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An analysis of dynamical, S-operator, and spontaneous violations of space parity P, charge conjugation C,
time reversal T, and PCT operations in models of quantum field theory is presented. In particular, it is
shown that P and T can be dynamically violated in P(4), and sine-Gordon models and that P is
dynamically violated in the Federbush model. An interesting example of spontaneous P violation in X4,
theory is discussed. The connection between 8 and PCT symmetries in quantum field theory is elucidated
and it is shown that in some P(4)2 and Federbush models, though 8 remains a good symmetry, PCT
symmetry is dynamically violated.

I. INTRODUCTION

In this work we consider several quantum-field-
theoretical models in which various discrete sym-
metries are violated. The main purpose of this
analysis is to clarify the meaning of discrete sym-
metries operations in cases when these symmetries
are not conserved. The need for such an analysis
follows from the fact that some authors who in-
vestigated this problem both theoretically and ex-
perimentally" reached the conclusion that in the
case of parity violation the corresponding parity
operators are not defined on the carrier Hilbert
space of physical states In pa. rticular, Lee (cf.
Ref. 1, Sec. 1.4} observes that since P and e"~
are representatives of a geometrical space inver-
sion and a time translation, if defined, they must
necessarily commute. Thus if one checks out that
for a given dynamical system [P,K]W 0, this will
mean that P is not defined. This point of view,
however, brings up many difficult questions. In
particular, if the parity operator cannot be de-
fined, then how can we determine its eigenvalues
and eigenfunctions and in what sense is the parity
violated?

We think that a definition of nonconserved phy-
sicalquantities shouldref lect the conditions in
which these quantities are measured. Thus in our
opinion it is not worthwhile to consider the com-
mutator [P,Xj because we have no possibilities to
measure this quantity during the time evolution of
the dynamical system. What is actually known or
measured are the parities, energies, momenta,
spins, etc. , of incomingand outgoingparticles. Thus
one should introduce the concept of observed quanti-
ties for incomingparticles such as parity P„, charge
conjugation C„, and even time reversal T,.„etc.,
and verify, if possible, that during the time evolu-

tion these quantities are or are not conserved.
Since in every quantum field theory satisfying the
Haag-Ruelle assumption' the space H„of incoming
particles is a subspace of the Hilbert space H of
the physical state vectors, the "in" observables
are always well defined. In addition, if asymp-
totic completeness is satisfied then H„=H=H, „,.
Thus defining physical observables in terms of in
or out quantities furnishes a good framework for
analysis of conservation or violation of a given
physical quantity.

We now give a precise definition of conservation
(or violation) of P, C, T, and PCT operations.
We shall always assume that we have a quantum
field theory satsifying the Haag-Ruelle assump-
tions so that the corresponding interacting fields
have then asymptotic in and out fields and H„&H,
H,„,& H. We begin with the space parity operator.

The analysis of the concept of parity violation
suggests the following three distinct definitions:

(i) We say that the parity operator P,„defined in
the carrier Hilbert space H„L H is dynamically
violated if

P,.e,,(t, x}P,„'=q,e,„(~, x).-

but

P„C(f,x)P„-'~q,C(i, x),
where q~ equals + 1 or -1.

(ii) We say that parity P„ is not S conserved -if
[P,.„S]~0.

(iii) Let 2r (C, g) be a total Lagrangian for, say,
a spinless boson C and a fermion p field, which is
invariant under space reflections:

C(t, x)-q e(t, x), y(t, x) -—q~y'q(t, -x},
g„=+ 1, q'=+ 1,+ j. I et the carrier space H be
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H=6 H„, (1.4)

where & are pure Wightman states which define a
given superselection sector (-phase). We say that
space parity is spontaneously broken if there exists
a Wightman state ~ which is not invariant under
space reflection.

Remarks.
(1) It may occur that parity is dynamically vio-

lated but still S-conserved. This indeed holds in
several models, e.g. , in the Federbush model (for
certain values of the coupling constant) considered
in Sec. III. On the other hand, if parity is dynam-
ically conserved, then it is also S-conserved.

(2) The case (iii) holds, e.g. , even in the case of
XC', theory. In this case, the Wightman states
which are not invariant under space reflection are
simply vacuums or Wightman states defining soli-
ton and antisoliton superselection sectors (cf. Sec.
nc).

(3) We have statedthe above definitions for parity.
But, of course, the same definitions hold for any
other discrete symmetry, e.g. , charI, e conjugation
C,.„C„P,.„Gparity, etc. Only in the case of T
and PCT symmetries must some additional care
be taken in defining them because of the antilinearity
of these operations, as follows.

(i} The time-reflection symmetry T,, is dynami
cally violated if

T,.e,.(t, x}r,, '=q, e.„,( t, x),-

Wightman framework, 0 is always a symmetry of
the theory for any dynamics; on the other hand,
the operation PCT might or might not be a sym-
metry and, in general, may be chosen to be dif-
ferent from 0. We show this explicitly in Sec. V
for P(C), models and for the Federbush model.

