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A systematic discussion of effective field theories, describing a given subset of fields of a quantum field

theory, is presented within the context of functional integration. Effective field theories are divided into two
classes, natural and unnatural, according to certain independence properties of the counterterms of the
theory, defined by minimal subtraction, Natural effective field theories allow independent renormalizations
for two distinct mass scales of the theory. A set of constraints, which place restrictions on masses and
external momenta, allow the effective field theory to be approximated by a local Lagrangian of dimension
four. Predictions of the complete theory are compared with those of the local, effective theory in a domain
where both are supposed to be valid. The separate renormalization-group improvement with respect to the
two independent mass scales of a natural effective field theory is described. Special problems raised by the
presence of massless Goldstone bosons are discussed. The general issues are illustrated by examples from
scalar field theories in order to present the discussion simply.

I. INTRODUCTION

'The possible grand unification of the weak, elec-
tromagnetic, and strong interactions is a fascinat-
ing proposal. ' for several reasons. In addition to
several conceptual advantages, the program offers
the promise of providing links between elementary-
particle and cosmological issues. The simplest
class of such theories is characterized by two
vastly separated mass scales M-10'~-10" GeV,
say, and m -300 GeV, the former referring to the
mass at which weak, electromagnetic, and strong
interactions become unified, while the latter is the
mass at which the electroweak SU(2) xU(1) gauge
theory is broken to its final U(1) invariance. As a,

consequence, one envisions the SU(2) xU(l) xSU(3),
theory to be an effective field theory, obtained as
a low-energy approximation to the grand unified
gauge theory. In addition to the group-theoretic
problem of finding the correct grand unifying gauge
theory and representation structure, there is also
an unsolved dynamical problem associated with this
program. 2 That is, it is not known how to impose
a gauge hierarchy with mlM-10 " to 10 '~ in a
natural way (in the technical sense). A partial sol-
ution to this question has been given by steinberg. '
However, in his work certain masses must be set
(approximately) to zero by hand. Therefore, a
gauge hierarchy is possible, but as yet there is no
known natural reason why it must occur.

In spite of the importance of this problem, there
has been little systematic discussion of the se-
quence of steps involved in constructing an arbi-
trary effective field theory. Further, in practice
some approximations are required in order to per-
form actual calculations, and a detailed discussion
of the domain of validity of these approximations
and how they may be systematically improved, is

a necessity. Heretofore, one began such an analy-
sis with a postulated effective field theory, ap=-

pealing to the discussion of Appelquist and Caraz-
zone for justification. 'This may involve a number
of complications if there is spontaneous symmetry
breaking, ' and if there are symmetry relations
linking the counterterms of the complete theory to
those of the low-energy residual field theory.

It appears far more logical to us to begin with
the complete field theory, and describe the se-
quence of steps necessary for the extraction of a
useful effective field theory. In this paper we de-
scribe a systematic discussion of the construction
of effective field theories by means of the formal-
ism of functional integration. Our presentation has
some advantages over earlier discussions in that
(1) the systematic methods presented in this paper
paper provide a technical simplification in the
actual construction of effective field theories, (2)
our analysis allows us to separate several distinct
issues which emerge in the construction, and (3)
the calculation of corrections to a given approxi-
mation to an effective field theory appears to be
rather straightforward.

In Sec. II of this paper we present a general con-
struction of effective field theories from a larger
field theory. In so doing, we subdivide effective
field theories as natural or unnatural, depending
on whether the parameters of the effective field
theory can be made finite by the counterterms
available in the original Lagrangian or not. It is
emphasized that effective field theories are in gen-
eral nonlocal, infinite polynomials. However, for
tree-level processes, a useful local approximation
to the effective Lagrangian, which ignores terms
of dimension greater than four, can always be
found by putting constraints on masses and mo-
menta. In processes involving one or more loops,
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it would appear that the full nonlocal Lagrangian
with terms of dimension greater than four must be
employed. However, we mill show in a subsequent
publication that the effects of nonlocality and of
terms of dimension greater than four can often be
removed by finite, mass-independent wave-function
renormalization and by redefinition of the effective
mass and coupling parameters [or are suppressed
by positive powers of (heavy mass) ']. It follows
that the local effective Lagrangian described above
can often be used to compute one- (and higher-)
loop, as well as tree-level, processes.

