
PHYSICAL REVIE% 0 VOLUME 21, NUMBER 12 15 JUNE 1980

Mode& of UO) chiral-symmetry breaking

Emil Mottola*
Physics Department, CoLumbia Uniuersity, /ee York, 1Vem York 10027

(Received 26 April 1979)

An SU{2) gauge-theory model of spontaneous chiral-symmetry breaking through the nonvanishing vacuum
expectation value of spin-zero fields is examined. For the case of two fermion flavors, the model explicitly
demonstrates the 't Hooft resolution of the U(1) problem through instanton effects. The absence of any
conflict with the current-algebra relations of chiral perturbation theory point to a clearer understanding of
the gauge-theory vacuum 0 periodicity in the case of broken chiral symmetries.

I, INTRODUCTION

A long-standing difficulty of any fermion con-
stituent model of the strong interactions such as
quantum chromodynamics (QCD) is that the re-
quirement of an SU(N) chiral-flavor-symmetry
group naturally entails a full U(N) chiral sym-
metry. Thus, if, as is normally assumed, the
SU(2) chiral symmetry is broken to yield the
(nearly) massless Goldstone pion, there should
also be an isosinglet state with about the same
mass. The methods of current algebra which are
so successfuV (to the order of 7-10%) for the pion
should then be valid for the isosinglet pseudo-
scalar meson as well. However, the only natural
candidate for this state in the meson spectrum is
the q(550 MeV) whose mass exceeds the upper
bound placed on it by the techniques of current
algebra. ' The absence of any light pseudoscalar
meson corresponding to the U(1) chiral current is
the U(1) problem of QCD.

The discovery of the instanton configurations'
in non-Abelian gauge field theories, together with
the Adler-Bell- Jackiw anomalous divergence~ of
the chiral singlet current,

provide an apparent resolution of the dilemma.
For if there really is no conserved chiral charge
operator, Goldstone's theorem does not apply to
the singlet state and there is no reason to expect
that the g will be light as the pion. This loophole
was pointedoutby 't Hooft' who employedthe semi-
classical methods devised for computing instanton
effects —independently of any spontaneous break-
ing of the full U(N) chiral group. Indeed, the dy-
namics of this symmetry breaking and subsequent
appearance of the pion may not be accessible to
present approaches at all.

On the other hand, several authors have sug-
gested that the SU(N)-symmetry breaking is in-
timately connected to the resolution of the U(l)

problem. Models have been proposed in which
the instanton effects are taken into account by
means of the induced 2N-point fermion interaction
treated in a self-consistent manner similar to
the Nambu-Jona-Lasinio model. ' A natural con-
sequence of this approach is that the same inter-
action that generates the fermion masses and binds
them into massless Goldstone bosons also auto-
matically solves the U(1) problem. Crewther' has
argued along different lines that the 't Hooft re-
solution of the U(1) problem is actually inconsis-
tent with current-algebra estimates of SU(2}'"
breaking arising from small explicit quark mass
terms added to the QCD Lagrangian.

The same author has also pointed out an ap-
parent difficulty of the 't Hooft resolution of the
U(1} problem with respect to the periodicity of
the gauge-theory vacuum. According to the now
standard prescription, ' the pseudoparticle con-
figurations necessitate an additional parameter
in the theory 0 which enters the Lagrangian multi-
plying the (CP-violating) topological charge den-
sity (g'/32m')I „ I „. If the integral of this den-
sity is' an integer v, all physical amplitudes mani-
festly have a 0 periodicity of 2~. This leads to
a selection rule' which would seem to Pavo, nt
the removal of the U(1) Goldstone boson by the
't Hooft loophole for N) I. When SU(N)'" is
broken, the 0 periodicity would have to change in
order to avoid this conclusion, even though 0 en-
ters the theory in exactly the same way as in the
unbroken case.

With the aim of clarifying this situation by means
of a concrete example, a model of chiral-sym-
metry breaking for N =2, containing scalar and
pseudoscalar fields Yukawa coupled to the fermions
is considered in this paper. When the scalar is-
osinglet field develops a vacuum expectation val-
ue, four pseudoscalar bosons appear correspond-
ing to the four generators of the broken U(2)'"
group. However, the inclusion of instanton ef-
fects shifts the mass of the isosinglet state away
from zero.
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The model is illustrative in several respects.
It demonstrates that the SU(2)'" symmetry break-
ing and concomitant fermion mass generation
must occur in order to solve the U(1) problem
in a way consistent with the current-algebra esti-
mates of Crewther. Of course, it cannot be
claimed that the scalar field model realistically
describes the dynamics of chiral-symmetry
breaking in QCD. This dynamics may be quite
complicated without necessarily being due to
instanton effects. Indeed, the q(550) may not be
interpretable as a mould-be Goldstone particle at
all. Nevertheless, the necessity of the SU(2)~
breaking for the 't Hooft resolution of the U(1)
problem is demonstrated by the model and com-
puted in a systematic perturbative way.

The model also provides an explicit example of
the avoidance of the selection rule cited by Crew-
ther as an obstacle to the 't Hooft solution for in-
tegral v. This leads to a simple and direct reso-
lution of the paradox of the 8 periodicity of physi-
cal amplitudes in the case of spontaneous sym-
metry breakdown, which is both interesting and
instructive.