The simplest illustration of nonuniqueness of
discrete symmetry operations maybe given already
in the case of the free Poincare spinless neutral
field 4,.„. In this case, one may introduce in the
Fock space H, , associated with 4,.„ two parity
operators 'P„and P,, given by the formula [cf.
Ref. 5 (i), Sec. V and Ref. 5 (ii)]

3~
HAPP. =exp zw

N 9 pa*. pa. -p

'g =+1 (1.6)

(N, „=particle-number operator) which satisfies in

H„ the following conditions:

"~P„e,,(t, x)"n f =rI C,„(t,-x), .q, =+I.
Since in this cas 4 s

= 4'o t ha, xn Hi two
time-reflection operators "&T,q~= + 1, with the
property

"rT,,C „(t,x)"rr„' = ilrC,.„(-t,x), qr =+ 1. (1.10)

These time-reflection operators can be realized
explicitly in H„by the formula

T„@(t,x)r„'e

iver

4(-t, x),
(1.5)

~ le'

"~T =exp N q a* pa p K
0

(1.11)
where g~=+ 1 for a Poincare scalar field. For
tensor and fermion fields appropriate matrix fac-
tors on the right-hand side will appear, e.g. , iy'y'
for the Dirac field in R4.

(ii) We say that time reflection is S-conserved if

(1.6)

It seems that there is some confusion with respect
to the concept of PCT symmetry. Namely, the
analysis of this notion in the axiomatic quantum
field theory shows that PCT symmetry is identified
with the operation 8 ' defined by the formula [c.f.,
e.g. , Ref. 4, Eq. (3.67)]

e-'q. ;(x)e =(-1)V''~'q*. ;(-x),
where (j,k) is the index characterizing irreducible
representations D'~ "of SL(2, C) and

0 for j+k even

1 for j+k odd.

This operation should be contrasted with the oper-
ation PCT, which is the product of the individual
P, C, and T. Obviously, since we are in the

where K is the operator of complex conjugation.
We recall that according to Watanabe's classifica-
tions there can be four kinds of scalar (or tensor)
fields depending on their properties with respect
to space and time reflections, namely the scalars
of the 0-kind (space scalar, time scalar), 1-kind
(space pseudoscalar, time scalar), 2-kind (space
pseudoscalar and time scalar}, and 3-kind (space
pseudoscalar and time pseudoscalar}. The for-
mulas (1.9} and (1.10) demonstrate that there are
no intrinsic space and time parities associated with
a spinless neutral free quantum field. A given
free field 4,„ in Fock space can be converted into
a scalar field of arbitrary Watanabe kind at our
will by a proper choice of "PP„and "&T„inversion
operators.

Since C„ in the considered case is trivial, we
have in H„ the following four PCT operators:
+PgnCgn Tfn~ +PgnCf Tgn ~ PgnCgn Tgn& and PgnCgn T
Clearly, the first and the last will coincide w'ith the
8 ' operation when acting on the field 4„; however,
the second and third will be distinct from it. It
seems that, physically, nothing forces us to corre-
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late a space parity g~ with a time parity q~ for a
given field. Thus there is no reason to restrict
ourselves in concrete cases to 8 ' symmetry and
disregard the PCT operators. If we considered
a charged Poincare scalar field, the situation would
be even more complex and we would have in H„
eight PCT operators with four of them distinct
from 8 '. In the case of the interacting fields, the
situation is even more drastic since 8 is always
dynamically conserved, whereas PCT might be
dynamically violated (See Sec. V).

The problem of the choice of phases for discrete
operations is an old one. ' ' Evidently, it was
recognized early that the choice of phases of P,
C, or T is to a large extent arbitrary. In particu-
lar, Wick, Wightman, and Wigner' have shown
that superselection rules such as charge, angular
momentum, or baryon-number conservation forbid
us to determine uniquely the phases of P, C, or T
operations.

However, implicitly or explicitly, most of these
works supposed definite transformation properties
of the interacting fields under discrete operations.
In this work it will be shown that in cases in which

discrete symmetries are violated, all a Priori
imagined transformation properties of the interac-
tion fields break down.

It should also be evident that though in most
cases the choice of the phases is arbitrary and

does not have an a priori physical justification,
such a choice usually has physical consequences.

If we admit arbitrariness of phases, say, for the
T operation as, for instance, is implied by super-
selection rules, then it is as good to have a theory
(supposing PC is violated} in which T is violated
and PCT= 8 ' is conserved as it is to have a
theory in which T is conserved and PCT (different
from e ') is violated. Under such conditions no

experimental verification of PCT conservation
can exist. Or else, if, say, in refined experiments
in the K, system one is able to get some informa-
tion on the phase of T, it might still be that ex-
periment can distinguish between these last two
possibilities.

The most important conclusion following from
our work consists in the fact that the Lagrangian
and the field equation can dynamically violate parity,
charge conjugation, time reversal, or PCT- sym-
metry, but still these operations might be S-con-
served. Thus the standard analysis of discrete
symmetries violation based on glancing at the
interacting Lagrangian is not satisfactory and

might lead to incorrect conclusions. Similar re-
marks concern in fact also continuous symmetries.
One has really to solve the problem and determine
the asymptotic fields 4„and 4,„,or scattering
operator S in order to verify symmetry violation

or conservation. However, in general, it is
quite difficult to achieve this last point because of
technical difficulties associated with rigorous and

nonperturbative construction of the S matrix itself
for a given model.

In this work in Sec. II we analyze discrete sym-
metries violation in P(C), and sine-Gordon models.
We show that for some P(4), interactions, parity
is well defined and dynamically violated. We also
show an interesting fact that although these models
provide examples of local quantum field theory, the
product PCT might be dynamically violated. In
Sec. II we also give a striking example of spon-
taneous parity violation in' a X4', theory.

