientations of the
scatterers. Once again we can obtain the dis-
persion relation that can be solved to obtain the
average propagation vector K in a macroscopi-
cally homogeneous and, in this case, isotropic
medium. Recently, a similar approach has been
used for scalar coherent wave propagation in two
dimensions through a distribution of randomly
distributed and oriented scatterers.

Since we are discussing the coherent wave
propagation, it is enough to average the T ma-
trix of a particular scatterer over orientations.
If we are interested in the incoherent field or the
average intensity, then the intensity or scattering
cross section must be averaged over all possible
orientation of the seatterers.

Coherent phase velocity and attenuation are
studied for both real and complex frequency-de-
pendent dielectric scatterers in free space for
different scatterer concentrations and range of
frequencies. The results are compar'ed with
those obtained for aligned scatterers. At higher
frequencies, the results indicate that there is a
significant difference in phase velocity and atten-
uation between aligned and randomly oriented
scatterers. The analysis is important in many
fields of engineering and science such as micro-
wave communications through hail-, ice-, and
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dust-filled medium and radar meteorological.
applications, etc.

II. MULTIPLE-SCATTERING FORMALISM

n

E (r) = e'"'( g g [o.„ReM „(r- r,.)
n=0 m=-n

+P„ReN„„(r—r,.)], (4)

Consider N number of dielectric scatterers
randomly distributed and oriented in free space
which are referred to a coordinate system as
shown in Fig. 1. 0, and 0& refer to the centers
of the ith and jth scatterers, and r, and rj their
position with respect to the origin 0 of the g, y, z
coordinate system. Let z„be the dielectric con-
stant of the homogeneous scatterers.

A plane electromagnetic wave of unit amplitude,
frequency co, 8 '"' time dependence, and wave vec-
tor k is incident along the z axis of the coordin-
ate system and is represented by

E'(r) = ee"~' "",
'I

where 0 = &@/c is the free-space wave number, &

is the unit polarization vector, and e k =0.
Let E', be the field scattered by the ith scatterer,

so that the total electric field at any point r is
given by

E(r) =E (r)+g E((r —r, ) .

The field E', that excites the ith scatterer is the
incident field E plus the field scattered by all
other scatterers. Thus, at a point r in the
neighborhood of the ith scatterer

E', (r) = Eo(r) +Q E&~(r —r&), a
I
r r(

I
2a — (3)

jAi

In writing Eq. (3), the auxiliary' condition on

I
r -'F(

I
implies that there is no interpenetration

of the scatterers. The incident field is assumed
to be produced by sources at infinity.

The fields E, E'„and E~& are expanded in vec-
tor spherical functions M and N as in Ref. 1:

E.(r) =p g [I ('& ReM(„(r r,—)
n=0 m=-n

+c„"'ReN' „(r—r()],
n

EJ(r —r&) =g g [B„'~'M~„(r—r, )
n=0 m=-n

+Clll( j)NJ (~r ~r )]

where, from Eq. (1), if e is taken parallel to the
z axis (Stratton )

(5)

n„"= (2n + 1)i"[6,+ n(n + 1)5,]/2in(n + 1),
p„= (2n + 1)i"[6„,—n(n + 1)5,]/2in(n + 1),

(7a)

(7b)

y (8,$) =P„"(cos8)e( ~. (Sc)

In Eqs. (4) and (5), Re denotes the regular mean-
ing that h„ is replaced by j„.

If the expansions in Eqs. (4)-(6) a.re substitu-
ted in (3), we can get a relationship between the
scattered field coefficients B and C and the ex-
citing field coefficients b and e. However, the
wave functions in the expansion of E', and E are
referred to a coordinate system at 0, whereas
E& is referred. to an origin at 0&. Further, it is
important to make the coordinate axes at 0, and

0& parallel to the xyz axes so that we can use the
translation theorem for the vector spherical
functions, as in Ref. 1, and the orthogonality of
the vector spherical functions to obtain the
following equations:

and the wave functions M n and N „are given by

M.„(r)= VX [rh„(k~)y„„(8,y)], (8a)

N „(r)= (I/O) vxM „(r), (Bb)

with

(XJ QJ ZJ)

n

hami( j)gmini ~r
mn f j

)=i ni=0 mi=-ni

+C„;("'c:("((r.—r )1

(9a,)

2n+ 1 e'"'&

FIG. 1. Randomly distributed and oriented scatterers.

