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Systematics of.higher-spin gauge fields
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Free-field theories for symmetric tensor and tensor-spinor gauge fields have recently been obtained which
describe massless particles of arbitrary integer or half-integer spin. An independent discussion of these field
theories is given here, based on a hierarchy of generalized Christoffel symbols with simple gauge
transformation properties. The necessity of certain constraints on gauge fields and parameters is easily seen.
Wave equations and Lagrangians are expressed in terms of the Christoffel symbols, and the independent
modes of the system are counted in covariant gauges. Minimal-coupling inconsistency and a combined
system of higher-spin boson gauge fields interacting with relativistic particles is discussed.

I. INTRODUCTION

Gauge invariance has proved crucial in construc-
3ting field theories for particles of spins 1, 2, and

2. The integer-spin cases are known to be associ-
ated with fundamental forces in Nature, while spin
—,
' will be required in the future if Bose-Fermi
symmetry is relevant. It is interesting to con-
sider the extension of gauge principles to fields
that describe higher-spin particles. Recently,
this extension has been obtained for free fields of
arbitrary integer' and half -integer' spins. Bose
particles of spin s and Fermi particles of spin
s+2 are described, respectively, by totally
symmetric rank-s tensors «p» ...„and tensor-
spinors f+u .. .„,„where u is a spinor index.&s f)t

The fields are subject to certain gauge invariances
and constraints (to be discussed below) which are
crucial to prove that the theories are free of
ghosts and describe precisely two propagating
modes of helicity a s for bosons or a (s+ —,') for
fermions. The theories were obtained in Refs. 1
and 2 by considering the massless limit of mass-
ive higher-spin theories. ' The same results were
rederived' using gauge invariance and supersym-
metry transformations which relate higher-spin
massless fields to known lower-spin cases. The
wave equations for spin 2 and 3 were actually ob-
tained long ago, ' while the spin- —,

' system with its
gauge invariance was reobtained directly by re-
quiring the absence of ghosts. '

In this paper we give a simple self-contained
discussion of arbitrary-spin gauge fields based
on the gauge transformation laws

u, =Q eu, ~u, u; u, ~

''u P u uu '
u

p 1

where Q„ indicates a symmetrized sum of s
terms, and where the transformation parameters

and c„... „„aretotally symmetric
rank-(s —1) tensors and tensor-spinors. We de-
fine and study the properties of a set of natural
quantities, called generalized Christoffel symbols
and curvature tensors, with simple gauge trans-
formation properties. The structure of the Chris-
toffel symbols shows that in order to have gauge-
invariant second-order (boson) and first-order
(fermion) wave equations, one must require that
the gauge parameters be traceless, i.e.,

P
4 S

P
PV 3 s

(1.4)

as was found previously. The wave equations are
expressed simply in terms of the generalized
Christoffel symbols. The independent degrees of
freedom of the fields are counted in covariant
gauges. For bosons this gives a very natural gen-
eralization of the I.orentz and de Donder gauges
for spins 1 and 2. For fermions the method in-
volves novel use of "regauge" transformations.
Gauge-invariant actions are also expressed in
terms of the Christoffel symbols, and the Bianchi
identities which express the gauge invariance are
obtained.

We find that the free arbitrary-spin gauge fields
have transparent and even tantalizing regularities,
suggestive of an underlying mathematical (geome-
tric? ) structure. Clarification of this structure
is related to the question of interactions. %'e have
not been successful in formulating interacting field
theories for high-spin gauge fields, and some of
the difficulties encountered are summarized here.
The systematic structure found for free fields
does suggest a general form of the force law and action
for the interaction of a relativistic particle with a
higher-spin Bose gauge field. This gives a com-
bined particle-gauge-field system which is gauge
invariant in lowest order and is described below.
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II. HIERARCHY OF CHRISTOFFEL SYMBOLS

The purpose of this section is to construct a set
of quantities linear in derivatives of the fields

with simple properties under the gaugeP 1 Jf 2' P~
transformation law (1.1). They generalize the
Christoffel symbols 'of ordinary gravity. The
first-order spin-s Christoffel symbol is