The details of the calculational scheme (for 8= 0)
are presented in Sec. II. This is supplemented by
the one-loop corrections to the lowest-order
result which are presented in Appendix A. In
Sec. III the question of the 0 dependence is taken
up. It is shown that although a chiral rotation
corresponding to 8- 8+2ttN (for N=2 here) is
necessary to return to the same vacuum state,
a rotation of 2n. brings us to another vacuum state .

which is in all respects physically equivalent to
the first, thus removing the formal periodicity
problem without altering the physical content of
the 8 parameter. Since the case of exact SU(2)
x SU(2)~ symmetry is somewhat singular (the
vacuum phases being fixed only by arbitrary
choice), Appendix 8 considers the case in which
this symmetry is explicitly broken. In this case
6) - 8+ 2p does indeed return us to the same vacuum
state but the previous avoidance of the selection
rule of Crewther still holds —now because of the
terms explicitly breaking the symmetry at some .

values of 6. Finally, Sec. IV contains a discus-
sion of the results, expecially as they relate to
the current-algebra estimates of Crewther and
shed light on the relationship between SU(2)'"-sym-
metry breaking and the solution of the U(1) problem.

II. THE MODEL

The Lagrangian of the model is taken to be
2=- —,'E „~I ""+i /fan" 9 -igA

+ t X /~4~~, g~, + Zq,
fp sl

where

82~ =- Tr(a'4 8„4')+—Tr(44') ——{TrC4')'

Tr(4, @t@t@) (2)

2 2
by= —(no+n 7')&+2(pa+ p t)y'p (4)

if we require

bc= —pop+ p n, by= po'c+ p ~ Q,

5$ = n x p+ pop —ptl, btt = n x tt —pop —per .
(5)

Thus, the eight spin-zero fields are in the (-,', —,')
representation of SU(2) x SU(2)'", which may be
recognized also as ihe vector representation of
O(4). In fact, if the fields are rearranged into
two four-vectors, v= (p, tl) and tv=(w, a), then v

and ui rotate jointly under the O(4) transforma-
tion given by (5) (with n, =P, =O). Hence, v', u',
and v ~ w all remain invariant under this trans-
formation. Under the chiral U(l)'" transformation,
the two four-vectors mix, leaving only the two
combinations v'+tv'=-, ' Tr(4 4') and (v' —tv')'
+4(v tv)'=-', Tr(44t4tC) invariant under the full
symmetry group. Therefore, the only quartic in-
variants are those included in Z~ of Eq. (2).

If c (0, the appearance of the Tr(4 4 tC tC ) term
in ~ implies that the minimum of the potential
occurs when v and zg are parallel, and we limit
our attention to this case. As long as b & —c ) o,
this leads to no instability since Tr(C 4 t)
~ Tr(4 4'4 tC). An O(4) rotation brings the vacuum
expectation values of v and m to zero in all but
their fourth component. A U(1)'h transformation
may then be performed so that we are free to
choose (o) g 0, with all other fields having zero
vacuum expectation values, consistent with or-
dinary U(2) and CP symmetry being preserved
(in the 8=0 theory). We find (c)= [a/(b+c)j"', the
chiral U(2)'" is broken, the fermions receive a
mass X(v) from their coupling to 4, and there are
four massless pseudoscalar Goldstone bosons,

which is the Lagrangian of an SU(2) (color) gauge
theory with two species (flavors) of fermions that
are Yukawa coupled to a set of spinless fields 4
described by a 2 x 2 complex matrix in flavor
space. If 4 is written in terms of four real scalar
and pseudoscalar fields, we have

4 = v-itsy'+itt, t, y'. +.P, t', .

in a suggestive notation. The traces in (2) are
over both Dirac and flavor indices with v, , i =1,
2, 3, the 2 && 2 Pauli matrices. This accounts for
the factor of 8 in the def inition of g ~.

The Lagrangian is invariant under the U(2)
x V(2)'" transformation
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'g and 7t' 'A=1 2 3.
Now consider the effects of the Yang-Mills

(color) pseudoparticle configurations (in Euclid-
ean space) on these Goldstone states. Since 4
couples to the gauge field only through its Yukawa
coupling to the fermions, we treat X as the small
perturbative expansion parameter. Although this
may not be a reasonable expansion for making
contact with low-energy meson phenomenology,
it has the advantage of being systematic and il-
lustrative of our more general conclusions.

We also restrict the calculation to instantons
of a fixed scale size p. The problem of integrating
over p and the resulting infrared difficulties must
be faced in any complete treatment of instanton
effects, but the infrared cutoff and confinement
mechanism is not at all relevant to the questions
being addressed here and so may be ignored for
present purposes.

With (o) and p fixed, we can always satisfy
X((T)p«l for X sufficiently small. This means
that the fermion mass is small compared to the
energy scale set by the instantion size p. In the
limit of zero mass, the effects of an instanton
of definite s~e p on fermions are described by
the effective Lagrangianio

z„,(z) = x))( p)fd'x, d'x, d'y, d'y z rr$r(x, ) v(x z, y,), „
&&(t, {y ) (t~ ( .)l'(x„z,y.)4.(y.), (6)

where ~=e "'~, V is the nonlocal vertex func-
tion composed of normalized zero modes u, (x, z)
in the presence of one pseudoparticle at z, and

D(p) is the result of the calculation of (quantum

fluctuations' about the classical solution, given
by

V(x, e, y ) = d„u, (x, z )u,'(y, z)$„,

D{p)=, , {4~)'(0.6397) ( p.,p)' .1

FIG. 3.. Lowest-order pseudoparticle-induced q self-
energy graphs. The dot represents the pseudoparticle
(having v = ~ 1). A horizontal bar on a (solid) fermion
line denotes a single mass insertion A (cT) on otherwise
massless fermion propagator s.