In practical calculations an approximate effective
field theory is obtained by a perturbation expansion
in a subset of fields (I[ ) of the original Lagran-
gian. Such a perturbative calculation of the effec-
tive field theory may be renormalization-group im-
proved with respect to the y fields' renormaliza-
tion mass scale. We define an effective field the-
ory without approximations, so that it can be used
to reconstruct the predictions of the original field
theory. Once one or more approximations are
made, it is no longer obvious that the effective
field theory will give the same predictions as the
original field theory in any kinematical domain.
This aspect of the construction must therefore be
verified.

The discussion of Sec. II and subsequent sections
-is mostly heuristic, with no formal proofs of the
assertions presented, although the detailed discus-
sion should give sufficient motivation for the
claims. In the remaining sections of the paper we
present examples from scalar field theories to il-
lustrate the issues. Sections III and I7 give ex-
amples of natural and unnatural effective field the-
ories. In Sec. V we show horn, in our examples,
restricted kinematics lead to an approximately lo-
cal tree-level effective field theory. No assump-
tion of a mass hierarchy is required. We examine
in Sec. VI the circumstances under which the ef-
fective field theory in our example gives a reason-
able approximation of the predictions of the com-
plete theory. We emphasize that in a natural ef-
fective field theory, there are tmo independent re-
normalization schemes, mith mass scales g, and

p,, associated mith M and m, the large and small
mass scales, respectively. Therefore, a natural
effective field theory allows for independent re-
normalization- group improvement with respect to
p, , and p, . Renormalization-group improvements
of the effective Lagrangian with respect to mass
scale p, , is discussed in Sec. VII. If the effective
field theory is unnatural, then the situation is more
complicated since the counterterms of the unnatur-
al effective field theory link the large and small
masses M and m, and the large and small mass
scales p, and p, In Sec. VIII me extend the dis-

cussion to three scalar fields in order to delineate
special problems related to the Goldstone boson.
This example demonstrates that a Goldstone boson
must always be included in the (g„) partition in
order for the effective field theory to be natural.

II. THE EFFECTIVE FIELD THEORY

A. Natural and unnatural effective field theories

where the capital latin subscripts refer to 4, low-
er-case latin subscripts label the (t), and lower-
case Greek subscripts enumerate the g. No par-
ticular symmetry or mass scale need be attributed
to the interactions of the P. or ][„.

The generating functional for the Green's func-
tions of this field theory is

Z[Z] =})(f[dX„]xxp(i jr& x[a(x)+ 'Z„(x)e (x}]),

(2.2)

where N is an appropriate normalization. Equival-
ently, the generating functional for this same field
theory can be written as

xexpi d'yg y+j y y

+j.() )x.() )]), (2.3)

where j, (y) is a source for p, (y) and j„(y) is a
source for y (y). When expressed in terms of p,
and X, the Lagrangian can be written as

(2.4)

where g & and g„refer to terms which are self-
interacting in p, and g„, respectively; p z„ is the
interaction which couples these two fields, while
the three ~p are the counterterms of the theory,
partitioned in the same may. If me mere to restrict
ourselves to a renormalizable field theory with a
softly broken symmetry Q, the divergen't part of

Consider a multicomponent scalar field C„de-
scribed by a. renormalizable Lagrangian density p.
The couplings of P may or may not be restricted
by a group of internal symmetries G, perhaps soft-
ly broken. (Since Symanzik has shown6 that an
arbitrary quantum field theory can be represented
by a multicomponent scalar field, in principle, our
discussion is sufficiently general to include both
gauge and fermion fields. ) Now partition the com-
ponents of 4 „into two distinct sets ((I),j and (y„j.
That is,

(2 I)
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~c =(~z) „.„ (2.8)

for each of the counterterms, where the ( jL)(l) ,„brae
the pole terms of the dimensionally regulated coun-
terterm s.