(1) 9p px'''ps p+pl '''p Z~ pX~pps ''ps'
P

The variations of the terms on the right-hand side
of (2.1) contain two different forms, viz. ,

l (m) — T (m-1)
p e ~ ~ p sy o o o p p &

p ~ ~ ~ p s 'p o ~ o p

Z (m-1)
p2 pm' pl~2 ~S

P

(2.&)

where the summation includes s independent per-
mutations of the p, The relative coefficient was
chosen to give the gauge transformation law

gp(m)
p ~ ~ ~ p

s
p ~ ~ o p

=(-) (m+1)g„„s„,~ ~ s„„i&p . . . p „
P

pZ'p&p . p 2 p p&pp-s 1 2 3 g
P P

(2.2) (2.4)

where the notation Q„s indicates a sum of —,'s(s —1)
independent index permutations of the p, Ob-
viously it is not possible to define a gauge-invar-
iant quantity of first order in derivatives, and the
relative coefficient in (2.1) was chosen to eliminate
the first term in (2.2), so that

(1)
p ~ pg' ps Zs px ps~pps ' ps

V

For spin 2 this coincides with the linearized
Christoffel symbol, and we will see that this choice
leads to higher-rank gauge-invariant quantities for
general spin.

It is now straightforward to define generalized
higher-rank Christoffel symbols I'

p p ~ p p p ~ ~

recursively by

where the "special indices" p, appear only on the
gauge parameter. At this point the motivation for
the construction is clear; for m= s, I' ' is gauge
inda~iant, and we will call it a generalized curva-
ture tensor

—p (s)
p o o p p o ~ o p p o ~ ~ p 0

p o ~ o p1 &s 1 g 1

~
p p p; p p are manifestly symme-

tric in the ' spin' indices p.;. They are also sym-
metric in the special indices p, as can be proved
by induction on m using the recursion relations to
express I' 'in terms of I' ". Using these sym-
metry properties and requiring the transforma-
tion rules (2.4), one can directly construct the
formula

m-1
p(m)

p~
' p~ip~'''ps py

'' pm 'pl'''"s+ ( ) (J) J pep Sp, .sp Sp cpp p p1 j' j+1
p p

1 j j+1 g

+(-) Z-'p"'p +p "p p
P

1 m 1 m m+1 (2.6)

where (& ) are binomial coefficients and Q„ in-
Pj

dicates a sum over (& ) independent permutations of
the index set ( p, ) with a similar definition of

The expression for 1"' ' is the unique quanti-
ty involving q with the indicated symmetries and
gauge transformation law.

%e now consider the generalized curvatures.
The pair exchange property

I

1 P1P2''' Pgi P192' ' Pg P1P2'' Pgi Pl&2 &a
P

(2.8)

which is a generalization of the well-known cycli-
city property for s= 2.

To gain familiarity with this hierarchy of curv-
atures we compare with low-spin cases. For
S= 1y

~p:v =~ p&v (2.9)

plo o ~ p o
p o ~ o p % I Avp o ~ o p o

p ~ ~ ~ p
(2.7)

follows immediately from (2.6), and one may also
prove the relation

which coincides with the well-known Maxwell
field strength. For s= 2, our generalized curva-
ture with symmetric structure is equal to.a lin-
ear combination of the standard Riemann curva-
tures, viz. ,
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B . =2K' . +R' . )u1u2' ulu2 ulu1' u2u2 ulu2'u2ul (2.10)

where the prime indicates the linearized Riemann
tensor. Thus our approach includes the possibility
of interactions for spin 2 which would be equiva-
lent to the standard interactions. It is interesting
that a linear combination of antisymmetric Rie-
mann tensors leads to the symmetric tensor found

by our construction which generalizes directly to
higher spin.

One should also expect identities involving deri-
vatives of A which generalize the known Bianchi
identities for s=1 and s= 2. Indeed the general
identity

p—Ijfp» ~ ~ ~ g~p ~pP p» ~ » p1 S 1 S

P++2 au u (Pu „.. .„
Il

=0 (3.2)

with traceless parameters. For the rest of this
section, gauge invariance mill have this restricted
meaning.

It is then immediately suggested that the gauge-
invariant second-order differential equation

I(m) I (m)
uu,

I (m) ~(m)+ e u(~uu u—„:&u; u

I(m) I (I)+ su( &u u uu ~ u ~uu

III. ARBITRARY-SPIN BOSON GAUGE FIELDS

Standard free quantum field theory requires
linear second'-order wave equations for bosons,
but the results of the previous section indicate
that fully gauge-invariant quantities for rank-s
tensor fields necessarily have at least s deriva-
tives. The simple solution to this problem is to
require that gauge parameters be traceless, ac-
cording to (1.3). Then the once-contracted Chris-
toffel symbols (contracted with the Minkowski
metric qu„)

~(m) —I (m+2) o
py' 'pmipj'' ' ps py'' 'pro Vl'' ' ps (3.1)

are invariant under the gauge transformation (1.1)

follows easily from (2.6) for m = s it can be written
in terms of curvatures and reproduces the stand-
ard Bianchi identities for s = 1 and s = 2. We
should, however, emphasize that identities such
as (2.11) have no significant meaning for higher
spin when m& s, since the quantities involved are
not gauge covariant in that case. In fact, one can
construct a large variety of such identities, and
several of them reproduce the Bianchi identities
for the case of low spins.