F(p') = d'xu,'(x, 0)i(.,(x, 0)e"'

F(0) = l.
If multi-instanton configurations are considered,

the self-energy diagrams of Fig. 1 are simply
iterated in the dilute-gas limit. The resulting,
geometric series, when summed, exhibits a mas-
sive pole in the q propagator. Evidently, in the
approximation being considered,

m, '-=Z„(p'=0) =6~'~D(p) (9)

explicitly demonstrating the avoidance of Gold-
stone's theorem for the isosinglet state.

It is instructive to cheek this calculation of
the g mass shift by means of a chiral Ward iden-
tity. The chiral current

, 2

J"'=
2 )fy y' f'+qB "g

f=1

particle interaction vanish identically owing to the
flavor structure of the four-point vertex function.
If the momentum flowing through the external legs
is p, then the self-energy contributions from
pseudoparticles of topological charge +1 add to
yield

Z„(p') =4K'&D(p) [F(P')+ F (0)], '

where

—(zs'q+ (I).B "w —m. s~(t). (10)
Here p,, is the renormalization point of the gauge
coupling constant g.

In order for the corrections to thy effective-
Lagrangian approximation to be small, the dilute-
gas limit for multi-instanton configurations must
be considered. This means that p must be small
enough so that g is small and ~«1, which is
certainly consistent with our previous require-
ment, X(o&p«1.

The contributions to the q self-energy to lowest
order in Z,«(i.e., v), X, and the boson couplings
b, c are illustrated in Fig. 1. Note that of the two
possible four-point vertices generated by (6), only
one appears in Fig. 1. This is because the ex-
change terms, obtained by interchanging two of
the fermion lines emerging from the pseudo-

has an anomalous divergence as in (1), giving the
relation

2

= —((rr) z d'x z (1Z(x) (dy"', '.*' y'"'(())) . ,
(11)

Without the anomaly a~d the pseudoparticle
effects (zeroth order in (('), the right side of (11)
is just —i (~), indicating the presence of the mass-
less Goldstone pole q'/q' in the amplitude at left
before contraction with q „(Fig. 2): m„' =0 to this
older.

To first order in v, the q self- energy terms
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FIG. 2. Lowest-order graph in (TiiJ"5). The cross
denotes the J~ vertex with (o) 8"q being the relevant
term here.

appear on the left side of (ll) (illustrated in Fig.
3) and the identity remains valid with the inclu-
sion of the term contributing to the right side
with the same singular 1/q' behavior as q'-0
shown in Fig. 4.

Now, when the sum over multi-instanton con-
figurations is performed, the g becomes massive
and the left side of (11) behaves like q'/(q'+m„')
as q'-0. The massless pole no longer exists
and the right side of (11) now features a, term il-
lustrated as in Fig. 4 with the q massive propa-
gator inserted. This term appears to be propor-
tional to ~ from the explicit appearance of the
pseudoparticle interaction; however, vl „Kso
that as q'»0, the massive propagator contributes
a factor of 1/ii which causes the result to be in-
dependent of v. Thus, the Ward identity may be
reconsidered to zeroth order in I(. . The left side
of (11) vanishes: There is no Goldstone pole. In-
stead we obtain a consistency check on the q mass
a,s given by (9). The Euclidean version of (11)
gives

0=- (&)- 2 l2~2i~D(&) (o)]

x P 2v —i d'xuot(x)r'u, (x)

P'

d XQpX QpX ~ (12)

Using p Qp T Qp for v = + 1 and solving for m „2

then recovers (9), thereby confirming the pre-
vious direct computation and explicitly demon-
strating the removal of the 0 Goldstone boson
through the chiral Ward identity.

Because the isotriplet chiral current does not
have an anomalous divergence, the pseudoparticle-
induced z self-energy graphs do not give the m

field a mass, as may be verified by direct cal-
culation. Goldstone's theorem is valid in all
orders of perturbation theory and the p remains
massless. These elementary lowest-order re-
sults already illustrate the essential features of

FIG. 4. Lowest-order coniribution to (Tq FF).

the model; however, the one-boson-loop correc-
tions further point out the subtleties of the ~ ex-
pansion and for that reason are treated in Appen-
dix A.

III. 8 DEPENDENCE

a —0 ' =0 cosp- q sinP,

q - q' = q cosP+ 0 sinp

(13)

in the functional integral, then because of the chi-
ral current anomaly (1), we find 8-8' = 8-2P.
Thus, a chiral rotation of P = 8/2 and redefinition
of the fields through (13) returns us to a theory
in all respects physically equivalent to the original
one with 6= 0 and the old fields. This is the reali-
zation of Peccei and Quinn that a conserved CP
operation can be defined for all 8 in QCD or any
theory with fermions and a U(1)~ symmetry. "

When the U(l)'" symmetry is broken, either
spontaneously through scalar fields or by the ad-
dition of an explicit mass matrix to the Lagran-
gian

The existence of the instanton solutions in non-
Abelian gauge theories has been shown to require
a more complicated vacuum state' than the naive
vacuum (for which v=0). In fact, the stable vacu-
um state is specified by the phase angle 0 which
enters the functional integral prescription for
transition amplitudes through a factor e'" multi-
plying the amplitude in the topological sector
where

2
v= 2, JId xF,„ I'„

327T2

is fixed (in Euclidean space). An etiuivalent de-
scription is to consider this term as part of the
action, so that 6) appears in the Lagrangian multi-
plying the topological charge density (g'/32m')
E„„~E,„. The class of theories with 8e 0 (or 27ivi)

would thus seem to violate P and CP invariance
strongly.