N I 'o

+Q Q Q [+IN((J)Clll(ll((r r )
)=i ni=0 mi -ni

+Cll(lf()g lnll(( (r r. )]ni

(Qb)
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~l
where M denotes jci and 5 „ is the Kronecker
delta. The functions B ~"~ and C ~"~ resulting
from the translation theorem of the vector spher-
ical functions are given in Eqs. (11) and (12) of
Ref. 1.

At this stage, a T matrix has to be introduced
to relate the scattered field coefficients B and C
to the exciting field coefficients b and c. If the
scatterers are all parallel to each other and if
the T matrix is computed with respect to a set
of axes parallel to xyz, then the T matrix of all
the N scatterers is the same. However, if the
orientation of each scatterer with respect to the
xyz axes is defined by the Euler angles n„p„y,.
(see Fig. 2), then the T matrix of the ith scat-
terer will be a function of the Euler angles.

III. T MATRIX FOR RANDOMLY ORIENTED SCATTERERS

Let XFZ be the set of coordinate axes natural to
the scatterer. For spheroidal scatterers, the
XFZ axes coincide with the symmetry axes of
the spheroid. Let n, P, y be the Euler angles of
the XFZ axes with respect to the xyz axes. All
quantities that are referred to the XFZ system
are distinguished by a caret. Thus,

E&(r —r&) =gg [B~' 'M~„(r —r&)
n m

. +C~U)NJ (r r )]

n

D".„.(~,P, y) M.,„.
m'=-n

(12b)

Using Eq. (12) and the orthogonality properties
of the vector spherical functions in Eq. (10), we
obtain the scattered field coefficients B and C in
terms of B and C as given by

B=D'B, C =D C . (13)

Similarly, one couM express the exciting field
coefficients 5 and c in terms of 5 and c through
the rotation operator

b=D 5, "=D (14)

where B, C, b, and c are column vectors and D'
is the matrix transpose of D.

It has been shown in Refs. 1 and 2 that the scat-
tered field expansion coefficients may be for-
mally related to the exciting field expansion co-
efficients through the T matrix. Thus, we can
write

where D(n, p, y) is the operator associated with
the finite rotations n, P, y and D, is the rotation
matrix associated with the rotation operator. The
rotation operator leaves the length of the position
vector

~

r
(

invariant. Further, the curl opera-
tion commutes with the rotation operator so that

n

M „=D(o.,p, y)M „=g D",(a,p, y)M,„, (12a)
m'=-n

B„'~' r —r& M~„r —r&
(15a)

+C„"'(r—r,)N „(r—r,)]. (10)

The spherical harmonics y (8,$) are eigen-
functions of the rotation operator. From the
quantum-mechanical theory of angular momentum
(see Edmonds' ),

(15b)

m'="n

From Eqs. (13), (14), and (15), it can be shown

that T is related to T as follows:

T=(D') 'TD'

Equation (16) gives the desired relation between
the T matrices evaluated with respect to the two

sets of coordinate axes. T is independent of posi-
tion and orientation and is, hence, the same for
identical scatterers. The matrix T, however, is
different if the orientation of the scatterers is
not the same.

The rotation matrix D has been given by Ed-
monds as

FIG. 2. -Euler angles. where
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(n+m)!(n —m)! ' '
p

t!"'"'

m-m'

sin Q(m m ~ m m) cosn-m (18) T =DTD (19)

gendre polynomials. Since the T matrix is sym-
metric for general scatterers, Eq. (16) can be
rewritten as

In Eq. (18), P„' '~' is the Jacobi polynomial which
can be expressed in terms of the associated Le-

I

Now the value of T averaged over a11 possible
orientations of the scatterer may be written as

2ft 2tt tl'

(T„„,,) = 2 do. dy dP sinP [D"„(o.,P,y) T„„,„, ,(D ')",(n,P,y)],
W 0 0 0 mgm2

where ( ) denotes the average over orientations.
From Edmonds, we find that

25' 2!t

z dn dy dP sinPIP (D ')" „,
0 0 0

1
5„„,6„,5,„., (21)

which when used in (20) yields the average T ma-
trix given by

2 +1 ~ T„,„25 „5,5„„,. (22)
m)y m2

For spheroidal scatterers &fI'..&&(
= &fl.'.&) (26)

volume conform to the geometry of the scatterers.
In this paper, since we are concerned with ran-

dom orientation of nonspherical scatterers, it is
appropriate to assume spherical statistics. When

Eqs. (9a) and (9b) are averaged over all possible
positions keeping the ith scatterer fixed, it is
seen that we get a hierarchy of equations for the
scattered field coefficients with more and more
scatterers fixed. As in Ref. 1, we truncate the
hierarchy by making Lax's quasicrystalline ap-
proximation which states that the neighborhood
of every scatterer is the same, so that