The reader should note in connection with Sec.
IV that all formulas in this section can be under-
stood as being valid for fermion tensor-sI)inor
gauge fields by direct replacement of cpu, .. . „(x)
by gu . . . „„(x),and )u . . . „(x)by e„.. . „„(x).

be adopted as the basic wave equation for spin s.
The consistency of this choice will be studied im-
mediately belom. For the moment we note that
this equation includes the d'Alembertian, Maxwell,
and linearized Ricci equations for s =0, 1, and 2,
respectively, and can thus be considered a natural
generalization of these well-knomn results. It is
also equivalent to the equation found by Fronsdal. '

In electromagnetism and linearized gravity,
gauge fields which satisfy the basic wave equation
are characterized by the field strength E„„and
(conformal) curvature tensor Au„u, which are
gauge invariant. For s& 2 there are no local
gauge-invariant quantities of first or second or-
der in derivatives. Instead a gauge field satisfy-
ing (3.2) can be characterized by the third-order
quantities which are the components of' Wp. p ~ p

in (3.1).
The algebraic constraint that fields (for s& 4)

are required to be double traceless, i.e.,

po
(II) po p» ~ » p (3.3)

was found necessary in previous treatments. Such
a constraint might be expected because the double
trace is gauge invariant (indeed the strongest
gauge-invariant constraint possible), and des-
cribes lower-spin components of the field. If not
eliminated, the field theory mould not contain
pure spin s, and would very likely have negative-
metric ghosts. With this physical motivation in
mind we will assume the constraint (3.3) and dis-
cuss the key properties of (3.2). Later we will
come back to the constraint (3.3) which can actual-
ly be motivated strongly within the present form-
alism; specifically, the wave equation (3.2) can
only be derived from a Lagrangian if (3.3) is im-
posed.

The compatibility of (3.2) must still be checked.
To do this we compute the first and second traces
of the wave operator, viz. ,
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Wp p o ~ op =2&pp p o ~ y p -2~pea(p p ~ ~ o p
P P po

3 S 3 S S

ap+Zxsu, a pro u, ~ ~ u,

paZ2 us up+ p& (3.4)

TIr =1t iTlI 3 l

pa 7Zl u T9 po ue ''u
5 6 S

pa 7

+Z2su5su6&pu~
p

(3.5)

p2 ~ ~ ~ ps p~ p ~ ~ ~ ps 2 1 p2~ p p3o ~ a ps
p

=0 (3.6)

is appropriate, since it contains precisely as many
conditions as the number of independent compo-
nents of the gauge parameter gu . ..„.This is so
because

zp .. . =~a pa
p p ~ ~ ~ p ~g p g7 p ~ ~ ~ p

p

(3.7)

vanishes because of (3.3). Use of the gauge condi-
tion (3.6) is extremely natural for the wave equa-
tion (3.2). If (3.6) is imposed, then (3.2) simply
implies the d' Alembertian equation

(3.8)

Since the double trace (3.5) vanishes [but (3.4) does
not] if (3.3) is satisfied, the wave equation con-
tains precisely the correct number of conditions to
determine the components of the symmetric double-
traceless field yp . . .„.

%e now discuss gauge fixing and the counting of
the independent dynamical modes of the field. The
covariant gauge condition

~ . ~ g (k) =0
3 4 S

(3.10)

The number of such transverse, traceless compo-
nents is exactly 2 for all s. Of course, it is en-
tirely expected that these are the physical com-
ponents of the field. Since the transverse trace-
less components are s-fold tensor products of
transverse polarization vectors, specifically
eu (k, +)eu (k;+)~ ~ ~

&u (k, +)e '"'" and

&u, (k, -)e„,(k, -)~ ~ .e„(k, -)e "'", it is clear that
the particles of the gauge field carry helicity as.
This agrees with existing results. ' '

The present discussion of the degrees of free-
dom of the symmetric tensor gauge field has not
involved constraint equations on the initial data.
One expects that the gauge field equations include
some constraints (with at most first-order time
derivatives) as well as evolution equations (with
second-order time derivatives). Indeed the follow-
ing components of the original gauge-invariant
field equation (3.2),

to the well-known I orentz and de Donder gauge
conditions in those cases.