In Sec. III, we analyze the Federbush model. We
show that, for certain values of the coupling con-.

stant, the parity is dynamically violated but is,
however, S-conserved. We also show that charge
conjugation is dynamically and S-conserved. Con-
sequently, P,„C„is dynamically violated but is S-
conserved.

Finally, in Sec. IV, we show that time-reversal
symmetry may be dynamically violated in some
P(C}, models, and in Sec. V we show that the pro-
duct PCT may be dynamically violated in some
P(C), models and is dynamically violated in the
Federbush model. We also show explicitly that
the 8 operation in these models is always a sym-
metry, in agreement with a general theorem (cf.
Ref. 4, Sec. 4.3). Several critical remarks and
suggestions conclude our article.

This work is a continuation of a previous one
where the same problems were analyzed in the
case of classical relativistic nonlinear field theory
of boson and fermion fields in R4 (Ref. 10).

S 'C,„S=C,„,. (2.1)

We wish to show in this model, similarly as in

classical nonlinear relativistic field theory, that
the parity operator is well defined but, in general,
dynamically violated. We define the in and out
parity operators in a conventional manner:

"~P,.C,.(t, x)"~P,, '=q C,.(t, x),
"I'P,„,4,„(t,x)"~P,„, ' = q 4,„(t,-x),

(2.2)

II. PARITY VIOLATION IN BOSON FIELD THEORIES

A. P(4)~ models

Consider the weakly coupled:P(C), : quantum
field theory with P($) =Z„=,X„P, for X,„)0. It
was shown that in these models all Wightman

axioms aresatisfied and there exists an isolated
one-particle mass hyperboloid. " Hence the Haag-
Ruelle scattering theory assures that there exist
well-defined asymptotic fields 4 „and 4,„,as well
as a well-defined scattering operator S:



M. F LATO AND R. RAGZKA 21

where P„,„, is given by formula (1.8) and q~= + 1.
Proposition 2.1. Consider:P(4), : theory with

P'(-()4-P'((). If for the 4,, field @~=1, then P,,
is dynamically and S-conserved. If q~= -1, then

P„ is dynamically violated.
Proof. For a weakly coupled:P(4}, : theory all

Wightman axioms are satisfied ~and there exists an
isolated one-particle mass hyperboloid. Hence,
following Hepp, one may write a Yang-Feldman
(YF}equation in the form'

(f )}=... 4' (f}I0» f"={f." f }

(2.5)

where the Fourier transform f, of f,. is an element
of the Schwartz space S(G ) with

G =fpcR', 0&p, &{P+4m')"'].
The supports of f, are mutually nonoverlapping in

velocity space, i.e. , for p, c supp f, we have

C (t, x) = e,(t, x) + 6„*:P '(4):(t, x) . (2.3)
—p, X —p,. for itj, (u,.=(p,. +m, )2 X/2

f.

The explicit form of:P'(4): in Minkowski space
was derived by Schrader" (cf. also Ref. 13):

2N

:P'(e): = g ~X:4" ': . (2.4)

Theordering:: may be taken with respect to the
free or interacting measure. The YF equation is
defined on the Hepp domain D„of the so-called
nonoverlapping vectors. ' This space consists of
all vectors in H of the form

It follows from (2.5) that D,, is P„invariant.
Let B be a bounded invertible operator in H„

such that BD,,c D,„and BC(f)B ' = 4(f~), with ftt
defined by a coordinate transformation B in B' in-
ducing B. Then it follows from the definition of
:C' that

B ~ g ~ (x)B & — (Bcf)B &)" (x) .

Consider first the case @~=1. Then acting on
(2.3) by the P„operator from the left and using
P„ invariance of D„, we obtain on D„ the follow-
ing:

P„o(t,x)P„'(P„ly„(f")))= [e„(t,-x)+ „4:P'(P, ,OP„'):(t,x)]P„ly„(f")) ~

This equation in the variable C'(t, x) =P„4(t, x)P„'
takes the form

4(t, x) = 4„(t,-x)+ t„*i:P'(C):(t,x),
which coincides with (2.3) taken for 4{t,-x). Thus
4(t, x) and 4'(t, -x) satisfy the YF equation with the
same initial condition and the same form of the
current P'(.). Consequently, 4 coincides with 4,

P,.e(t, x)P„'= C (t, -x) .
Thus P„ is dynamically and S-conserved.

Let now g~= -1. Then on the domain D„we
have

P,.e(t, x)P„'
= —4, (t, —x)+&~+:P'(P„@P, ):(t,x). (2.6)

If we suppose that P„ is dynamically conserved,
1.e.,

P„4(t,x)P„'=-4(t, —x),
then (2.6) becomes

@(t,x)=C, (t, x)+& w[:P'( C'):](t,x). (2.6')

Taking the difference of (2.3) and (2.6') we obtain

N-1

4g (2n+ 1)X,„„:y'": (x}=0~

n=l

Passing with this equality to momentum space and
using the fact that the Fourier transform Zz(p) 00,
we obtain the following operator equality

B. Sine-Gordon model

The equation of motion has the form

( +m, ')C(x) =-X:sin[pe(x)+8]:, (2.7)

where X&0, e &0, Hc [0, 2v], and:: means the
Wick normal-ordering operation. In Ref. 15 the
following interesting properties for this model

g {2n,+ 1)X,„„:e'": (p) = 0,
n=l

which evidently does not hold true in H by Schra-
der's analysis" if P'(- $) 0—P'($), hence P„O(t, x)P„'

4{t,-x). Conseque—ntly, P„ is dynamically vio-
lated.

