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Path-dependent formulation of gauge theories and the origin of field copies
in the non-Abelian case
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The introduction of path-dependent potentials, as new relevant objects, allows us to relate in a natural

way the path-dependent formulation of gauge theories to other point-function formulations. The absence of
field copies in a very general class of gauges is proven in a rather obvious geometric way.

I. INTRODUCTION

A„{x,p{x)) = f dx' f~„{x'),
P (x)

(2)

where P(x) is a continuous path going from spatial
infinity to the point x. Let us also introduce the
differential operator, which we shall refer to
hereafter as the parallel derivative, given by

F(x+ ~, P. (x+ e)}-F(X,P(x))
f ~ P

(3)

As is well known in the electromagnetic case,
once some field strength f„„which satisfies the
Bianchi identities is given in a simple connected
region, the potential A„ is locally determined up
to gauge transformations. In the non-Abelian case,
even in a simply connected region, the field
strength f'„„does not determine the gauge field. '

It is the purpose of this paper to comment on the
source of the ambiguities in the non-Abelian case
and to identify the fundamental object that deter-
mines the gauge field. The discussion is presented
in the framework of a path-dependent formulation
of gauge theories which extends the Mandelstam
formulation' with the introduction of path-depen-
dent potentials as new relevant objects. As a re-
sult of the discussion it will become apparent that
the well-known Wu-Yang' formulation may be con-
sidered as a particular case of this extended path-
dependent formulation.

Since the relevant elements of the path-depen-
dent formulation are already present in the elec-
tromagnetic case, we shall discuss it in some
detail. Let f„gx) be some field strength satisfying
the Bianchi identities

f„, ,( ) xj„+, „(x)+f„, ,(x) =g„„(x),
where g„,~(x) is the dual of the magnetic current.
We may then introduce the path-dependent poten-
tial

P (x+ e) .is obtained from P(x) by parallel trans-
port to the point x+E.

From (2) and (3) it is easy to obtain

r x

s. „A„(x,P(x)) =
"P (x)

dx' ~f),„„(x')

and using the Bianchi identities it is possible to
recover the point function f„,(x) from the path-
dependent potential by the familiar expression

f„„(x)= A„.„(x,P(x)) —A„.,(x, P(x))

+ dx'~g„„~(x') .
I (x)

This construction shows in a transparent way the
connection between the Bianchi identities, the
field strength, and the potential. It is, in fact,
the coordinate version of a natural geometric con-
struction which represents nonclosed k-forms in
a manifold by (& —l)-forms in the manifold of
paths of the original manifold. The decomposition
(5) arises as a very general homotopy associated
with the construction. A more detailed discussion
of this formulation of electromagnetism will be.
reported e lsewhe re. '

Since parallel derivatives are obviously com-
mutative, the addition of a parallel four-gradient
A. „(x,P(x)} to the path-dependent potential leaves
invariant the decomposition (5). Nevertheless,
the path-dependent potential given in (2) is a
gauge-invariant object which contains all the rel-
evant information of the problem.

Ordinary point-function potentials may be ob-
tained from the path-dependent potential by select-
ing a fixed path for every point x. For instance,
let us consider some fixed reference path C going
from spatial infinity to the origin of coordinates.
We may then select for every point x the path C(x)
obtained from C by parallel transport from the
origin of coordinates to the point x. The point-
funetion object which arises from this path spe-
cialization will be denoted as

where F(x, P(x)) is any path-dependent functional,
& some displacement in the "p" direction, and & „(x)= A„(x, P(x) }~ ~ &„& c or A „(x)= A „(x,C) . (6)
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A.(x) = — )' da&&a(x-a),
"c'

where the string C' is symmetric to the reference
path C with respect to the origin.