Tttmg, ttm2 ttmg, tttN) mgm2 t

so that Eq. (22) becomes

(23)

(24)

Thus, from Eq. (9), by omitting all details which

may be found in Ref. 1 we obtain the average
scattered field coefficients as follows:

IV. PROPAGATION CHARACTERISTICS

OF THE COHERENT FIELD ,(c„'.), &r"& (r"& (x.'...&

'

Now that the average over all possible orienta-
tions have been performed, the remaining steps
are identical to those given in Ref. 1. If Eqs. (9a)
and (9b) are multiplied from the left-hand side by
T, we obtain a set of coupled equations for the
scattered field coefficients B and C alone which
are now already averaged over all possible
orientations. The average over all possible posi-
tions of the scatterers is still to be performed.
As in Ref. 1, we assume that the two-scatterer
distribution function is given by

where

2ni+ 1 .„e

+(C~ &C"„~"2(r, r&)]d r&—
(28a)

1/V, lr, —r)l ~ 2a,
p(rg ry) =

O, O~ Iran-ril '2a,

where V is the large but finite volume occupied

by the scatterers. Equation (25) implies that

there is no interpenetration of the scatterers;
otherwise, all correlations are neglected. We

may note that from Eq. (25), although the scat-
terers may be nonspherical, the statistics are
spherical. It is not too difficult to generalize to
nonspherical statistics by making the exclusion

/

2n, +1 .„, e'"'&
, i"& . [5„,&-ni(ni+1) „5,]

g oo tt2

+— g g jl [&a„'.&c2".2(r, -r,)
V )= n =0m--e v2= 2 2

+(C~ &B"„2 &('F, V,)]d r& . -
(28b)

In Eqs. (28a) and (28b), V' denotes the volume of
the medium V excluding a sphere of radius 2g
centered at 0, . For identical scatterers g", ,
=N —1 and 4v(N —1)a'/3 V =c, the volume concentra-
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tion of scatterers provided N is large enough.
To find the average propagation constant K for

the bulk medium, we assume plane-wave solutions
for (B) and (C) with unknown amplitudes Y and Z:

(29a)

(29b)(C„' );=Z„e' '&.

For the coherent field K is parallel to k and
hence along the z axis. Substituting Eq. (29) into

Eq. (27) and performing the required integrations
and invoking the extinction theorem as in Ref. 1,
we finally obtain

lnf+n2l
2

(k' ') ZZ Z (-1).~; 2- i
m2=-n2

x 5 (JII) (y [(T") ~ a("»"»q) a(m

-(T' )„„,,b(n2, n„q)a(m2, n2
)
-mg, ng

) q, q —1)]

+Z„, ,[(T")„„,,a(np, n„q) a(mp, ng
)
-mg, n,

) q)

-(T' )„„„,,b(n~, n&, q) a(m»n2
~

-m&, n&
~
q, q —l)jf

(30a)

Z 0 ~ ~
nm (30b)

where Eq. (30b) can be obtained from Eq. (30a)
by replacing (T'~) and (T")by (T") and (T"),
respectively. The term (JH), is given by

(JH), = 2kaj, (2Ka)k,'(2ka)

-2Kak, (2ka)j'(2Ka) . (31)

The only difference between the equations ob-
tained here for 7 and Z and those in Ref. 1 is that
T is replaced by (T). This is one of the basic
advantages of formulating the multiple scattering
in terms of a T matrix. The expressions for
"a" and "k" occurring in Eq. (30) are given by
Cruzan in his paper on translation theorems for
vector spherical functions. From Eq. (24), we

note that for spheroidal scatterers

(T21) (T22) T2f. T22

so that the summations on e&, m&, and m, disap-
pear on the right-hand side of Eqs. (30a) and (30b).
For a random distribution of spherical scatterers,
(T) and T are both identical and diagonal.

Equations (30a) and (30b) are a set of homogen-
eous linear coupled equations for the coefficients
7 and Z of the coherent electric field in the in-
homogeneous medium. For a nontrivial solution,
we require that the determinant of the truncated
matrix should vanish yielding the dispersion equa-
tion for the bulk medium. This may be numeri-
cally solved to obtain K as a function of k = ~/c.
It is important to note that the scatterer property
and geometry are, as yet, unspecified. This
information is all contained in the T matrix. Thus,
the formalism may be ideal for studying coherent

t

wave propagation through randomly distributed
and oriented scatterers of arbitrary shape. In
particular, we canusethe T-matrixof perfectcon-
ductors, dielectric, or two-layered scatterers,
all of which have been formulated in the literature.
The effective wave number K is now complex
(K, + iK~) and frequency dependent. The real
part K, 'relates to the coherent phase velocity
while the imaginary part K, relates to coherent
wave attenuation.