These observations permit us to count the inde-
pendent dynamical degrees of freedom of the field.
Using the fact that a general symmetric s-rank
tensor in d dimensions has (' „'~, ') independent
components, we find that the field y p,.. . „sub-
ject to the constraint (3.3) has 2s'+ 2 independent
components, whereas we have s' independent gauge
conditions. Imposing the gauge conditions, and

regauging s' components by an appropriate choice
of the s' regauge parameters leaves exactly 2
degrees of freedom, as is required for the des-
cription of a massless particle. Let us denote the
transverse components of the field in momentum
space by y, ... ,- (k), where i, .. ,.i, are two-val-
ued indices. It is clear that these components are
(re)gauge independent and that (3.6) implies the
two-dimensional condition'

for the constrained fields. Thus the particles
described by yp ...„are massless. Further,
the gauge variation of the left side of (3.6) is

FQ) .. .,. =0,
2 S

QQg ~ ~ ~ g Wj j) o ~ ~ j 0
3 s 3 s

(3.11)

5"u" u
=~&u ."~2 s 2 s

so that one can still regauge certain components
of yp ...„without affecting the gauge condition
(3.6), if the gauge parameters satisfy the d'Alem-
bertian equation. This is sufficient for our pur-
pose, because all the field components already
satisfy (3.8) in the gauge (3.6). All of this is
familiar for s=1 and s= 2; indeed (3.6) reduces

(where i and j are space components, i,j =1, 2,
3), constitute —,'s(s —1) constraints, respectively.
Thus we do have the expected s' constraints equal
to the number of independent gauge parameters.
However, when the gauge condition (3.6) is used
the constraints become evolution equations, in-
deed the simple d'Alembertian equation (3.8).
Thus the counting can proceed very simply with-
out paying attention to constraints. In a nonco-
variant gauge the constraints would be relevant,
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but then there would be no regauge freedom. Thus
one would find the same number of independent
components.

We now study I agrangians which lead, upon
variation, to the wave equation (3.2). In our ap-
proach it is suggested that Lagrangians should be
expressed directly in terms of I"'z'„,.. . „and

which have simple gauge transformation
vs

properties. The results are equivalent to the
known form which 18 bQlnear in 8 pp~ .. ~ p

We first look for a Lagrangian of the form'

vanishes identically

~ W~ . ——' () (3.14)
JI

as can be verified by direct computation.
Let us briefly discuss what happens if one tries

to derive (3.2) from a Lagrangian for general ten-
sor fields h„.. .&, which are not subject to the
double-traceless constraint (3.3). In this case the
most general gauge invariant Lagrangian is

g=~ n gj'~l '' ~s g n ~ gJ ~I"3''' J"s

(3.12)

Vy

jets

--', s(s —1)hp~„. . .„

which generalizes the Hicci scalar action for
s = 2. Possible additional terms in the ansatz
(3.12) involving higher traces can be ignored be-
cause of the constraint (3.3). By direct computa-
tion using the expression (3.2) for W„.. . „ in

Sterms of y„...„~ one finds that gauge invariance
uniquely selects the value a =-', s(s —1). This is
also the unique value which leads to the wave
equation (3.2). Variation of (3.12) gives'

X gr 0&3' ' &s V g~sg P ~7&s' ' '
Ws + ~ ~ ~

0 ~2 .
P4 C77'

(3.15)

where omitted terms involve second- and higher-
order traces on the fields (which are gauge invar-
iant). The associated wave equation is

Contraction with q "&"2 tells us that W~
~„.„.„=0,P P3 " Ps

and upon resubstitution in (3.13), one finds (3.2).
There is no Lagrangian involving y„,.. .„and
derivatives which yields (3.2) directly. .The inter-
mediate trace procedure is unavoidable.

One subtlety of higher-spin gauge field Lagran-
gians is that free variation with respect to

is incorrect in principle because of the
double-traceless condition (3.3), One should act-
ually use projection operators to ensure that the
field variation 5y„... ~ also satisfies the sameII j. P~
double-traceless condition. The effect of the
projection operators would then lead to additional
terms in (3.13) involving second- and higher-order
traces of %'„...„.Since such traces vanish self-
consistently)see I3.5)] when (3.3) is satisfied,
these complications can be ignored, and, the naive
variation of (3.12) leads to the correct wave equa-
tion.

