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A fully interacting effective chiral Lagrangian obeying the anomalous axial-baryon-current conservation
law is constructed. This Lagrangian is a generalization of one implied by the 1/N approximation. In a
certain sense, the old o- model is recovered. Our Lagrangian displays the dependence of amplitudes on the
quantum-chromodynamic vacuum angle 0, gives soft n' theorems, and hints at a possible complementarity
between the instanton and 1/N approaches. We can rewrite our model in terms of a gauge-invariant gluon

field.

Since the fundamental dynamical variables
(quarks and gluons) of the theory of quantum chro-
modynamics are presumably unobservable, it is
desirable to construct a low-energy effective
Lagrangian in terms of the fields of observable
particles. In fact, “chiral” Lagrangians of this
type have been fairly successful in fitting the ex-
perimental data. There is, however, a formal
problem,! commonly referred to as the U(1) prob-
lem, since the anomalous Ward identities are not
manifestly satisfied. Recently, in an interesting
paper, Witten? has emphasized that the “1/N,”
approximation to quantum chromodynamics (QCD)
provides a motivation for treating strong pro-
cesses in the tree-diagram approximation (as is
done for the chiral Lagrangians) and that the U(1)
problem should be solved at this level. He further
suggests that gluon fields of certain types (“glue-
balls”) appear in the effective Lagrangian. In the
same 1/N, framework Veneziano® has succeeded in
saturating the anomalous Ward identities using a
“ghost” glueball field. Finally, Di Vecchia* has
produced the noninteracting (i.e., quadratic) part
of the corresponding effective Lagrangian. In
this note we present the full low-energy effective
Lagrangian for QCD. In a certain sense this La-
grangian is a special case of a general o model
previously treated® in detail. Thus, we automatic-
ally incorporate all the phenomenological successes
of that model and can easily incorporate SU(3) and
chiral-symmetry breaking while maintaining con-
sistency with QCD results on anomalous Ward
identities. Furthermore, we show that this ap-
proach is complementary to the instanton approach
to the problem by demonstrating how an interac-
tion term of 't Hooft’s® effective type may arise.

For simplicity we specialize to a world contain-
ing spin-0 mesons of three flavors. The spin-0
fields are contained in a (flavor) matrix M ,,
which transforms like the quark-field combination
7,(1+v,)q, (see Ref. 5 for more details of notation).
We can then write the generalized o model® as

£==3Tr(a,Mo,M") - V(I ,1,,1;,J)
+Trla(M +M")].

Here V is an arbitrary function of the chiral U(3)
xU(3) invariants I, =Tr(MMT")" and of J = (detM
+detM"), and the matrix A ,=0,A, is propor-
tional to the matrix of quark masses. In this
model the 7’ has a mass, even when A =0,
which is determined by (8V/8J). (The angular
brackets indicate that the vacuum expectation
value is to be taken.) The anomalous Ward iden-
tities are not, however, satisfied.

The task confronting us is to modify the above
Lagrangian by incorporating gluon degrees of
freedom in such a way that these anomalous Ward
identities are satisfied. The Ward identities them-
selves are derived from the anomalous conserva-
tion law for the axial-vector baryon current Jf‘,
which reads (temporarily neglecting quark masses)

8,85 =0,K,. 1)

K, is a well-known! combinatiog of gluon fields
such that 8K, =(VNpg?/16m%)FF. Hence, if we
produce an effective Lagrangian which satisfies
(1) by virtue of the equations of motion we are
guaranteed that the Ward identities will be satis-
fied to tree order.

Our aim can be achieved by introducing a pseudo-
vector glueball field K|, and modifying the gen-
eralized o model so that the effective Lagrangian
is now

£=-3Tr(e,Ma,M") = Vo, 1,,1,) + 3¢(8 K,
J il t
* 375 0K (IndetM — IndetM™) + Tr{A(M +M")] .