Remarks. (1)One may give an alternative proof of
proposition 2.1 using the result of Frohlich (Ref.
14, corollary 4.4) stating that the dynamical
Euclidean measures dp, , ~, ~}, and dp. , ~ ~), for
P'( $) 4 P'($) a-re mu-tually singular. (2) At first
sight the pseudoscalar P (C), models might seem
quite arbitrary. However, one can keep in mind
an. oversimplified two-dimensional picture of a
weak decay of a pion.
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were proven:
(1) For a given g'/4w& 1 and for

~

X/m, '
~

suffi-
ciently small (depending on e) the energy-momen-
tum spectrum for (2.7) has an isolated one-particle
mass shell of mass m&0,

(2) The field 4 satisfies all Wightman axioms.
(8) For mo' &0 and q2/4)T& 1 the scattering opera-

tor S is nontrivial.
(4) For 84 8' the dynamical Euclidean measures

p,~ and p.e. are mutually singular.
ProPosition 2.2. Consider the sine-Gordon model

with &'/4m&1 and
~

Xmo '
~

sufficiently small, Ho 0,
~, and let C,„be the asymptotic field for 4. Then
if g~=1, the P„parity is dynamically and S-con-
served; if g~=-l, the parity is dynamically vio-
lated.

Proof. By virtue of properties (1) and'(2) and
Haag-Ruelle construction, there exist in H~ quan-
tum fields 4, 4„, and 4,„,and a Fock space
H„&He. The parity operator P,, is given in H,„
by the formula (1.8). If @~=1 for 4„, then the
proof that P„ is dynamically and S-conserved pro-
ceeds as in proposition 2.1.

Now consider the case g~=-1. By virtue of con-
sideration given in the proof of proposition 2.1, the
field 4(f) =P,„4(f)P„' is well defined on Hepp's
domain D„. Suppose that 4(t, x) = -4(t, -x). Then
under P„, the dynamical equation (2.7) will trans-
form into the following one:

(Cl+ m, ')4 (f, x) = -x:s in [g 4(t, x) + 2)T —8j:.
Since 8' = 2m —8 4 8 by assumption and the dynam-

ical Euclidean measures p, ~ and p, ~, are mutually
singular, P,„would transform the carrier space
H, into a carrier space He, orthogonal to it. This
would imply that P,„could not be defined in H, con-
trarily to the construction (1.8); hence 4 cannot
be pseudoscalar with respect to P„. Consequently,
for g~= -1, P,, is dynamically violated.

C. Spontaneous parity violation

The foregoing examples could suggest that parity
is violated in a "natural manner, " i.e. , when the
underlying dynamics is not parity invariant. The
following examples show that parity might be
violated even when the interaction Lagrangian is
parity symmetric. The most striking example is
provided by the X4', theory.

In order to understand better the physical as-
pects of this problem, consider first the classical
theory. In this case the total Hamiltonian can be
taken in the form'7

We have X~ 0. For o &0 we have four minima of
x:
n, =0, c'l' ~' absolute minima,

q (x)=-', )err)$' 'tao'( —,')err)$' 'x)Is

&s =o &s =-&s

Notice that for this interaction there exists a so-
called topological charge given by the formula

OO

Q= dxs-„y, (2.9)

which is a constant of motion. It is evident from
the expressions for ys and ys that under space

s ~s'
Now, according to the correspondence principle,

one would expect that in this model, on the second
quantized level, there will exist two vacuum sec-
tors with charge @=0 and two other superselection
sectors with charges qs = 1 and qs = -1, respec-
tively. Since space reflection may transform
Q - -Q, parity may be violated in some superse-
lection sectors.

It was shown in Refs. 16 and 17 that for 0 & X«1
and 0 = ——,

' the carrier Hilbert space has the fol-
lowing structure:

H =H„SH„SH„ H„

Here H„, is a vacuum sector of H associated with
a. vacuum ()„H„ is another vacuum sector of H,
and H„ is the soliton and H„ the antisoliton sec-ts "s
tor, respectively. H„and H„are superselec-s ~s
tion sectors of H labeled by the eigenvalue of Q
equal to 1 and -1, respectively. The problem of
dynamical and spontaneous parity violation may be
most clearly presented in the subspace H = H„,SH„
of H connected with vacuum sectors.

Proposition 2.3. Consider the A.4', quantum field
theory associated with the Hamiltonian (2.8) with
0&X«1 and cr=--,'. Then there exists a parity
operator P„ in the carrier Hilbert space H such
that for g~= 1, parity is dynamically conserved,
and for q~= -1, parity is dynamically violated.
In addition, for q~= -1 parity is spontaneously
broken.