It is convenient to rewrite (2.3) and (2.4) as fol-

&P ~ wouM be invariant under G by Symanzik's
theorem, ' where

(2 5)

In this particular case, even though the divergent
part of gg~ is invariant under G, in general
Symanzik's theory does not give information on the
symmetries of the separate counterterms which
appear on the right side of (2.5). In our work we
will define the counterterms by means of dimen-
sional regularization, with minimal subtractions,
which means that

lows:

zlj„j„] )j=f [dp, ]exp(i fe'x[z +(eze), +j,p, ])

x dyo, exp s d y g ++@ +

+ ep,„+(ep, ). +j.x.]),

where the counterterm ~gz has been divided into
two parts

~z, = (~z,), +(~z,), . (2.8)

The precise separation in (2.8) will be defined con-
structively in what follows. Equation (2.7) can also
be written as

&Ij., j ] = e) f [dp ]exp(e fd xlpee(e'pe)+j p]),&[).: p],

where

~ [ .
y)

—e i]][jp(
'), (j)I

=. f[d,.]exe(e fd P[P„'Pie+'xde+ede„. (eee), +j.x„l)

(2.9)

(2.10)

~~x =~x +~~x +'A +~&~x + (i'&~)x . (2.11)

Similarly, W[j„;p] generates the connected
Green's function of the same field theory. (In per-
forming the g-functional integration one of course
takes proper account of the statistics of the g„
fieMs. )

is the generating functional for the Green's func-
tion of the quantum field theory describing the in-
teraction of the quantum field X in the presence of
a background classical field (t), defined by the
L g angian g&, with

t

At this stage it is necessary to emphasize that
(2.11) may not be the most general field theory de-
scribing the interaction of the quantum field X
with the classical field (t), if the original Lagran-
gian in (2.4) is restricted by a symmetry group G.
As a consequence of this restriction, there are
symmetry transformations relating I', of (2.11) to
g&+ (ag&} of Eq. (2.9), as well as restricting the
form of g itself. 'This issue will be relevant in the
classification of effective field theories.

If one is interested in processes with external (t),
lines only, then (2.9) and (2.10) may be simplified
by setting the source j„=O. For this special case

xlj p] jj 'I [dp..], e*p(ifd xlpee(epe)=, ej 'p. ]e' "") (2.12a)

d . exp i d x g~,«+j. . (2.12b)

where Eqs. (2.12) define the effective Lagrangian
density (g+),«. Since W[0; (t)] describes the con-
nected Green's functions of the quantum field y„ in
the background fieM p, to all orders, (2@)„., is
clearly nonlocal, as all possible closed loops of the

fields are included in W[0; P]. The generator of
one-particle-irreducible (1PI) Green's functions,
I"((t)), is defined by the Legendre transform

d xj,Q, ~ (2.13)

It is obvious that

p(p) ~ f (pe).„d'x

I'(p)= —') f [dp, ] exp(if d' [(pe)„, +jp, ]



BURT OVRUT A WD HOWARD J. SCHNITZER 21

except in the tree approximation for the P, field.
Since no approximations have been made in arriv-
ing at (2.12) and (2.13), the exact 1PI Green's func-
tions with external p lines are obtained from (2 ),«
by means of (2.13) which, to reiterate, is nonlocal.
There are particular circumstances for which

(P@),« is well approximated by a local Lagrangian
density, a topic which we will discuss shortly. In
summary, we define the effective field theory of
the field P, relative to the field theory &@ by the
Lagrangian (gz),«, as obtained by the construction
(2.1)-(2.12).

The concept of an effective field theory becomes
increasingly more useful as further restrictions
are imposed. We divide effective field theories in-
to two classes by means of a definition.

(~g) ~ =LSD. (2.14)

That is, the effective field theory is natural if
(gy) ff can be made finite by the full counterterm s
found in the original Lagrangian. Clearly from
(2.8) and (2.14),

Definition 1: Natural effective field theory

%Ye define the effective field theory given by
(2.12) to be a natural effective field theory if the
1PI parts of the quantum field theory of X in the
background field of p, described by the Lagrangian
E@„ofEq. (2.11), is renormalizable to all orders
in perturbation theory (i.e. , to all orders in g
closed loops), with the restriction that

(~g) 2 e Chug.