@)

Every term but the last in (2) is manifestly in-
variant under SU(3) xSU(3) transformations M

- U,MUY. The U(1) matter current is found by
Noether’s theorem to be J5 = (—i/ﬁ)Tr(MTauM)
so that 9,J5=(~i/V3)Tr(M'OM -MDOM"). This
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is easily computed from the equation of motion
obtained by varying £ with respect to M™:

1 A/ H-1_ 4=
2DM+W+4\[§ BHKM(M) A=0. 3)

Multiplying (3) on the left with MT and subtracting
the complex-conjugate equation yields” a“J’f‘
=8,K, - (2i/V3)Tr[AM - M")] which is the anoma-
lous conservation equation (1) including the effects
of “quark mass” terms. Thus Eq. (2) is a rea-
sonable candidate for the correct effective QCD
chiral Lagrangian. The (3uKu)2 term has as yet
played no role, but varying £ with respect to K,
yields the very interesting equation

%[avz{,,— (4V3ic)"(IndetM —IndetMh)]=0.  (4)
u

This evidently requires the gluon-field combina-
tion 8 K, which appears in £ to differ from the
matter-field term (4v3ic) *(IndetM — lndetM?)
only by a constant (which we take to be zero).
Putting this back into £ (which is reasonable in
the present effective Lagrangian context) gives

£=-3Tr(e,Mo,M") -V,
+(96¢)"*(IndetM — IndetM ')
+Tr[AM +M1)]. (5)

Equation (5) is expressed completely in terms of
matter fields; it is actually a special case of the
general linear ¢ model treated in Ref. 5. If one
were to treat (5) as the starting point, he would
derive a partial conservation law of the form
8, J =function of (detM and detM’). Such an equa-
tion leads® with usual techniques to a sufficiently
large mass for the 1’(960) particle to circumvent
the U(1) problem. On the other hand, it is ap-
parently not consistent with (1) which requires
auJi’, to equal a combination of gluon fields rather
than matter fields. As we have just seen, the
constraint (4) performs the task of equating the
gluon-field combination to the matter-field one.
This would seem to provide a justification for the
use of the o0 model for practical calculations.
Actually, without modifying our conclusions,
the additional terms 37,k,,(8,K,)™ can be added to
the Lagrangian (2). Here the %, are arbitrary
functions of the invariants Tr(MMT)™, Thisaddition
will not change the equation for 8,4} so all Ward
identities will still be satisfied to tree order. How-
ever, the “constraint” (4) will be modified so that
9,K, is to be replaced by a more complicated
combination of matter fields. Since this leads
again to the general linear o model of Ref. 5 we
continue our treatment with the simpler form (2).
We have demonstrated (by construction) that the
presence of the term proportional to 8 K, (In detMm

—1ndetM?) in the effective chiral Lagrangian (2)
ensures the anomalous conservation law for the
axial-vector “U(1) current” Jy. This holds as a
result of the Lagrange equations of motion. Thus,
consequences of the anomalous conservation law,
i.e., the Ward identities, will also hold automatic-
ally. Since the loop expansion preserves Ward
identities order by order the treatment of the ef-
fective chiral Lagrangian at the tree level provides
a consistent realization of the consequences of the
equation of motion.

The above by itself is not sufficient to solve the
U(1) problem which, for present purposes, may
be defined as the problem of giving a nonzero
mass to the SU(3) singlet n' meson in the limit
when the quark masses [the A, in Eq. (2)] are ab-
sent. ' The U(1) problem in the present model is
solved by the presence of extra terms involving
arbitrary chiral-invariant combinations of the
guage-invariant glueball field 8,K,. The prototype
term of this form is 3¢(®,K,)* in (2). These extra
terms give, as a result of the equation of motion
for K, the very interesting constraint that 8, K,
behaves like the quantity (IndetM - IndetM?’). As
we shall show later, the quantity is approximately
proportional to the 5’ field in the ¢ model. Then
it is apparent that the third and fourth terms in (2)
become 1’ mass terms, Our constraint equation is
the field-theoretical realization of Witten’s postu-
lated cancellation between ' and glueball matrix
elements [see Eq. (11) of Ref. 2]. We may note
that the constraint equation expresses a matter-
gluon duality in which the n” meson can be thought
of as composed (approximately) of quarks and
antiquarks in the usual way or of gluon fields.
From our point of view this is very different
from considering the 5’ as a linear combination
of a quark and antiquark and a particlelike glue-
ball. As we shall see later, one can do this
formally but the glueball behaves then like a
peculiar tachyon rather than like a particle.

Since the quantity (IndetM - 1ndetM")? can be®
expressed as a function of J = (detM +detM") the
general o model, which emerges when the glueball
field 9, K, is eliminated in favor of matter fields
by equation (4), is precisely of the form we first
wrote. This model has been discussed in detail
in the literature (see Ref. 9 and references there-
in) where successful treatments of SU(3)-sym-
metry-breaking effects have been given. In partic-
ular, Al=1 mass differences and the puzzling
process n - 37 were explained. Although much
work already has been done on this model, now
that there appears to be a more solid connection
with QCD, it can be pursued still further. Explora-
tions in this direction will be described elsewhere.
For the remainder of this paper we shall make the
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very simplest approximations to the ¢ model in
order to emphasize the physics of the situation.