The gauge variation of the action (3.12) implies
a Bianchi identity which generalizes the contracted
Bianchi identity of gravitation. Specifically, the
traceless projection of the divergence of (3.13)

(3.16)

We then note that the term q» B„d„h~j"„...„I13 P4 ~ j-I 5
' &6

cannot be absorbed in a higher-order trace of W,
neither can it be canceled by the omitted terms
which are proportional to at least two metric ten-
sors q». Therefore (3.16) would imply (3.2) as
well as a set of extra independent equations on the
second- and higher-order traces of the fields.
However, we would then obtain more independent
equations than contained in (3.16), which shows
that in order to derive Eq. (3.2) as the universal
wave equation from an action principle requires
the constraint (3.3) on the fields.

The final topic of this section is to express the
Lagrangian (3.12) in terms of first-order Christ-
offel symbols. By partial integration of (3.12) and
combining terms one finds the equivalent Lagran-
gian (valid for s~ 2)
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+-,' s(s —2)l P, '"3' ' "~ (I'p, '„.. .„—I'„,'p„.. .„)
+,s(s —1)(s —2)I'p, P "4 ' ' P~ I', (3.17)

For s=2 this Lagrangian coincides with a form
known for linearized gravitation. For s = 1 the
standard form of the Maxwell Lagrangian is al-
ready of this type. Since (3.12) can easily be writ-
ten in terms of q„...„and 8 pI; „.. .„,it is
very likely that (3.12) and (3.17) can be combined
to give a first-order formulation of arbitrary-spin
boson gauge fields in which y„...„andPy P~

are treated as independent fields. One
technical problem is to study the effect of the con-
straints on I, such as

pa 1 pa
v.-"v,

,
~~,. p (3.18)

implied by (3.3) in the variation with respect to 1".

IV. ARBITRARY-SPIN FERMION GAUGE FIELDS

We need gauge-invariant first-order wave equa-
tions to describe fermions. This is not possible
according to the analysis of Sec. II with general
tensor-spinor gauge parameters cp,... „„(&),but
it does become possible if one simple constraint is
imposed. If gauge parameters are required to
have vanishing contraction with a Dirac y matrix
as in (1.4), then the y-contracted Christoffel sym-
bols

~(~) aT (m+1)
&p ~ ~ ' p: p '' p T ap ~ ~ p

.
p ~ ~ ~ p (4 1)

P)li -)li P
&PaP3 ' 9 P P ' Ps 3

(4.2)

T a p ,i,
'Ypa7 p p y +p ap p4 S 4 8

The discussion in this section will be organized

are invariant.
In this section the term gauge invariance refers

to the transformation (1.2) with parameters con-
strained by (1.4). Further, we use the terms
single trace, double trace, etc., to refer to single,
double, etc. , y contractions, as, for example, in

P ~t)
gpp ~ ~ ~

2 g

Pl (1)=& Fp ~ p ~ ~ ~ p1 g
' 1

Z~~p &p&pp
P

2
(4.3)

be adopted as the basic wave equation describing
a massless fermion of spin s+ &. This equation
is equivalent to that found by Fang and Fronsdal'
and has been noted by Curtright. ' It is a natural
extension of the Dirac equation for spin —,

' and an
equation equivalent' to the Rarita-Schwinger equa-
tion for spin 2. For s~ 2 a gauge field satisfying
(4.3) can be characterized by the components of
Q'p" „,.. .„which involve second derivatives, and
are all gauge invariant.

Single and double traces of g„.. . p vary under
the gauge transformation (1.2) twith ('1.4)j, but the
triple trace is gauge invariant. Since it would
otherwise represent lower-spin components of the
fields, we impose the triple-traceless constraint
(relevant for spin ~ -', )

a p
p (4.4)

which was also found earlier. ' Since the wave
operator Q„.. . „ is triple traceless (but not dou-
ble traceless) if (4.4) is satisfied, the wave equa-
tion contains the appropriate number of independ-
ent components.

Precisely as for bosons, some of the components
of the wave equation (4.3) can be viewed as con-
straints on the initial data, .rather than evolution
equations. Indeed, the analog of (3.11) is

I

parallel to the previous discussion of boson gauge
fields. Topics which are direct generalizations
of their boson analogs will be discussed very
briefly and more space will be devoted to questions
which are more complicated for fermions than for
bosons. '

Gauge invariance of the contracted Christoffel
symbols suggests that the first-order differential
equation



BERNARD de WIT AND DANIEL Z. FREEDMAN 21

~ jL
pj ~ ~ ~ j /pe %gj~ ~ ~ ~ g

0 ~
2 S 2

These equations contain only spatial derivatives,
and indeed comprise 2s(s+1) constraints, which
is the number of components of the traceless gauge
parameters e„.. .„.Thes.e constraints play a$20 ~ ~ P Qf 4

role in the discussion of the degrees of freedom
in the initial-value problem for gu . . . „(in con-
tradistinction to the analogous problem for bosons)
because the fermion gauge condition does not in-
volve derivatives and cannot (as it did for bosons)
convert constraints into evolution equations.