Proof. The Wightman distributions

(2.10)

satisfy all Wightman axioms (including the uni-
queness of the physical vacuum). In addition, we
ha, ve

w;(x, ) = q, .
3C(e, v) =3C.(e, v)+3C,(y, ~),

with

3C&)= 2 [7)' + (8-„p) j, 3CI= A)I)) + 2 0'p + )8 0'

(2.8) Let 4' be the relativistic quantum fields ob-
tained from (2.10) by the Wightman reconstruction
theorem. Define 4'(g) = 4'(x) —p, . The fields
4' are Wightman fields in H„, respectively and
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satisfy the condition W;(x,}=0. Let 4;., be the
asymptotic in fields associated with O'. Then
utilizing Hepp's and Schrader's" construction,
one may write in H„ the Yang-Feldman equation
for 4' in the form

C'(x) = 4;,(x)+4Xh„+:(4'+p,)': (x). (2.11)

Using (1.8) the parity operator "PP;, can . be defined
in H„, respectively, by the formula

"~P' 4;.,(f, x)("&P', ) '=q-e'. (t -x)

For q~=+ 1 we have that the fields 'P',.„4'(t,x}('P'„) '

and C (-t, x) satisfy the same field equation with
the same initial condition. Hence 'P', ,4(t, x)('P', ,} '
coincides with C (t, —x); consequently, for q~=+ 1

parity is dynamically conserved. Now for q~= -1
the fields P;,4'(t, x)( P;„) ' and —4'(f, —z) satisfy
different dynamical equations with the same initial
conditions. By a simple calculation we therefore
show that for q~= -1 parity is dynamically violated.

Consider now the problem of spontaneous break-
ing of parity. It follows from Ref. 1 that the cutoff
dynamical measures dp~(y) are given by the for-
mula

&le(w)=& '~wI- (&:P':(~)—i:P*:~(1I&'~+%, &w.(wi,
A

where

A = L x T = Q = (f, x); ,'L & x & ,'—L, =', T—&t & —', T}

and 5S, is a so-called boundary term given by the formula

(2.12)

p
T/2 "

p -L/2 (x /2) (L,+ x)"

OS, =
i dt +
"T/2 ~ -(1/2) (5+1) & L/2

dx[q, q (x) —-', p, 'X (x)](-~„-'+1)XI(x), (2.13)

with

1 on [-—,
' L, ,'L]—

X&(x) =
0 on (-~, ,'(L+ 1)]U——[,—,'(L+ 1),~) .

It follows from (2.13) that in the limit I -~ the
boundary term goes to zero, and we are left with
an interaction Lagrangian invariant under the sub-
stitution

P(t, x) -PP(t, i) = q~y(f, x)

with q„=+1. However, if we keep the (T,L) cut-
off finite, for q~= -1, by virtue of the boundary
term, we have dp~(Py) =diii~(y). It was shown in
Ref. 17 that this relation persists also in the limit
A-R, i.e., for g~=-1,

selection sectors and therefore is also spontaneously
broken in the soliton-antisoliton sectors. The de-
tailed proof is simple and will be omitted here.

Remark 2. If w'e consider high-order polynomial
P(4), models, then one might obviously obtain more
than two vacuum superselection sectors. For in-
stance, for"

P(p) = 2X:p: —X i:p:+ (— p) ~ y2 ~

there exist three vacuum sectors ~„&„and ro .
Using the above analysis, one may show that parity
is conserved in the H„sector for arbitrary g~ and

(dp

is spontaneously broken in H„SH„ for q~= -1.

du. (PV) =d~ (V ) (2.14) III. P, C,

ANDRIC

SYMMETRIES IN THE

FEDERBUSH MODEL

This relation implies that although the interaction
Lagrangian for the Xp', theory in the noncutoff
limit is space-reflection invariant for arbitrary
g~, the Wightman states co, and & are not invar-
iant. Hence for g„=-1, parity is spontaneously
broken in H„,SH„, .

Remark 1. Let Ts be the intertwining operator
between the vacuum H„, sector and the soliton sec-
tor H„and between H„and H„." Then one can~s co Qls
extend the fields 4' to H„SII„by the formulaQls Qls

4s = Ts@'Ts ' and show that parity transforms Q
into -Q. Hence parity permutes charged super-

I et g' and g' be two fermion massive classical
fields satisfying the following dynamical equations

Z'"(x) =iq"(x)y"it'(x), I =1,2. (3 2)

p,„ is an invariant skew-symmetric tensor in R'
and

(e,y" +m') g'(x} = iXy"q'(x)q „„8'"(x), ,
( )

(& „y"+m')iti'(x) = iXJ"(x)q „„y"y'(x),

where
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(3.3)

Equations (3.1) can be derived from the Lagrangian
& =&,((/')+8, ((/)') —J'"e„„J'".Equations (3.1) ad-
mit explicit solutions in terms of the free solu-
tions (/)t, /=1, 2 of the Dirac equation

(s„y "+m')g(x) =0 /=1, 2

(t) '...„,= exp(w i7rXQ')(/) ko,

(/) '„,„2= exp(+ i)rXQ')(t) 20,

where Q' are the fermion-number operators

q'= i, do.(x):T(,(x)y"(t,(x):

p0'dp a'* p a' p —b'* p b' p

(3.9}

in the form

(/) '(x) = exp[-iZ(r ', ](x)(/) ',(x),

(/) '(x) = exp[i'(r ', ](x)(/)', (x),
where

(r,'(x) = 2im —'
JI Z(x —y: 0) (T) t( y) y '(/ o((y)d 'v

(3.4)

(3.5)

t'(x) =: exp[i&~0]: (x) tl(x),
(/'(x) =: exp[iso,']: (x)(/', (x),

where

(3 6)

v,'(x)= —2(m'Jk(x —2;0):7i'(2)x'2 (2):d 2, (=(, 2

and:: denotes the ordinary Wick ordering. We
recall that:: ordering is defined for successive
powers of the local field o recursively and, for
instance, for the third power it has the form"

:(r ':(x) = lim. [(r(x+ ])(r(x)o(x- $)

—((r(x+ ()(r( )}x,a( x])
—((r(x+ ()o(x —$))oo(x)

-((r(x)(r(x.—h)},(r(x+ h)].