However, when & possesses a U(1)~ symmetry
as in pure (massless) QCD or the present model,
it is possible to show that the 8 parameter by
itself is not physically meaningful. For, if a
chiral U(l) rotation of (finite) magnitude P is per-
formed on the fields,

qt —
&

i 8 y5/2q

FIG. 3. First-order self-energy insertions of pseudo-
particle interaction contributing to (TnJ"~). (14)
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we are still free to make the transformation (13).
However, P is already determined by the condi-
tion that M be Hermitian so that the fermion
mass(es} are real. Thus o. = 8-arg(det M) is fixed
and is not in general equal to 0, unless the dy-
namics of the instanton effects require arg(det M)
= 8. In fact, Peccei and Quinn" showed that this
is indeed the case in the theory of a single-flavor
fermion Yukawa coupled to a spinless field that
has its U(1) x U(1)'" symmetry spontaneously
broken down to U(1). Following their methods it
can be shown that the same phenomenon occurs
in the present model, which is really just the mo-
del of Ref. 11 for the case of two flavors (N=2).

The relevant quantity for this demonstration
is the boson effective potential, corrected for in-
stanton effects. It is possible to argue from gen-
eral properties of the functional integration over
the fermion fields that arg(det M) =arg((a)+i(q))'
will be fixed by the value of 8 if the vacuum is a
minimum of the effective potential, just as in the
one-flavor case. However, it will be sufficient
to calculate V,« to the lowest nontrivial order
(-v](.') as in Sec. II.

The 6} vacuum-to-vacuum transition amplitude
in the one-pseudoparticle sector receives a con-
tribution first order in Z,«and second order in
X from the term, in Euclidean space,

Considering only the flavor structure of 2,«, it is clear that the various possible fermion contractions
yield

2, 2(6,,6„-f],,6„)(6,,6„-6„6,„)C',.;.'(x) 4,', ](y)

or

C,' (x)C,' (y) —C,' (x)C,' (y)+(x-y)
showing the familiar determinant structure. The superscript (+) denotes the topological sector v=+1.
Since p'u, =+@, for the zero modes in the cases v = ~1, respectively, we have

C"=a+i'+(C +iv) ~.
Thus, the amplitude (15) is

](.'](D(p) Jtd'z d'x d'y([o (x) + i q(x) ][(x(y) + i]j(y) ]—[$(x) —i]](x) ] ~ [(1](y) —in(y)])

x e "u,'(x, z)u, (x, z)u', (y, z)u, (y, z) . (18)

For v=-1, we have e'8-e "and 4 "-4' '=4 "~. Thus, the sum of v=+1 contributions is twice the
real part of (18}.

Now, in the dilute-gas limit, multipseudoparticle configurations simply result in the exponentiation of
the single-pseudoparticle amplitude. Hence, we may view the result of the integration over fermion de-
grees of freedom as generating a U(l)'"-breaking term in the boson potentia19:

av(&)= —2& &a(p]fdxa 'yRee' ((v(&')+(q(x]](&((t]+iamb']]

—[(t](x)—i]T(x)] ~ [Q(y) —iz(y)])ut(x, z)u, (x, z)ut(y, z)u, (y, z) .

If we now allow the 0 and g fields to develop ex-
pectation values (independent of x)

I

so that 8- 2P must be 0 (or 2wn) at the minimum
of V,« implying

(o)+i(q) =ve " (20) P = 8/2, 8/2 + w,
(22)

we find the following value of the potential in the
vacuum state:

a+4''~D(p)
b+c

a, (f]+c),
Vyf f 2

V
4

V

—2]].'](D(p) cos(8 —2P)v', (21)

The latter equation indicates that v is shifted
from its tree value by instanton effects; it can
also be calculated from the graph of Fig. 5 (in
the 8 = 0 case). The first equation is more in-
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FIG. 5. Graph contributing to shift in v =(a).

teresting. - It shows that there are two vacuum
states which minimize V,«which are therefore
in all respects physically equivalent —except in
their values of P. As expected, V,« is 2)r periodic
in 0; however, since a chiral rotation of 2P is
equivalent to changing 0, a chiral rotation of only
m is required to return to the same physical theory.
Since the formal specification of the vacuum re-
quires P (and not 8), and a P chiral rotation of 2z
is necessary to return to the same formally speci-
fied vacuum state, it is not at all surprising to
find that quantities which distinguish the two eq-
uivalent vacuums (such as (cr)) have a 8 periodi-
city of twice the normal result, i.e., 4~ instead
of 2)r. Indeed, Eqs. (22) show that (a)=+v cos(8/2)
(for the case P= 8/2) has a 8 periodicity of 4)r in
the spontaneous broken case."