The Wu-Yang' formulation of electromagnetism
may be considered as a particular case of the
path-dependent formulation. To see this, let us
consider some finite covering of space-time by
open sets D„D„.. . , D„with nonvanishing inter-
sections D„.. I et us assign a reference path C,-
to each region D, and then let us fix parallel paths
C;(x) for each point in this region. Within a region
D, one must then have the usual representation of
the field strength in terms of the ordinary point-
function potential A„(x, C,.). For x belonging to
some intersection region D„., the potential is dou-
bly defined but it is immediately seen that the two

potentials are related by a gauge transformation.
In fact, a, simple calculation using the Bianchi
identities and the Stokes theorem shows that for
~ in D;,. one has

A„(Ã, C;) —A„)x, C;)=8„(-fa."'P.'„,),
E)~

(S)

where Z„. is some two-dimensional surface drawn
from C,(x) to C, (x). A variation of this surface
will change the integral in (S) by the amount of the
magnetic charges enclosed in the variation.
Hence, the potentials in adj'acent regions are re-
lated in the intersection by the gradient of a multi-
ple-valued function, a familiar characteristic of
the %u-Yang formulation.

Since the reference paths C, may be changed at
will, the whole %u-Yang construction is equivalent
to a path-dependent potential which only exhibits
the degrees of freedom associated with the path
when going from region to region in some covering
of space-time. One may then consider more re-
fined coverings and in the limit when the regions
reduce to points the %u-Yang potential reduces to
the path-dependent potential given in (2).

II. THE NON-ABELIAN CASE

The generalization of these ideas to the non-
Abelian case is rather straightforward. Following

It is an immediate consequence of the definition
given in (3) that

s. Aq(x P(x))~~( ) ~ Aq (x)

and then it follows from (5) that A„(x) is an ordi-
nary potential with its string singularities related
to C in an obvious geometrical way. For instance,
in the case of a static monopole at the origin of
coordinates, one may obtain from (6) the Dirac
potential with a generic string'.

Bialynicki-Birula' and Mandelstam" one may in-
troduce the path-dependent field strength

F '„„(x,P(x))

X

exp d d. -g dx A. ), x Cg „x
P (x)

(10)

where c,. are the structure constants, f~„(x) is the
ordinary field strength, and A&(x) is the point-
function connection. One may also introduce the
well-known Mandelstam' covariant derivative D„
which satisf&es

D„F'„,(x, P(x)) = (C „~p(S,6,' gA'„C, '—,)f'„.(x) .

In this formulation the Yang-Mills equations may
be written as

D F'„„(x,P(x))=Z'„(x, P(x)),

D„F'„,(x, P(x))+ D„F;„(x,P(x))

(12a)

A'„(x, P(x)) = dx' 'F',„(x',-p (x')),
Pfx)

(14)

where P (x') is that portion of P leading to x'.
From (3) and (10) it is then possible to write the

general relation between the Mandelstam covar iant
derivative and the parallel derivative:

D F'„„(x,P(x)) = [9. 5~ -gA'„(x, P(x))C,' ) F ~ „(x,P(x)),

(1~)

which allows us to write the path-dependent Yang-
Mills equations in the form

+D„F„'( ixP(x)) =0 . (12b)

The path-dependent field strength is a gauge-in-
variant object since it may be obtained as the
phase factor around a closed loop beginning and

ending at spatial infinity and enclosing some in-
finitesimal surface der„„spanned by the vectors
u„and v at the point x:

(C „~„„,„„„,„„,„„~}),= 5~ —ag F'„„(x,P(x))5(r""C,~'.

(13)

Hence, for asymptotically vanishing gauge trans-
formations, the fieM strength is gauge invariant.

Although the Mandelstam formulation is a com-
plete description of gauge theories in terms of fun-.
damenta1. gauge-invariant objects, it is not clear
how to relate it to other formulations given in

terms of point-function objects. For this purpose
it is more convenient to use the parallel derivative
operators introduced in (3) and to define the gauge-
invariant path-dependent potential as
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[8 „6.
' —g A„(x,P (x))C,' ]'F ~"(x,J'(x)) =J'(x, P (x)),

(16a)

[S.„6'—gA'„(x, P(x))C,' ]F '„"(x,P(x)) = 0 . (16b)

A'„(x, n)= dx" F' (x' n)
n

(18)

and since dx'~ is collinear with n", one must have

n" A'„(x, n) = 0. (19)