V. COHERENT WAVE PHASE VELOCITY
AND ATTENUATION

The procedure for computing phase velocity
and attenuation is similar to the one presented
in Refs. 1 and 7. For a given value of k~, the
T matrix of the scatterer is computed. Next, the
coefficient matrix C corresponding to F and Z
of Eqs. (30a) and (30b) is formed. We have re-
tained as many as 13 simultaneous equations for
7 and Z to obtain proper convergence and the
complex determinant of the coefficient matrix is
computed using standard Gaussian elimination
techniques. A proper T-matrix: size is chosen
for a given kz to satisfy the unitary and symme-
try properties. For example, for a/5=2 and ka
= 2, a T-matrix size of 20x20 has been employed.
The roots (K=K, +iK2) of the resulting transcen-
dental equation are obtained by Muller's complex
root searching algorithm. For quick conver-
gence, we start from a low value of ka (=0.05) for
which the values obtained from Eqs. (36) and (37)
of Ref. 1 served as good initial guesses in the
root searching algorithm. For kg&0.05, the
average wave speed given by Eqs. (36) and (37) is
an excellent approximation. The values of kg
are increased by small increments of the order
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FIG. 3. Normalized phase velocity vs ka for lossy and
lossless scatterers for various concentrations c.

of 0.05. The real part K, is related to the phase
velocity while the imaginary part R, is related
to attenuation due to geometric dispersion as
well as absorption, if any, by the scatterers. We
define the normalized phase velocity V~/eo

——k/K„
where c, is the phase velocity in free space and
the coherent attenuation coefficient S~= 4wE, /K,
so as to make it dimensionless.

In Figs. 3-6, we have plotted phase velocity and
attenuation coefficients for spherical and spher-
oidal dielectric scatterers in free space randomly
distributed and randomly oriented. The calcula-
tions were performed for both lossless and lossy
dielectric scatterers. For lossless sqatterers,
we assume dielectric constant g„=3.168 which

FIG. 5. Attenuation coefficient g„vs ka for lossless
scatters for c = O.l.

corresponds to ice at microwave frequencies. The
imaginary part of the dielectric constant for ice
is relatively small when compared to the real
part; see, for example, Ray (Ref. 8). For the
lossy case, we consider complex dielectric con-
stants which correspond. to rain particles given
by Ray as functions of temperature and frequency.
For our calculations, we assume the temperature
to be equal to 5 C.

In Fig. 3, the normalized phase velocity is
plotted versus ka for aspect ratios of a/b = l.0
and 2.0 and concentration e = 10 4, 0.1, and 0.2.
The phase velocity decreases gently as kp in-
creases and tends to increase slightly at higher
frequencies. In Fig. 3, we have reproduced the
results obtained in Ref. 1 for parallel orientation

-I
lo

LOSSY

C=IO4

IO'-

IO

Sd

IO
Sd

IO-

IO

IO

IQ'4 & s i » s

0 I.O 20
ka

IO'
0
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I 0
I I I I I

I.Q
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20

FIG. 4. Attenuation coefficient S~ vs ka for lossy scat-
terers for c = 10

FIG. 6. Attenuation coefficient $& vs ka for lossless
scatterers for c = 0.2.
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for comparison purposes. The results indicate
that there is a significant difference between pre-
ferred and random orientations at higher fre-
quencies.

In Fig. 4, we show the attenuation coefficient
S„for lossy dielectric scatterers as a function of
kg for concentration q = 10 4, where we have
plotted the results for spherical and spheroidal
(a/b =2.0) scatterers. In Figs. 5 and 6, we have
plotted S~ for lossless spheroidal dielectric scat-
terers for two different concentrations, c = 0.1
and 0.2 and for an aspect ratio a/b = 2.0. For
comparison purposes we have also reproduced
the results of Ref. 1 for parallel orientations.
The results indicate that there is a substantial

difference in attenuation between preferred and
random orientations. It can be seen that for
e =0.2, the sharp null is present for both the
cases. There is, however, a slight shift in the
null towards higher Ag for random orientations.
The value of the attenuation is lower at the null
for random orientation. There is a tendency for
the attenuation to increase rapidly again with
frequency.
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