A suitable covariant gauge condition for fermion
fields is

1
u2' ' ug y ~uu2 '

ug 2s Zt)yup~u u3 '' u'

rather than the Dirac equation. The situation can
be remedied by using part of the regauge freedom
to make a further gauge transformation to elimi-
nate Puuu ...„.The gauge variation of

&u u ~ ~ ~ u3 S

&u u
P P

3 S 3 S
(4.9)

xg|yu gu u .. . u (y), (4 ]0)

Given a field satisfying (4.8), with nonvanishing
double trace, we make the regauge transformation
with parameters

x„.. .„(x)=2 I S'yD(x-X)l„

=0, (4.6)

1
5E„,. ..„=g „.. .„——,y„s „.. .„(47)

which is traceless and therefore contains 2s(s+1)
independent conditions. Further, the gauge varia-
tions of E& ...„ is

where D(x -y) is a Green's function of the
O'Alembertian operator. One can check using
(4.8) that the gauge parameters e „,. . . „(x)de-
fined by (4.10) are traceless, and that they do
satisfy the regauge condition (4.7) and eliminate
rj~
&P P3' '' PS'

Thus, after the regauging above, one finds that
the gauge condition (4.6) has become

yg„. . . =0,P (4.11)

so that the condition (4.6) allows further regauge
transformations with parameters c„...„for
which (4.7) vanishes. Equation (4.7) is traceless
when eu . . . u, is traceless (yueuu, ..„=.0) and
defines an in'.tial-value problem containing no con-
straints in which tracelessness is preserved in
time. Regauging therefore allows removal of
2s(s+ 1) degrees of freedom.

The number of dynamical components of the field
can now be counted. The number of components of
the triple traceless gu . . . „ is 6s'+ 6s+4. From
this, one must subtract the number of constraints
(4.5), the number of gauge conditions (4.6), and the
number of regauge possibilities, which represent
2s(s+1) components each. This leaves 4 degrees

. of freedom for all s; more specifically, the free-
dom of four complex functions for a "Dirac" fer-
mion field, and four real functions for a "Major-
ana" field. '

At this point the dynamical components of the
field )I)u. ..„have been counted accurately, but
the situation is not yet optimal because the field
equation in the class of gauges defined by (4.6) is

1
(yu, su +yu su, )gu u u, =0

P

(4.8)

and the remaining (traceless) field components
now satisfy the Dirac equation,

=0, (4.12)

showing that the field describes massless par-
ticles. There is still further regauge freedom
with traceless gauge parameters which satisfy

"u ~ ~ ~
u

=0 ~
2 S (4.13)

Note that the original regauge parameters (4.10)
were not unique, since any traceless solution of
(4.13) could be added without changing the proper-
ties needed.

The initial-value problem for the fermion gauge
field is now in a form which is naively expected,
and more or less analogous to the boson gauge
field problem. Since the use of an intermediate
regauging is new, it is a useful check to recount
the degrees of freedom of the initial-value prob-
lem defined by (4.11)-(4.13). The traceless spin-
or field )))u. . .„has 2s'+6s+4 independent com-fy' ''

P~
ponents. The Dtrac equation (4.12) for a traceless
tensor-spinor field comprises both the evolution
equations and constraints. The latter are still ex-
pressed by Eq. (4.5) [with (4.11) taken into ac-
count]. Hence, we still have 2s(s+1) constraint
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+=-2(p~. ~ . p
'Q ~+a(pp . . . p y y Q "2 "s

+b$ p„.. .„Q 'ps ' ps, (4.14)

which are directly expressed in terms of the @-
contracted Christoffel symbol and further traces.
The values a =-,'s and b =-,' s(s —1) are uniquely de-
termined by gauge invariance. The Lagrangian
(4.14) coincides with the Lagrangian of Fang and
Fronsdal, ' and gives the wave equation

2~ yy &y Qppp

1
2~ppQP p . p1 2 3 (4.15)

equations on the initial data. By analogous argu-
ment one finds that the regauge problem (4.13)
contains 2s(s —1) constraint equations on the gauge
parameters. Thus the number of degrees of free-
dom in the regauge initial-value problem is the
number of components of a tracelsss e„.. . &,
namely 2s(s+1), minus the constraints, leaving
4s independent functions. Since the original re-
gauge degrees of freedom were 2s(s+1), we see
that 2s(s —1) were used in the first regauging to
eliminate gpP„. . .„.As expected from (4.9) this

S
is precisely the number of components contained
in the divergence SpeP„. . .„or in gpP„. . .„.The
recount of the degrees of freedom is now straight-
forward. We counted 2s'+ Gs+4 components in the
traceless field g„...„,from which we subtract
the 2s(s+1) constraints and the 4s degrees of
freedom eliminated by the second regauge trans-
formation, to find four dynamically independent
components.