We would now like to give a brief sketch of how
the effective U(l)-violating determinant term in
our model may be related to the one derived by
’t Hooft® in the instanton approach. This may be
relevant since there has been some controversy
about whether the instanton approach is correct or
compatible with the 1/N, approach to QCD. At
least at the level of our model we shall see that
they both give essentially the same result.

The chiral symmetry must break spontaneously,
so one has®

M)y=M"y=a1,

with @ =F,/2. We then expand in powers of the
“fluctuation” detM- (detM) by writing detM =(detM)
+(detM - (detM)). This leads to

IndetM — IndetM = @ ~3(detM — detM").

The square of this can be rewritten® as o ~®(detM
+detM")? plus U(3)xU(3)-invariant terms which
can be absorbed in V,. Expanding in powers of
the fluctuation once more we have

(96C)*(IndetM — 1n detMT)?
~ (24C) 7 (detM +detMT) +. .. .

If we finally take the liberty of interpreting® M as
proportional to G(1 +y,)g we are led to expect an
effective U(1)-violating Lagrangian of the form
detg(1 +y4)g +H.c. This is precisely the local
approximation to 't Hooft’s effective term® (with
further neglect of color indices). The numerical
constant ¢ in our Lagrangian is thus indirectly
related to 't Hooft’s integral over instanton sizes.

Another interesting aspect of QCD physics which
can be illuminated by the present model is the
dependence of amplitudes on the “vacuum angle”
f. This angle is usually introduced into the theory
by inclusion of a term

—bg

3272 FF

in the QCD Lagrangian. Inthe limit where the
quark masses go to zero the 6 dependence of
amplitudes can be eliminated by a chiral U(1)
transformation. In what follows we shall verify
that the correct term above emerges by making a
chiral U(1) transformation in the massless version
of (2). We will further show that, in the presence
of quark mass terms, the 6 dependence is simply
introduced into the effective Lagrangian by a
modification of the constraint Eq. (4). Namely
(in the simplified case where reference to the
scalar mesons of the theory is suppressed), we
eliminate 8 K, in terms of

rather than just ’. Our modified constraint equa-
tion is essentially equivalent to Witten’s? soft n’
theorem. Once the 6 dependence is introduced into

the theory it will appear in terms containing pieces
which are functions of

e'%etM +H.c.

The last term of Eq. (2) will continue to be the
“mass term.” Alternatively, one can make a
chiral transformation so that the e'® is eliminated
in front of detM but it then appears in a parity-
violating piece of the mass term which looks like

isink o Tr[AM - M),

Which of the two equivalent presentations of the
theory is adopted is a matter of taste or conven-
ience. ‘

It is instructive to ask what happens to our
basic effective Lagrangian (2) in the limit of zero
quark masses (i.e., A=0) under a chiral U(1)
transformation on the matter fields M — exp(i6/3)M.
This angle may then be considered™ to be the
vacuum phase angle. The first three terms in (2)
are unchanged while the fourth picks up an addi-
tional piece —(0/2vV3)s K, =—-(0g*/32r*)FF, in
terms of the field-strength tensor F. This is just
the usual term in the exact QCD Lagrangian so
we have a check on the consistency of our pro-
cedure.

In order to discuss the schematic effective La-
grangian and the soft n' theorem of Witten,? it is
helpful to consider an approximation to the linear
o model in which the scalar fields (i.e., the com-
binations M +M") become very massive. Then our
model essentially becomes’! a nonlinear ¢ model.
All that is required is to set the field M equal to
aexp(i¢p/a), where ¢ is the pseudoscalar nonet.
We isolate the n'(960) which is of special interest
by writing ¢ =¢" +(1/V3)n'1 with Tr¢’ =0. Then
Eq. (2) becomes

, a? o g c
L£=-30,n )Z—Z—Tr(a“e“”’“aue to'/a) +§(auKu)2

1 /
_mauKu(B +\/§T] /a)