In the second-quantized theory the currents (3.2)
are defined by the following limiting procedure

J' "(x)= lim —,'[(Ie) '"(x+ &)(/)'(x) —(/)'(x)(II) '"(x—$)], (3.&)
(~0

where (/ '"(x) = iP (x)y" ~

It was shown recently by Challifour and Wightman"
that the solutions (3.6) have the asymptotic in and
out fields in the form

&(x;m) = (2)r) 'P
J

[-k'+m'] 'exp[-Rx]d'k.

The second-quantized quantum field (t)'(x}, / = 1, 2
was constructed by Federbush" and Wightman" by
the technique of::ordering. The resulting quan-
tum fields have the form

Consequently, there exists a nontrivial unitary
scattering operator in the form

S = exp(27ri XQ'Q') . (3.1la)

At this point an important remark should be made.
There seems to be a discrepancy in the literature
between, e.g. , Refs. 21 and 22. The results of
Ref. 21 for the scattering operator based on the
Lehmann-Symanzik- Zimmerm ann form alism of
asymptotic fields are different from the results
of Ref. 22 based on Bogolyubov-I'arasiuk-Hepp-
Zimmermann perturbation theory. To be more
explicit, the form of the S operator calculated in

Ref. 22 is

We now pass to the definition of a parity opera-
tor. The in parity operator will be defined by the
formula P,„= '„8P'„with

I,'.q,'.(f,x)P,'-,' = r/, y'y'(/, x), (3.13)
r,'.q'(/, x)S„'-.'= qP((f, x)y'.

S = exp 2miX d/]/)x ~go dk2 @20 q2 y2

xk(k''k„, k'")2'(k')I, (2.1(b)

where q'(0') are the densities of (2)', /=1, 2.
It is evident from formulas (3.1la) and (3.lib}

that, e.g. , for positive integer coupling constants,
the expressions for the matrix elements of the S
operator coincide.

Since we are interested in a framework for test-
ing our ideas on violation of discrete symmetries,
the choice of the value of the coupling constant is
irrelevent for us. We shall therefore, whenever
considering the Federbush model, assume from
now on that the coupling constant is a positive in-
teger. Such a version of the Federbush model will
be called, for brevity, the "integey I'edexbush
model. "

To go on, it will be convenient for further
analysis to express (rt and Q' in terms of (/)t,

fields, /=1, 2. Using (3.9) we obtain

o,'(x) = 2(m' J k(x- 2; 2): 2,'.(2)X'(),'.(2):2'2,
(3.12)

q'=i
Jt da„(x): y,',(x)y'(/)I, (x):d'x.
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PxoPosition 3.2. In the integer Federbush model,
charge conjugation is dynamically conserved and
S-conserved.

Proof. Using (3.15) we obtain

ql C -1
~ q/FCW

Hence, by virtue of (3.12), we have

Therefore by (3.6) we obtain

glC, -1
q Cqlg

(3.16)

(3.17)

(3.18)

i.e. , the solutions of the dynamical equation are
charge-conjugation invariant. Hence charge con-
jugation is dynamically as well as S-conserved.

As a consequence of propositions 3.1 and 3.2
we obtain that P„C„is dynamically violated but
S-conserved. Thus when we say that CP is a
good quantum observable for a given dynamical
system we have to determine carefully in what
sense the CP conservation is defined.

It shouM be remarked that for arbitrary (noninte-
ger) X, according to Wightman and Challifour's
version, parity will still be S-conserved, while
according to the version of Schroer et al. , parity
would be S-violated.

IV. TIME-REVERSAL AND CPT INVARIANCE

We shall now analyze the problem of time rever-
sal and CPT invariance for boson and fermion

This operator, as in the case of scalar fields, can
be expressed directly in terms of ttI„ fields. We
have the following.

Proposition 3.1. In the integer Federbush model,
parity is dynamically violated but S-conserved.

Proof. By virtue of (3.7) and (3.12) we obtain

P„vo(t)z)P„= o0(t-, -'x), P„Q'P, , =Q', I =1,2.
(3.14)

Hence

P, g (t, x)P„'=:exp t -iso', 1:(t, -x)q y'g ',(t, -x )

X qpy'q'(t, -x),
P,.q'(t, x)P„'~q,y'q'(t, —x) .
Thus the operator P,„ is not the parity operator for
the interacting fields (3.6). Consequently, parity
is dynamically violated. Since, for positive inte-
ger coupling constants (the case considered by
us) the scattering operator is trivial, parity is S-
conserved.