In momentum space the positive-frequency
forms e „(0,+ )e „(0,+ ) ~ ~ e „(0,+ )u (0, + )e "
and e (k, -)e (k, —.) e„(k, -)u„(k, -)e '" ",
constructed from transverse polarization vectors
e„(k, a) and positive- or negative-helicity solu-
tions u (k, +) of the Dirac equation, satisfy (4.11)
and (4.12), and are regauge independent. Obvious-
ly they carry helicity a(s+-,'). For Dirac field one
adds the corresponding negative-frequency solu-
tions to find the four complex dynamically inde-
pendent components of the field. For a Majorana
field the positive- and negative-frequency parts
are complex conjugate to each other, leaving four
independent real functions. The results reported
here are in agreement with previous work based
on a variety of methods. '''"

We now follow the discussion for boson gauge
fields, and study Lagrangians which lead to the
wave equation (4.3). We look for Lagrangians of
the form"

This leads to (4.3) after contraction with y ma-
trices. There is no Lagrangian leading directly
to (4.3) without intermediate trace operations. As
for bosons, we have the situation that naive varia-
tion of (4.14), ignoring the triple-traceless con-
straint (4.4), gives the correct wave equation, be-
cause triple- and higher-order traces of Q„,. . . „
vanish self-consistently for triple-traceless
fields. Further, the triple-traceless constraint is
required if the wave equation (4.3) is to be obtained
from a Lagrangian.

The gauge invariance of the Lagrangian implies
again a Bianchi identity. The z-traceless part of
the divergence of the wave operator vanishes
identically, "'"

np8 PQ p
i ~ ~ P 2 KPPQ P ~ ~ ~ P

(4 15)
P

as can be verified by direct computation.

V. TOWARD INTERACTIONS

The construction of free arbitrary-spin gauge
field theories is an important simplification of the
previous literature on higher spin. Consistent in-
teracting theories of higher spin remain a difficult
problem and one of crucial importance for applica-
tions of these theories. It was hoped that the
present natural formulation in terms of general-
ized Christoffel symbols and curvatures would be
helpful in constructing interactions. This hope
has not yet been realized. In this section we re-
view some of the difficulties concerning higher-
spin interactions, and present a novel attempt
involving interactions with a relativistic particle
which is partially successful.

One tries to formulate an interacting field theory
of higher spin as a gauge theory of several coupled
or self-coupled fields, which is invariant under
transformations which generalize the free-field
gauge transformations. These transformations
would presumably not commute and would gener-
ate a non-Abelian symmetry group of the theory.
Unfortunately, there is a general theorem" that
a unitary relativistic S matrix cannot be invariant
under transformations whose charges carry spin
~ —,

' (which would couple to gauge fields of spin
~ -', ). This is confirmed by specific attempts to
construct high-spin invariance algebras, which

have required that the charges vanish in a pos-
itive-metric Hilbert space of particle states. "'"
Such a requirement is also consistent with the
conclusion of Ref. 16 that the coupling of spin
~

& particles must vanish in the soft-particle limit.
Nevertheless, it may be possible to evade these
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COY PQ„.. . p
—= y D g„.. .„—,D„( „.. . „1 s 1 s 1, 2 s

(5.1)

~Pa '' Pg 'Z& V

V

(5.2)

I
p~pq 'v '( p 2+ 0 cab )~pz.

negative conclusions. For instance, one possibil-
ity is that higher-spin gauge-invariant Lagrangians
exist, such that spontaneous breakdown of the un-
acceptable symmetries occurs leaving an S matrix
with an admissable symmetry group.

The difficulty of higher-spin interactions may be
illustrated by the minimal-coupling inconsistency
problem. Here one covariantizes the free-field
Lagrangian and transformation rules using elec-
tromagnetic or gravitational derivatives. One
hopes' that the resulting interacting Lagrangian
will remain invariant under the combined gauge
tr'ansformations, or that the validity of the covar-
iantized wave equations [(3.2) or (4.3)] or Bianchi
identities [(3.14) or (4.16)] allows nontrivial elec-
tromagnetic or gravitational field configuxations.
For spin 2 it is known that the minimal coupling
to electromagnetism' or gravity"' "fails.