Of course, in the present model (24) is not cor-
rect and spontaneous symmetry breaking of U(2)~
does occur. The formal loophole is that the 0 de-
pendence in the spontaneously broken theory is not
as simple as the transition from (23) to (24) would
imply. The amplitude (TJ"'(x)II„O„)„is not 8 in-
dependent since the functional integral requires a
choice between the two physically equivalent boson
vacuum states indicated in (22), i.e., a specifi-
cation of P, and the value of P is fixed by 0 at the
minima of V,«. In fact, p is fixed so that for
either choice in (22), the periodicity in 8 of the
amplitude is tzvice 2w, even though only integral
v has been considered. This causes no contra-
diction with the obviously true assertion that 0- 0
+ 2z must result in the same physical theory; it
simply informs us that quantities which distinguish
the two equivalent vacuums (such as. arg(a)) are
not physically measurable quantities.

Thus, (TJ"II„O„)„should not in general be physi-
cally measurable. That this is indeed the case in
our model is exemplified by the term

IV. DISCUSSION

The fact that some quantities in the theory can
show a 0 periodicity different from 2w indicates
that the 0 dependence is quite subtle in the spon-
taneously broken case. For example, consider
the selection rule cited by Crewther' which derives
from the chiral %ard identity

Efu xa. rz'"(')) o„xe"'. '

V n V

= E(x. Ex) (x' jo.) ' ', (xx)

where the operators O„have chirality y„. This
implies

[x;x.(xz-(.)
-

o„

= x -Ex„x o„)„=0 (x&)
m

if we assume that the left side of (23) vanishes for
all 0, as implied by the supposed lack of a Gold-
stone pole in any physical amplitude and if the
0 dependence is completely accounted for by the
e'"' factor in Eq. (23). If for the II„O„we substi-
tute an operator having the quantum numbers of
(t)(1 +y, ) (j (for which II= +1), we find that 2v- IIw 0
for all integers v, implying that the matrix ele-
ment ($(1 +y, )(j)) or ((r +irI) must vanish identically.
In pure @CD we would then conclude that if (24)
were correct, the spontaneous breaking of U(2)'"
and generation of quark masses is inconsistent
with the 't Hooft resolution of the U(1) problem
for integral v.

~
d'~ e ' "(rZ"'(~)q(0))„,

illustrated in Fig. 3. This term has a singular
behavior q'/(q') as q'-0 which does not corres-
pond to any physical massless particle in the the-
ory. In fact, it is just the sum over more and
more singular terms in the iteration of the self-
energy graphs (in higher v sectors) that results
in the massive propagator 1/(q'+m„') which is the
physically meaningful object. The removal of the
Goldstone pole in the 8 amplitude (summed over v)
does not imply the removal of (unphysical) q'-0
singularities in the individual v amplitudes —a re-
sult which &gould be implied if the 0 dependence
were completely given by the e'"' factor alone in
Eq. (23) so that the individual v sector amplitudes
were measurable in the spontaneously broken
theory with no Goldstone poles. The 4m 0 periodi-
city of ((r) is a signal that this is not the case.

The question of the 0 periodicity is thus quite
clear in the scalar field model presently being
considered. However, the only role of the scalar
field multiplet in this argument is to provide an
explicit spontaneously broken vacuum state with
the appropriate quantum numbers. In pure QCD
we expect (o) and ()I) to' be replaced by (QPz(j)z)
(P&(j)&y'(j»), respectively, and that these vacuum
expectation values will have a phase angle P that
enters the effective potential in the combination
0- 2P. The same 4z periodicity in 0 would then
be recovered for all amplitudes which distinguish
between the two physically equivalent vacuums
and (24) would be invalidated just as in the pre-
sent scalar model.
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However, there is an additional complication.
In massless QCD, the selection rule (24} is a
statement of the Atiyah-Singer index theorem, "
valid for all gauge theories definable on a com-
pactifiable space. This theorem relates the num-
bers of positive-and negative-chirality zero modes
(n„n } of the operator $-igg to the topological
charge of the gauge field: v=n —n, This means
that the functional-integral expression for the
amplitude (T II„O„)„vanishes unless the chiralities
of the O„satisfy+„y„=2v. Thus, this theorem
provides a derivation of the selection rule (24)
iridependentLy of the 6( periodicity considerations
above; and as has already been emphasized, the
selection rule is inconsistent with the spontaneous
breaking of the full U(2)'"symmetry and resultant
47( periodicity of the vacuum.

Notice, however, that for the index theorem
to be applicable at all, the fermion functional
integral must be considered after the decomposi-
tion of the gauge field integral into v sectors,
but befove any gauge field integrations have been
performed. On the other hand, spontaneous sym-
metry breaking in pure QCD will not occur unless
there is some term in the effective potential for
the fermions which minimizes V, «at (Qz~Pz~Pz) c0;
and such a term is possible only if the gauge field
functional integration is performed first. Thus,
the difficulty with the index theorem may be re-
solved by some noncommutativity of the gauge-
field and fermion-field functional integrals in QCD.
Alternatively, the compactification assumption
required for the index theorem to be applicable
may be incorrect in the spontaneously broken
case, so that the usual semiclassical WEB meth-
ods are inadequate, as suggested by Crewther. '
There is no need, however, for considering the
possibility of nonintegral v in the scalar model.
The sum over v is simply not a Fourier series
expansion of the 8 amplitude in this case.