Consider now the charge conjugation operator
C„defined by the formula C„=C'„C'„. Itfollows
from the transformation property of the free Dirac
equation that C,',„I=1,2, must ~e taken ~n the form

CI,)t,(x)C„' '=qcCJI„*(x), with C = y', I = 1,2.
(3.15)

= 4,„,{t,x)+b„*:p'(4): (t, x). (4.2)

The explicit form of:.P'(4), : in Minkowski space
was determined by Schrader" (cf. also Ref. 13).
Equation (4.2} holds true on the Hepp doinain
D = „6D,„, of nonoverlapping vectors, where
D,„, is the subspace of vectors

~
g,„,(f")) of the

form (2.5) with 4,„replaced by 4,„,. It is evident
that D is T,„ invariant. Hence the operators

well defined on D.
Consider now the case q~=1. Then acting on

(4.2) by the T,„poerat rowe obtain on D the follow-'
ing:

T„C(t, x)T,„'= C,„,(-t, x)

+ t „*P'(r,„er,„-')(t,x) .
This equation in the variable 4(t, x) = T,,e(t, x)T,, '
takes the form

4(t, x) = 4,„,(-t, x) + b,„*P'( )(4t, x),
which coincides with (4.2) taken for 4(-t, x).
Hence 4(t, x) and 4(-t, x) satisfy the YF equation
with the same initial conditions and the same form
of the current. Thus 4(t, x) and 4(-t, x) must coin-
cide, i.e.,

r,.e(t, x)r„'= e(-t, x) .

models of quantum field theory. We show that for
a given interaction, T and CPT invariance may
or may not hold depending on the choice of the re-
flection properties of the fields under considera-
tion. We demonstrate that these reflection pro-
perties are not, in general, fixed by the form of
interaction and may be chosen arbitrarily, depend-
ing on the physical identification of the considered
particles.

A. P(4)~ model

As discussed in Sec. IIA, for weak coupling
there exists in this model asymptotic fields 4,,
and 4,„,given by the Haag-Ruelle construction
and H„C.H, H,„,(:-H. Hence one can define in K
the time-reversal operator T,.„given by formula
(1.11):

"rT,„4;,(t, x)"rr„'=7ire,„,(t, —x).
Proposition 4.1. If qz=1 in, P(C ), theory with

P'(-$) 0 P'{$), t-hen time reversal is dynamically
and S-conserved. If q~= -1, time reversal is
dynamically violated.

Proof. As was said before, in a weakly coupled
P(4}, model all Wightman axioms are satisfied and
there exists an isolated one-particle mass hyper-
boloid. " Hence following Hepp, one may write
the YF equation in the form'

e(t, x) = C,.„(t,x)+ ~„+..P'(4): (t, x)
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This implies that Tin is dynamically and S-con-
served.

Let now q~= -1. Then on the domain D we have

T„C(t, x)T,, ' = O.-„,( t, x—)

+ t „*P'(T„eT„')(t,x) . (4.3)

If we suppose that Tj, is dynamically conserved,
l.e. )

T,„C(t, x)T,„-'= -C(-t, x),
then (4.3) becomes

O(t, x) = C',„,(t, x) + &„*[-P'(-4) ](t,x) . (4.4)

Taking the difference of (4.1) and (4.4) we obtain

%e now verify the transformation properties of
field equations. Acting on both sides of Eq. (3.1)
by T,„we obtain [Sr, -=(8-„,-~„), and we follow the
conventions given in Ref. 23, Ch. IV, Sec. 5]:
(&„"y'+~')y'g'( t,-x) = ty-"y'(0'c, ~'")( t-x),

(s.'y" + m') y'y'(-t, x) = t(&-'"~„.y "y'q')( t, x-) .
Multiplying both sides by y' and using the fact that
y'= y", -(y')'=I, we obtain that g '(-t, x) satisfies
the same field equation in the reflected reference
frame as did ( '(t, x). Thus the field equations are
Tjn invariant; hence T,n is dynamically as well as
S-conserved.

V. PCT AND 0 SYMMETRIES

Repeating now the same arguments as in the proof
of proposition 2.1, we conclude that Tjn is dy-
namically violated.

Remark 1. As in the case of the proof of propo-
sition 2.1, one can give an alternative proof of
proposition 4.1 using the Frohlich result that the
Euclidean dynamical measures p, ~,~) and p~& ~& for
P'(-$) 0 -P'($) are mutually singular. It seems,
however, that the present proof is more clear.

Remark Z. The conclusions of proposition 4.1
apply also to weakly coupled sine-Gordon models
with Z~= Xc ':cos (&4 + 8):, 0&

~
Xm, '

~

«1, et 0, w.

B. Integer Federbush model

It follows from the requirement of invariance of
the Dirac equation in B' that the field tt,'„/ = 1,2
must transform in the following manner:

T„gt,(t, x)T„'= q'rTq t„,(-t, x) (4.5)

T„o,'(t, x)T„'= -S 'o,'(-t, x),
T,.e'(t) T,.'= -e'(-t) .

Hence, by virtue of (3.6), we get

T„q '(t, x)T„'=pry'y'(-t, x),
T„J '"(t,x)T„'= —Z'„(-t, x) .

(4.6)

(4.7)

with T=y' and ~q, ~'=I.
Proposition 4.2. For an arbitrary choice of g~

in the integer Federbush model Tjn is dynamically
and S-conserved.

Proof. In order to find out the transformation
properties of the interacting fields g, /=1, 2 with
respect to T„operation we take advantage of the
fact that, by virtue of (3.12), o,'(x) and Q'(t) can be
expressed in terms of g,', fields, I=1,2. These
quantities, by virtue of (4.5), have the following
transformation properties:

jn Tin & Pin jn Tjn &

+PjnCjn Tin & and PinCin Tin
(5.1)

The famous 8 operation will, however, be uniquely
defined by

8-'c(x)e = 4(-x)

[cf. Ref. 4, Eq. (3.67)]. Hence we see that 8 ' may
be identified with 'P„C„'T,

n
or PjnC„Tjn. How-

ever, if we choose 4 to be a space pseudoscalar
and a time scalar or a space scalar and a time
pseudoscalar field, then the product of operators
P„, C„, and T„does not coincide with the 8 '
operation.