A more direct way to find the inconsistency is to
check whether the variation of the covariant wave
equation with covariant transformation laws still
vanishes in a nontrivial background field. For
fermions coupled to gravity, one has the covariant
equations

The Ricci identity appears in the first line, and
is expressed in terms of the (full nonlinear) Rie-
mann tensor in the second line. Using some y-
matrix algebra and the cyclicity property of the
Hiemann tensor, one sees that the "spinor terms"
contain only the Ricci tensor R„„., while the full

CCRiemann tensor remains in the "vector terms. "
Thus gauge invariance of the higher-spin fermion
wave equation fails in the presence of a nontrivial
gravitational field. Spin —, is an exception, since
the vector terms are absent. Therefore, as is
well known in supergravity, the spin-& wave equa-
tion is consistent in a background geometry which
satisfies R» =0, the vacuum Einstein field equa-
tion. Finally we note that the symmetrized Rie-
mann tensor which appears in the vector terms in
(5.4) coincides in linear order with the spin-2
generalized curvature tensor of Sec. II [see
(2.10)].

For higher-spin bosons one can perform a sim-
ilar exercise and find that the variation of the
gravitationally covariant wave equation contains the
full uncontracted Hiemann tensor and its deriva-
tives (in addition to Ricci tensor terms), so that
the higher-spin gauge invariance fails in a non-
trivial gravitational field.

Our search for higher-spin interactions and for
possible applications of the generalized Christof-
fel symbols led us to consider the interaction of
high-spin boson fields with relativistic particles
rather than fields. The motivation was the form
of the equation of motion of a particle with mass
m and electric charge e in an electromagnetic and
gravitational field, namely

(5.3)

PV P PV jl &II ' ~ P

PPy ~&P2 ' '
Vg ~

where ~P" and I'„„P are the standard gravitational
vierbein connection and Christoffel symbol. The
variation of (5.1) using (5.2) and (1.4) is (ignoring
torsion)

'Qv "~
= y'Z. (D p v

II

( ( ))
ck "&(v) dx "2(v) (5 5)
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where x"(v) describes the space-time trajectory
as a function of the proper time 7. The Christof-
fel symbols are defined aS in (2.1); the spin-1
symbol coincides with the electromagnetic field
tensor, and for spin 2 we recover the standard
Christoffel symbol of gravity (modulo a factor
-2z) if we relate the metric tensor g„„, used to
raise and lower indices in curved space, to the
spin-2 field y„, by

g» ='O„I + &g» (5.6)
V

"P ~ jf 'P1 2 s

2(R&u & +Rzv & )y e
v

(z is the gravitational coupling constant). Equa-
tion (5.5) immediately suggests that we consider
generalized laws of force of the form

(5.4)
rp

& ( ))
ck i(T) c&c (T)

67 (5.7)



21 S YSTENIATICS OF HIGHER-SPIN' GAUGE FIE LDS 367

for the interaction of a particle with a high-spin
gauge field. The spin-s coupling constant is e, .

It is not difficult to find actions that lead to
particle equations of motion containing terms like
(5.7). For example, the action

+e, (g~(x(p)} )
(5.8)

where x" (p) parametrizes the particle trajectory
in terms of a parameter P, yields an equation of
motion containing (5.5) and (5.7) and an additional
term involving velocities and the acceleration.
The action (5.8) is invariant both under repara-
metrization of the particle trajectory, and under
standard general-coordinate transformations.
Surprisingly, it is also invariant through first
order inc, under the combined transformations

which are a covariant extension of the gauge
transformation (1.1) and an accompanying trans-
formation of the particle coordinates, invariant
under reparametrization of the particle trajectory.

To second order in e, the variation of (5.8) un-
der (5.9) involves many powers of the velocity,
suggestive of the interaction with an even higher-
spin gauge field. However, we have not been
able to obtain a complete gauge-invariant system
which generalizes (5 ~ 8), even when many higher
spins were considered. One should also note that
lowest-order invariance holds for general gauge
fields and transformation parameters, without the
need for imposing constraints such as (1.3) and/or
(3,3). There is, therefore, no natural match with
the required constraints on free gauge fields.

Note added: The possibility that deformations
of gauge groups provide an underlying mathemati-
cal structure for higher-spin interactions has
been discussed. ' The d'Alembertian and Dirac
equations for higher-spin fields were also ob-
tained" by covariant quantization with suitable
auxiliary fields.
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