The intimate connection between the solution
of the U(l) problem, the index theorem, and U(2)'"-
symmetry breaking may be seen in another way.
Starting with (1}and using the standard current-
algebra method of chiral perturbation theory in
the small (explicit) fermion mass M, it follows
that

2

m, 'E,'=-M, d x TE E,„(x}Pfi&y, g&16@' f

(25)

where the absence of any pseudoscalar massless
pole in the physical amplitudes has also been
assumed. The relation shows quite clearly that
the nontrivial topologica1. charge configurations in
QCD give rise to the pion-decay constant f, de-

monstrating their bea, ring on the U(2)'" breaking.
Now, in the chiral-symmetry limit M-m, '-0,
E, is taken to be virtually constant, i.e., inde-
pendent of M. If the quantity at right in (25) is
estimated in the same 1imit, then the index the-
orem informs us that in the v sector, this ampli-
tade varies with M 1jke MM2 (v (- M2 lv ( as M
for the case N = 2. Since v is an integer, we find
the leading terms in (25) come from v= +1 which
are of order M'-m, ', thus arriving at a contra-
diction'unless I', also varies with M in an uncon-
ventional way or I', = 0 identically.

This impasse is overcome in the scalar model
in a very simple way. The index theorem no longer
applies and the fermions obtain a contribution to
their mass X(v} separately from the explicit mass
M. However, after spontaneous symmetry break-
ing has occurred this term enters the fermion
determinant appearing in the functional-integral
expression for (25) in exactly the same way as
M. Thus, for v = + 1 we obtain the estimate
M(M+ X(o))-M -m, ' in the chiral limit M -0.,The
contradiction is removed by the explicit appear-
ance of the spontaneously generated fermion mass.
If the quark masses in QCD are generated (at least
in part) by some dynamical mechanism, this loop-
hole may be operative in QCD also. Thus, we see
from another point of view how the conditions for,
the index theorem to be applicable in the case of
spontaneous breaking of U(2)'" symmetry must
not be satisfied, in order to solve the U(1) prob-
lem in a manner consistent with the techniques
of chiral perturbation theory. Since the index
theorem does not apply to a model with scalar
fields as we have been considering, we can ex-
plicitly show the absence of any difficulty recon-
ciling the pseudoparticle resolution of the U(1)
problem and the techniques of current algebra.
The 6-periodicity discussion leads one to believe
that this will also be true in QCD. It is for this
reason that the self-consistent models of U(2)~
breaking' that go beyond the semiclassical ap-
proximation and attempt to circumvent the index
theorem do not run into any difficulties with cur-
rent-algebra. relations. The effective-potential
minimization of Sec. III is.an exp1.icit example
of how the semiclassical results can be circum-
vented by the introduction of spontaneous sym-
metry breaking into the model in a way consis-
tent with the first-order quantum corrections to
V,«. It is this avoidance of the most naive semi-
classical approximations that Crewther has re-
peatedly emphasized as necessary to a fuller un-
derstanding of the U(1) problem in the (real world)
case of broken chiral symmetries.

In summary, the scalar model of chiral-sym-
metry breaking shows that there is no formal
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objection to the solution of the U(1) problem pro-
posed by 't Hooft. Instead, the problem is to un-
derstand the detailed dynamical mechanism of
chiral-symmetry breaking in @CD which realizes
the 6 dependence and index theorem inapplicability
conjectures presented here in connection with the
scalar field model. -
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APPENDIX A

Although the lowest-order results of Sec.II are sufficient to illustrate the essential features of the q mass
generation and resolution of the U(l) problem through instanton effects and the current anomaly (1), it is
instructive to carry out the calculation to the one-boson-loop level (first order in b or c). The relevant
self-energy graphs are shown in Figs. 6 and 7. Note that when the isotriplet 2 or Q fields couple to the
instanton through the fermion loop that the exchange interaction of Z,«gives the only nonvanishing terms
as may be seen from (6) and (16). These terms differ from those of Fig. 6 by an overall relative minus
sign and a factor of 3 due to the three possible choices for i= 1, 2, 3 and are treated separately below.

The contribution of the terms represented in Fig. 6 to the q self-energy is

6 2 2 6
(k+c)X/cD(p) dkE(kg

( ) ( )+( )+( )

8(b+ c)(o)' 8(b+ c)(a)'
:)]"i) ] ) ]]" i)":i} (Al)

If the lowest-order relation 2(b+ c)(o)'= m, ' is
used, then (Al) vanishes at p=0 and there would
seem to be no corrections to Z„(0) first order in

b ore. However, weknow from(22) and Fig. 5

tha. t(v) is shifted from its tree level of [a/(k+
e)]''2' also, the o self-energy diagrams corre-
sponding to Fig. 1 for the q show that there is also
a 0' self-energy due to pseudoparticle effects:

The problem is that the graphs of Fig. 6 do not

give the only contributions to Z„ to this order. The
correct result is obtained by considering the (or-
dinary) self-energy graphs of Fig. 9 with the prop-
agator functions for the internal q and 0 lines
corrected by the q and a self-energies of (8) and