Notice also that in: P(4), : theories, indepen-
dently of the specific form of the interaction, 8 is
dynamically and S-conserved. Indeed, acting on the
left-hand side of the YF equation by 8 ', we obtain
on the Hepp domain D (cf. proof of proposition 4.1)

@(-~)=C'.„,(-~)+&, +P'(C)(-~),

The previous analysis of P, C, and T symmetry
violation for several models demonstrates that,
with a given dynamical system determined by the
interaction Lagrangian, one may associate several
PCT operations. For instance, in: P(4), : models
with P'(-()0 -P'($) we may take 4 as a space
pseudoscalar and a time scalar; in this case Pjn
is dynamically violated, whereas Tjn is dynamically
and S-conserved. Since in: P(4), : models C„=I
we have that in this case PjnCjnTjn is dynamically
violated. Simij.arly, P„C„T„violation will occur
if we take 4 as a space scalar and a time pseudo-
scalar. In turn, if we choose 4 to be a space
scalar and a time scalar or a space pseudoscalar
and a time pseudoscalar we obtain Pj,C„Tj„dy-
namical and S-conservation.

Since there is no physical reason for correlating
. the space and time internal parities for spinless
particles we conclude that in: P(4), : models we
may introduce for P, C,„Tjn the operators
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which by virtue of (4.2) equals i „(—x) + n ~ +P'(4)(-x).
Hence 8 ' is dynamically and S-conserved.

An even more interesting situation arises in the
integer Federbush model. In this case P„ is,
independently of a phase g~, always dynamically
violated and S-conserved, whereas C„and T„
are dynamically and S-conserved. Therefore the
P„C„T,„operator is, for all choices of phase
g„, g~, and g~, always dynamically violated. Now
the 8 operation defined by the formula [cf. Ref. 4,
Zq. (3.6'I}]

8 '((x)8 =q g*(-x),
transforms the currents J'"=i/'y"g', I=1,2, in
the following manner:

8 'J'~(x)8=8' (-x), l =1,2.
Hence the action integral in the integer Federbush
model is 8 ' invariant. Consequently, 8 ' is dy-
namically conserved. Hence the product P„C,,T,,
of physical parity, charge-conjugation, and time-
reversal operators cannot coincide with the 8 '
operation.

%'e hope that these examples clarify the meaning
of 8 symmetry in field theory and its connection
with the product P„C„T„ofspace parity, charge
conjugation, and time reversal, which, depending
on the given dynamics, may or may not be a sym-
metry of the theory.

This analysis indicates that the so-called PCT
theorem in axiomatic field theory should (as it
actually is by some authors) really be called 8

theorem since in fact it concerns the 8 symmetry
only. In the case where P, C, and T are sym-
metries of the given dynamics, we necessarily
have 8 =Pi Ci T,„up to a phase factor.

VI. DISCUSSION

%e shall end our work with the following re-

markss:

(i) It follows from our analysis that S-operator
and spontaneous discrete symmetry violations are
physically really important. In connection with
this, the integer Federbush model is particularly
instructive, since in this model P,.„and P,,C„T„
are dynamically violated but S-conserved. This
illustrates the important fact that being confined
to an analysis of the interaction Lagrangian only
might give us wrong information on violation or
conservation of discrete (as well as continuous)
symmetries.

(ii) In P(4), and other models, if P„ is dy-
namically violated for g~= -1, one could save
P„C,„T,„dynamical conservation by setting q ~= -1.
However, it seems that there are no physical

S(y) =Z 'exp ——,
' 5

5p 5p

x e~[&.Z,(&):]~„„

and the m-particle S-matrix element at order k of
perturbation theory has the form

S(lD(x x ) (y t)-1 k m

6y(x, ) ~ ~ 6y(x )

x exp 2
gp P

x d g. :2 g. :„o.
j=l

(6.1)

It follows from (6.1) that S'"(x„.. . , x ) is a finite
sum of space-reflection invariant integrals in R™
over finite products of space-reflection invariant
4~ and ~„which define time and normal ordering,
respectively. The same phenomenon holds true
for Borel summable expressions for perturbation
series, e.g. , in P(y), models. '4 Thus in order to
have a phenomenon of S-matrix parity violation,
one must consider a model with several fields.
This is precisely the case for which parity viola-
tion was observed for physical particles.

(iv) Our analysis clarifies the conceptual prob-
lems of discrete symmetries violations in quantum
field theory. However, from a realistic point of
view, it would be of utmost interest to apply this
analysis to quantum field models in four-dimen-
sional space-time. This application is straight-
forward. Unfortunately, for the time being we
have no conclusive nonperturbative results for
these models.

(v) Though the technique of constructive field
theory (which we mainly adopted here) does not
provide us at present with a framework that could
lge used for our purpose in realistic four-dimen-
Sional space-time, much can be at least guessed
from formal perturbative calculations.

(vi) It would also be very interesting to extend
this analysis for decaying quantum systems, in
which naturally several fields appear.

reasons to correlate space and time parities.
(iii} Notice that for polynomial interactions

P(4},of a single spinless boson field 4, even if
P '(-4) o -P '(4'), the matrix elements S„(x„.. . , x }
of the scattering operator are space-reflection
invariant in perturbation theory. This might be
most easily seen in the functional formalism for
the scattering operator. In this formalism the
generating functional S(y) for the scattering opera-
tor is given by the formula
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