In either case, since

(2.17b)

(2.17c)

(~z), does not vanish. It follows that the renor-
malization of the y-loop expansion is not indepen-
dent of the renormalization of the p-loop expan-
sion, as a consequence of the unnatural separation
of the C„ field in (2.1). Since the complete theory
is renormalizable, g~„of (2.11) is of dimension
four and all counterterms of (2.11) are of dimen-
sion four or less. Even though (aZ~), may not ap-
pear in the original Lagrangian, it is also at most
of dimension four. In other words, if the effective
field theory is unnatural, ~& is linearly dePen-
deut onag, @„+~(see Sec. IV).

We emphasize that our definition of effective
field theory, and the separation into natural and
unnatural effective theories, is independent of
questions of locality and the existence of a mass
hierarchy. At this stage in our discussion, we
still have an exact description of the complete
field theory. Consider the generating function
P'[0; P], defined by (2.10) and (2.12), expressed
as an infinite power series in P,. In momentum
space this can be written as

W&O;yJ=g jd k, d &„(2 ) il(4r, +SJ
n=1

(2.1Va)

where C is a real number not equal to one or

(«g), =o (2.15) ~ W&"&(k„.. . , k„)y, (k, ) ~ ~ ~ y, (k„),
If an effective field theory is natural in our

sense, then the renormalization of the loop expan-
sion of the g fields is independent of the renor-
malization of the p, fields. In short,

Zg„=Z„+2@x+M~ +~g„+4Zg (2.16)

is a renormalizable quantum theory of the y field
in the presence of the background (classical) field

Counterterms for the effective p-field theory
are obtained by treating 1:he effective fields and pa-
rameters as bare quantities which are then multi-
plicatively renormalized. This definition is not

empty, since we will provide explicit examples of
natural effective field theories. Further we shall
show by example that not all effective field theories
are natural.

By contrast we have the following definition:

Definition 2: Unnatural effective field theories

An effective field theory is called an unnatural
effective field theory if it is not a natural effective
field theory. If an effective field theory is un-
natural, then either

(2.18)

where g &"&(k„.. . , k„) is the connected Green's
function, with n external p lines carrying momenta
k„.. . , 4„, respectively, computed to all orders in

If (2.18) is inserted into (2.9) and the P-func-
tional integration is performed, one reconstructs
the complete original field theory.

B. Local effective theories at the tree level and mass
hierarchies

Although (1',~),« is nonlocal, under certain condi-
tions this Lagrangian becomes approximately lo-
cal. Suppose that there is a characteristic mass
scale M associated with the set of fields y„. 'Then
it is convenient to write

II&'"&(k„.. . , k„)=
(

„4f'"'(k„... , k„) for all n,
1

(2.19)

where f'"&(k„.. . , k„) is a dimensionless functi'on of
the momenta, y masses (as computed in the world
with all p, =0), and renormalizationmass scale. A
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simplification occurs if the coefficients in (2.18)
are free of infrared singularities. A sufficient
condition for this is

M=min/M„} g0

and

=O(M ),

(2.20)

(2.21)

where M„ is the mass of the field X with all p
couplings turned off and p, is the arbitrary mass
scale introduced by the renormalization procedure.
Then

lim f& "&(k„.. . , k„)=f& "&(0, . . . , 0)
(&If.f ~0

exists, and

(2.22)

}„,[f& "&(0, . . . , 0) + O (k,.k, /M') ] .
P-«N

(2.23)

If the 5'"' coefficients exist in this limit, then

(Zg) «becomes (approximately) local with

(Z&&)e«+y+ (M&&)& + W[0 f] (2.24)

where in this kinematic region

W[0; Q] = d'k, ~ ~ ~ d k„(2&&) 5(k, + +k„}4

rf= 0

x f [M' "y&".&.,(0)]y.(k, ) ~ ~ ~ y, (k, )

+ [Z."&,'„„(0)]s"y.(k, )s'y, (k, )

+ [k.",.&(0)]s y, (k, )y, (k )y, (k, )j.
(2.25)

The coefficients Z"' and g&" are required for
wave- function and derivative- gauge- coupling re-
normalization (for example). (W& & has been ab-
sorbed into the overall normalization N. ) If one
calculates W[0; y] to finite order in the )I-loop ex-
pansion, we require the renormalization mass g'
= O(M') to avoid large logarithms, although the
result may be renormalization-group improved
with respect to g to widen the domain of validity.
This remark applies to either the nonlocal or local
versions of W[0; P].