Hence, selecting parallel rectilinear paths is
equivalent to considering ordinary potentials with-
in the gauge where the subsidiary condition (19)
holds. Then this geometrical argument suggests
that within such rectilinear gauges, field copies
should not exist. In fact, this result has been re-

From the Bianchi identities (12b) and the relation
(15}between the Mandeistam and the parallel de-
rivatives, it is possible to obtain the familiar de-
composition

F' „(x,p(x)) = A'„.„(x,P(x)) —A'„.„(x,P(x))

+&C „Ao,(x, ~(x))A„(x,Z(x)), (»)
which holds for asymptotically vanishing path-de-
pendent f ield strengths. These expressions show
clearly the connection between the path-dependent
formulation and the ordinary formulations in terms
of point-function objects. In fact, if one selects
parallel paths for every point in some region, it
follows from (15)-(17) and (7) that A'„(x, C) is an
ordinary potential associated with the point-func-
tion field strength F'„,(x, C).

The path-dependent potential is a gauge-invari-
ant object since it may be constructed from the
gauge-invariant path-dependent field strength.
However, different families of parallel paths lead
to different point-function potentials which are re-
lated by a gauge transformation.

The relation of the path-dependent formulation
to the Wu-Yang formulation is now readily obtained
following exactly the same ideas discussed in the
electromagnetic case.

The origin of field copies may now be understood
in geometrical terms. Let us consider some or-
dinary point-function field strengthf'„„(x) —= F'„„(x,C).
The ordinary potential A'„(x, C) cannot be con-
structed in a unique way since (14) also requires
the information contained in F'„(x', q(x')), which
is in general different from f'„„(x')= F'„„(x',C(x—')).
If any only if the reference path C is a straight
line does C(x') coincide with g (x') and may
A„(x, C) be constructed explicitly from f„'„(x). But
if one selects a family of rectilinear parallel paths
along some unitary spatial vector pg„, the potential
will. be given by

n" (x)A'„(x}= 0, (20)

field copies cannot exist.
The proof is straightforward. By assumption,

the differential equations

«"(y., y„y., y.}= ~ "[«(y }]
8/3

define a nonsingular change of coordinates y
~ =

y "(x). 'In the y system the condition (20) reads

(21)

A.;(y) =0 (22)

and, under such a condition, it has been proven
that field copies cannot exist. Moreover, it is
easy to convince oneself that the proof was in fact
independent of the chosen coordinates. Hence, the
absence of field copies in the gauge (22) implies
also the absence of field copies in the much more
general class of gauges given by condition (20).

The asymptotic condition imposed on n" (x) is
necessary to guarantee that the -paths in space-
time have a definite and unique asymptotic direc-
tion and axe then acceptable in the path-dependent
formulation.

cently proven by Halpern"" in. the case of the
axial gauge.

It is convenient at this point to present an inde-
pendent proof of this result based on the following
remark. If some ordinary potentialA'„(x) associa-
ted with some field strength f„',(x) is given, the
path-dependent field strength and the path-depen-
dent potential can be uniquely constructed using
(10) and (14), respectively. Selecting then some
parall. el family of paths C, one may determine the
ordinary objects f'„;(x)=—F'„„(x,C) and A '„'(x) =

A'„(x, C). It is evident from the same construction
that f' '„and A„'' are gauge transforms of f'„„and
A'„, respectively.

Let us now assume that some point function

f„„(x)is given with two nonequivalent potentials
4'„,(x) and 4', (x), both satisfying the condition
(19). It follows then immediately from (10) that
the two path-dependent field strengths that may be
constructed satisfy F'„(x,n) =f'„„( )xand hence both
lead to the ordinary potential A'„(x, m), According
to the above remark, bothy;, andA» must be re-
lated to A'„(x, n) by a gauge transformation and
then they must also be gauge transforms of each
other. We have then a contradiction.

This geometrical proof leads immediately to a
wide generalization of Halpern's result. Let us
consider some spatial unitary vector field n„(x)
which defines a three-parameter family of infinite
nonintersecting tangent lines which have the same
asymptotic direction at spatial infinity. Then in
the gauge
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