(A2). The sum of these terms (at p = 0) is

'.(p') = 4&'~(p) [-E(p')+ 8E(0)j, (A2) k2+2, +~ (k)'k. +~ (k)
so that Z,(p'=0)=Z„(p'=0)=8k. 'vI7(p). These re-
sults could also have been deduced from (19) and
the minimization of V„,. Thus, 2(b+ c)(cr)'cm, ' to
order w. However, these corrections contribute to
(Al) only in order v' and there must be a, contribu-
tion to the q self-energy first order in ~, as is
evident from the Ward identity (11) and the non-
vanishing of the term first order in ~ in

(Tq(x)E,„E„(0)). This term, illustrated in Fig.
8, has the value (as q'-0)

16(b+c) —,D(p) d'k (E)k—, , (A')
A.2g

4 1 1

m.' k' y'+~, '

1 3
k'+ 2a+ Z, (k') k'+ Z„(k')

4(b+ c) ((r)'
[k'+Z„(&')]]k'+&a+Z.t&')]}

Of course, to lowest order in v, this vanishes,
which is just a statement of Goldstone's theorem
at the one-loop level. Expanding to first order in w

recovers the terms in (Al) [corresponding to the
E(k') part of Z, and Z„] and, in addition, gives those
one-loop diagrams featuring the E(0) part of the g
and q self-energies, inserted onto. the internal cr

FIG. 6. Pseudoparticle-induced q self-energy graphs
first order in the boson couplings 5 or c, deriving from
the first (direct) term in ~8ff.

FIG. 7. Pseudoparticle-induced q self-energy graphs
fir st order in b or c deriving from the second (exchange)
terxIl in ~egg.
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)7f
(

FIG. 10.

4i ~( 4( ~I

Lowest-order g& and 71 self-energy graphs,

FIG. s. Direct contribution to (Tb IiIi) first order in
cq and g,

and q loops of Fig. 9. The result of expanding
(A4) to first order in v is

2Z, (k') 2Z„(k') 4aZ„(k')
(k2/ 2g)2 (k2)2 (k2)2(k2/ 2g)

4aZ, (k') 16K'&D(p)
(k')(k'+ 2a)' (k')(k'+ 2a) ~

'

where the last term is the correction of (c)' to this
same order, as given by (22). Combining terms
and using (8) and (A2) gives for (A5)

21 1
16(b+ c)X'vD(p) d'kE(k )— —. (A6)k2 k2+ 2a

Comparison with (AS) and (11) shows that this is
just the correction to m„' required to confirm the
Ward identity to the one-boson-Loop level.

The additional graphs of Fig. 7 are analogous to
the previous set. That is, in order to correctly
account for the total contribution to q self-energy
from the isotriplet Q and 7j boson loops, the lowest-
order Q and 7T self-energies must first be calcu-
lated from the graphs of Fig. 10. These give

where m~'= -2ac((b+ c) is the Q mass squared in
tree-level approximation. To zeroth order in w,

(AB) vanishes at p = 0, again demonytrating Gold-
stone's theorem to lowest order. Expanding (AB)
to first order in v (at p = 0) then gives

1 1,Bc%.'vD(p)
Bc . d"k — Z (k') —Z (k')+ —--

k'b'+m ' ' b+c

where the last term again arises from the correc-
tion to (v)' from (22). Using (AV), this becomes

1 1
48cX'W(p) d'kI" (k') —,

k k+m~

which is to be added to (AB) in order to obtain the
complete one-loop correction to the q mass of Eq.
(9). Comparing these with the appropriate contri-
bution to (Tq(x)F„g,(0)) illustrated in Fig. 12 and

having the value

48cÃND(p) -- —; &I
d'kE(k') »—, , (A11)m„' ~ k' k'+ m~' '

we find that the contributions to the ri mass of (A6)
and (A10) are just those required to satisfy the
Ward identity (11) at the one-boson-loop level.

I

Z, (p') = 4~'~(p) &(p')+
b

— +(0),
(A V)

APPENDIX 8

+12c' v ' d'k
(k+ p)'+ Z,((k+ p)'),

k'+ m~'+ Z~(k') „' (AB)

Z, (p') = 4X.'-~D(p) [-S(p')+r(O)j .
Then these self-energies are inserted into the Q

and 77 propagators of Fig. 11 to give the following
one-loop correction to the q self-energy:

1 1" k'+, '+ Z,(k') k'+ Z, (k')

]+ S(b+c) d k
1

In Secs. III and IV it was shown that the scalar
field model can exhibit a 8 periodicity different
from 2w (through the formal specification of the
vacuum state) and that this provides a loophole in
the derivation of the selection rule, Eq. (24) from
Eq. (2S)—without the introduction of fractional v

values. However, as the discussion of Sec. IV em-
phasizes, this 9 dependence of formally specified
vacuum expectation values is somewhat unphysical,
for 0- 0+ 27t does leave physically measurable
quantities unchanged. The purpose of this appen-
dix is to show that it is possible to fix the vacuum
phases in the model so that they do indeed exhibit
a 0 periodicity of 2m, while still circumventing the
selection rule in (integral) v sectors.

f
g )'g

r

'9 9

.0"
)

"I
g) 0

FIG. 9. Ordinary one- (isosinglet-) loop self-energy
graphs.

(
't Q. ,VT,

l

l~
l

9 '7

r
( Q, ,Vr,

J'9 - — '9
Vf'

I

FIG. 11. One- (isotriplet-) loop self-energy graphs.
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vr ~

I

FIG. 12. Exchange contribution to (Th I"E) first order
in c and f(:.