Notice that the construction of an approximately
local, tree-level effective field theory is applicable
to both natural and unnatural effective theories.
Once the approximation (2.25) is adopted, it is no
longer obvious that (2.25) inserted into (2.12) or
(2.13) gives a good representation of the original
field theory in any kinematical domain. This ques-
tion mustbe studied as an issue independent of those
considered up to now.

If m is the characteristic mass associated with

the ( p„] fields and M is the characteristic mass
associated with the ()( ) fields, then we say that
there is a mass hierarchy if rn c(M. Under the as-
sumption that a mass hierarchy exists, the tree-
level Lagrangian can be greatly simplified by omit-
ting terms with dimension greater than four. The
reason is that the relative contributions of such
higher-order terms to tree-level processes are al-
ways suppressed by some positive power of m/M.
One can exhibit and analyze the correction terms
of order 1/M . Since the overall theory is renor-
malizable, the renormalization of terms in (2.18)
and (2.19) of dimension five and six is not indepen-
dent of those of four and less. For a natural effec-
tive field theory, terms of dimension five and six
are made finite by counterterms of the original
theory. Further, these terms of O(1/M') may be
renormalization- group improved. T his particular
feature of natural effective field theories with a
mass hierarchy has been exploited by Kazama and

Yao,' who give an elegantdescription of the (1/M')
effects of muon closed loops on the quantum elec-
trodynamics of electrons, as well as a general dis-
cussion of such problems.

C. Domain of validity of approximations

One may ask when. a particular approximate
(g),«reproduces the predictions of the complete
theory to a given degree of accuracy, when (2),«
is inserted into (2.12) or (2.13). Gf course, if one
uses the exact, nonlocal version of (g),«, then the
predictions of the original theory are obviously ob-
tained. The interesting question involves establish-
ing the domain of validity of a given approximation
to (ZJ } ff so that, for a, given set of mass scales and

momenta, the effective field theory reproduces the
predictions of the original theory to required ac-
curacy. Since the renormalization mass scale p,

appears in condition (2.21), the domain of validity
of the local approximation to (g)„„will depend on

This domain may be widened by use of the re-
normalization group.

In subsequent sections of this paper we will pre-
sent several detailed examples to illustrate the
various issues raised in this section, all of which
will be drawn from scalar field theories. The
methods used and the results, however, apply to
theories involving fields of arbitrary spin.

III. A NATURAL EFFECTIVE FIELD THEORY

In this section we present an explicit example of
an effective field theory which is natural in the
sense of Sec. II. Let &(&, and p, be two independent,
real scalar fields whose interactions are described
by the most general renormalizable Lagrangian
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invariant under the discrete transformations

42 —4'2

In terms of bare fields and unrenormalized cou-
pling parameters,

2 =Z,~ +g ~R,

would still have an example of a natural effective
field theory, since spontaneous symmetry breaking
is not a requisite of natural effective field theories.
We have chosen an example with broken symmetry
because it is less trivial and of greater physical
interest. ) The tree-level vacuum expectation value
of the scalar fields is

(slm„')"

(3.3)

where Q,„v is invariant under SO(2) group actions
which transform p, and p, as an irreducible doub-

let, while gaR is the most general symmetry-
breaking interaction compatible with (3.1). Hence,
the subscript BR in (3.4) for "breaki. ng. " We will
use dimensional regularization throughout this
work, with a multipli. cative, minimal-subtraction
renormalization scheme. In general cases, wave-
function renormalization of the fields is required.
However, here we will restrict explicit calcula-
tions to processes involving one x loop. It will
then be unnecessary to renormalize the p,. in this
approximation. With this ln mind, define renor-
malized fields and parameters by

Z =gq+Cx +/ax +Mg+~x +AZ@x (3.7)

as in (2.4), where (now dropping the subscripts B
and powers of g for notational economy)

&@=2(~„Q) —
2

g&' —
~( (&+c)Q ~

m„'
g —2 y8 xj — - -x ——Avx ——xx 'v'

(3.8)

(3.9)