+Tr l:Aexp<i‘—);qz +}131;) +H.c.] , (6)

wherein we have also inserted the 6 dependence
discussed in the last paragraph. Note that V, in (2)
just becomes a number and was thus dropped.
Furthermore, the first two terms (which corres-
pond to Witten’s matter Lagrangian) are trivially
invariant under n’ -~ +const. The remaining
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Lagrangian (except for the last quark-mass term
which Witten drops) contains 6 and 1" only in the
combination 8 +V3n' /a. This is the basis for his
soft n’ theorem which essentially states that dif-
ferentiation with respect to 6 is the same as dif-
ferentiation with respect to v3n'/a. It is revealing
torewrite (6) using the contraint (4) [which, includ-
ing the 6 dependence of the states in the effective
Lagrangian, now implies 8,K, = (ch)"(n’ +ab/

V3)l:

1
8a’c

L£=-300,n"P - (" +a6/V3)

0[2 ’ ik
——Z—Tr(aue“” "%, et )

+Tr [Aexp(i@—l— +\/%7(;> +H.c.]. (1)

a

This (setting 6 =0) is an old-fashioned nonlinear o
model.'? Note that all interactions of the ' are in
the symmetry-breaking term and hence would
vanish as the quark masses (here the matrix A)
vanish.'®* Further, note that (in the limit of zero
quark masses) m,® =1/4a%c=1/F,%c. This deter-
mines the constant ¢ in the Lagrangian (2) to be
positive. This in turn implies® that the field K, is
a ghost field since its “kinetic term” in (2) has an
unusual sign.

Actually the last statement is not very precise
since K, is not a gauge-invariant quantity and
3c(d,K, ) is not a true kinetic term. We can
clarify the situation by introducing a gauge-in-
variant pseudoscalar glueball field G'=9 ,K,,.
Further, defining G =AG’ we can rewrite our basic
Lagrangian (2) as

=1im (-1 2, € o,  IG _ t
£—}Ln;( 3(8,G) * 532 G +4\/§)\(1ndetM IndetM ')

+pure matter terms) , (8)

wherein the limit x— 0 is to be taken at the very
end of the calculation. From (8) it is evidént that
the ghost field G behaves as a very heavy (infin-
itely heavy as X~ 0) particle of imaginary mass.
The presence of the pseudoscalar ghost field G may
provide the key to understanding the differences
between the pseudoscalar nonet and the conven-
tional, magically mixed nonets (e.g., 177). Witten
has argued that for all meson multiplets it is the
generalized gluon-annihilation diagrams that pro-
vide deviations from magical mixing and violation
of the Okubo-Zweig-Iiuzuka (OZI) rule. What
makes the pseudoscalars so special is that it is
only in this channel that we expect a ghost glue-
ball field to play such a large role. The ghost
induces strong mixing while in the other channels,

mixing and probably glueball effects are small.
The glueball field in Eq. (8) can be eliminated by
the constraint (4). This raises the question of
whether gauge-invariant glueball fields always
end up as ghosts which eventually get eliminated
from the theory or whether they may in fact ap-
pear as physical particles. Even if the latter is
true it seems that the ghost is the most influen-
tial of all the glueballs. It is instructive to con-
sider the n,n’, glueball (call it G) mixing in our
Lagrangian (8). Inthe 7,n" G basis the mass ma-
trix has the form

r

0 0 0
1
0 0 T2a |’
1 c -

0 —~ =
L 201 A
where we have néglected quark masses. Upon

diagonalizing we have
("

0 0 0
1
A2 - .
o 0 | rom ©)
4
0 0 -5

| N

Equation (9) explicitly shows how the ghost de-
couples and how the wrong sign of the ghost squared
mass is crucial to generate positive my, 2=1/4a%c.

It is this contribution which is unique to the pseudo-
scalars and distinguishes them from the more con-
ventional nonets.'* It would still be necessary to
invoke an additional mechanism?®® to give a more
detailed explanation of the general mixing problem.

We would like to remark that the discussion above
has explicitly shown how the same result is
achieved whether one eliminates 8,K, =G initially
in terms of matter fields or keeps it in the theory
and observes that it decouples after performing
the diagonalization of fields needed to give a par-
ticle interpretation. This seems to be a useful
check of the consistency of our procedure.

The question of how to treat QCD at low energy
is, at present, a leading theoretical problem. In
this note we have shown that the theory is essen-
tially equivalent to a general form of the ¢ model
and therefore incorporates the numerous success-
ful predictions of that model.®*® Furthermore,
the effective Lagrangian found makes contact
with both the 1/N, and instanton approach to QCD
and hints that the two descriptions may in fact be
complementary rather than contradictory or in-
compatible.®

One of us (J.S.) would like to thank Per Salomon-
son for a helpful correspondence.
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