8

lf, instead of Eq. (20), we let

(o+ iri+ P, —iv, ) = Ue '8,

(cr+ iq —
&f&, + iv, ) = ye ' ",

which is the most general form for a diagonal
fermion mass matrix, then, repeating the effective-
potential calculation and using Eq. (19) gives

a, (b+ c),l elf —-2 v +
4

2&

—2X'~D(p) cos(8 —P —y)t '

instead of Eq. (21). Now, any choice of P and y
with P+ y = 8 minimizes V,«and we might just as
well choose y = 0, P = 8 instead of the previous
specification of y = P = 8/2. The expectation values
of Eq. (Bl) now have a 8 periodicity of 2w, not 4n

This is merely another illustration of the artifi-
cial, convention-dependent nature of the 8 period-
icity of physically unmeasurable amplitudes. '~

-With a completely 2' periodic vacuum it may now

seem that the problem of the selection rule is
again with us. However, this is not the case, be-
cause now the assumption that the left side of Eq.
(23) vanishes for all 8 is no longer valid. This can
most clearly be seen if we remove all ambiguities
in the vacuum phase angles by explicitly breaking
the SU(2) x SU(2)'" symmetry:

2- 2+ e„o+e, (b, ,

where we may then allow &p, z,- 0' at the end of
the analysis, if desired.

Using Eqs. (Bl), the effective potential is now

a, (5+c),y = ——g'+ —c' —2x'e9(p) cos(8- p -y)v'eff 2 4

e~~ —P'= P= ——m2
—r ~

FIG. 3.3. The dependence of the vacuum phase angles p
and y on 8 in the case &0 and ~& are both nonzero, with ~
= (e3/eo) =—0.05. The switchover re gion near 8 = Yf be-
comes vanishingly small as &3 0.

to obtain

~o+ ~~ ~ ~o ~sC=sinP ' ' v=siny — ' — -' v
2 2

P+y= 8.
(B6)

—VCOS e~VCOS

; YSln 2

If we first consider &3= 0, sinP = siny and we have
three solutions:

(i) P =y= 8/2,

(ii) P=y= 8/2+v,

(iii) P = v —y (at 8.= ~) .

For a true minimum of the effective potential we

K~V--~- (cosp+ cosy) ——~ (cosp —cosy) .
2 2

In the limit that Ep E3 are small, it is sufficient to
minimize V„,. with respect to P and y subject to the
constraint P+y = Ig: i.e. , we minimize

f(P, y) = C(8 —P —y) —~(cosP+ cosy)

& v—~ (cosp —cosy)
2

. FIG. 14. The corresponding dependence of the vacuum
expectation values for ~ = 0.05. The (P3) field develops
an expectation value near 8 =71 due to the switching from
one solution to another in order to minimize V~f.
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FIG. 15. The z& self-energy contributions for the case
(v) =(q) =(w3) =0, (Q3) =v which obtains at 8=m. The two
exchange graphs are of the same sign and sum to give a
nonvanishing contribution to the 7(3 self-energy.

FIG. 16. The q self-energy contributions for 0 =- ~.
There is a relative minus sign between the direct and ex-
change contributions which results in a cancellation be-
tween the terms as p 0. Hence, the q propagator re-
mains massless.

must have

(i) P=y= 8/2 for 0~ 8&m,

(ii) P = y = 8/2+ m for n & 8 ~ 2w,

which is 2w periodic in 8 and continuous at 8= 0 and

2z. The symmetry breaking E, determines the
unique minimum of V,« for all 8 except 0=~. With

e, strictly zero there is a discontinuous switchover
from case (i) to (ii) as 8 goes through m. The
8-m region may be examined more carefully by
allowing «, 0 0 and solving Eqs. (B6) for P(8) and

y(8). Then, the switchover is continuous" and de-
pends only on the dimensionless ratio r =@,/e, .
Figures 13 and 14 illustrate the behavior of the
phase angles P and y and the expectation values for
the case r —= 0.05.

With the physical vacuum now determined for all
8 we indeed find that all the 0 dependence is 2m

periodic (as it must be, according to the function-
al-integral expression for amplitudes, properly
defined, with no formal ambiguities in the specifi-
cation of the vacuum). Notice, however, what has

, happened. At 8=m both the 0 and g fields have

zero expectation values, but Q, does not. The v
and &j&, fields have interchanged roles at 8= v rela-
tive to 8= 0. Correspondingly, it is the m, field
which acquires a mass from instanton interactions
at 8=m while the q remains massless. This is
easily verified explicitly from the graphs in Figs.
15 and 16.

Thus, in the case of explicit SU(2) x SU(2)'" sym-
metry breaking (as well as in the symmetric case
for the choice of phases y = 0, P = 8 mentioned pre-
viously), the q field retains a massless component
for some values of 0. The physical vacuum is
completely fixed by the symmetry breaking for all
0 and is indeed 2m periodic; thus, the Fourier
transformation involved in passing from Eq. (23)
to Eq. (24) may be correctly performed. However,
the left side of Eq. (23) does not vanish for all 8,
receiving as it does a contribution from the still
massless q pole near 8=m. Hence, the selection
rule (2v —Z y )(TQ„Q„)= 0 is still voided (albeit
for a somewhat different reason) and the subse-
quent discussion of Sec. IV applies in this case as
well.
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