1- ~ 2- ~ ~
Z~)(

= ——Xvg X
—

4 A. Q X
' (3.10)

One could define C = (ps„A+2} with 4 as in Sec. II,
and partition C into the two sets (Q„=Qs, }and

(X„=p~,}, in which case a natural effective Lag-
grangian for g„exists, but with an obscure physi-
cal meaning. It is more interesting to let C =(ps,
—-v„—p», P»} and to partition 4 into the sets
(p~ = p„}and lg~ = p„',}.In terms of these fields,
(3.2) 'becomes

m' = m„'(I +D/e),

x = z„p '(1+E/e),
a' = a„'(1+4/e),
b =b„p '(1+8/e),

C —CR p, (1 + C/E ),

(3.5)

——(m+cC) + ~ ~ ~, (3.11)

sr =- ——(N + bB) -+4x
@x 3j (3.13)

~Z = " v(D-E) +-" (f1-»—) —+ ~ ~ ~
m X m, ' x

X C

(3.12)

where g stands for renormalized and g =yg —4.
Since the calculations of this section are limited to
at most one )t loop, the Laurent expansions in (3.5)
have been truncated at c '. 'The field theory gen-
erated by the Lagrangian (3.2) is multtplicatively
renormalizable if none of the above unrenormalized
quantities vanish. -In this section we assume this
to be the case. To ensure a stable vacuum for
the complete theory, one requires that ~~ and g~
are positive, while the sign of 5„ is left unspecif-
ied. Further, we take m~ and g„' to be positive.
Because of the choice of the sign of the mass term
in (3.3), spontaneous symmetry breaking occurs.
Nf we had taken the opposite sign for ms', we

%e have omitted those counterterms not required
at the one-loop level, and have defined

m+' =a'+bv'/3 l,
m„' =2m'=xv'/3,

A. =k+b.

(3.14)

(3.15)

(3.16)

Anticipating our discussion of mass hierarchies in
Sec. V, we emphasize that there is no natural rela-
tionship between m&' and rn 2.

We now turn to the construction of an effective
Lagrangian according to the procedure of Sec. II.
Note that the structure of the Lagrangian (3.7) im-
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(a.)

(a)

Cc} , 0
FIG. 1. On.e-loop graphs contributing to W' (k~, k2)

in a theory with two scalar fields. The dashed line
stands for the p field and the solid line for the x field.

m, ' bv
(D —E) —a'A — 8 =

2 6 48m
(3.1 I)

Similarly, the counterterm Fig. 1(d} will remove
the divergence from the X one-point function [Fig.
1(c)j if

plies that W'"'(k„. . . , k„) vanishes when n is odd.
It is not possible to perform the X-functional inte-
gration in (2.10) exactly, therefore we consider the
simplest nontrivial approximation, a single loop in
the y field. To this order, the graphs contributing
to W"'(k„k,}, defined by (2.10), (2.12), and (2.18)
are shown in Fig. 1. The counterterm Fig. 1(b)
will remove the divergence from Fig. 1(a) if the
renormalization constants appropriate to the (t)'

term in (3.11) satisfy

(d)

I
I

I

\

\

l
I

I

\

\

. I
I

FIG. 2. Tree-level and one-loop graphs contributing
to W'' '(k&, k2, k3, k4) in a theory with two scalar fields.
The notation is the same as in Fig. 1.

divergences in the first two graphs of Fig. 2(c) by
the counterterm in Fig. 2(c) will occur if the )('
vertex is renormalized by the relation

A.

8w
(3.18} -D+3E =-

21r 2 (3.20}

With these minimal subtractions we find that

1& 2 96+2 X 2

where

(3.19a)

Similarly, the divergences in the first graphs of
Figs. 2(e) and 2(f) will be canceled by their respec-
tive counterterms, if in Fig. 2(c) the counterterm
for the 1PI p'y vertex satisfies

(3.19b) AE+b8 =-
)16m

(3.21)

with y =Euler's constant. The graphs which con-
tribute to W'4'(k„. . . , k4) to one loop in the )t-func-
tional integral are shown in Fig. 2. Equation (3.18)
ensures exact cancellation of the divergences in the
first graphs of Figs. 2(b} and 2(a) by the corres-
ponding tadpole counterterms. Cancellation of the

g2
AE+cC =-

48 (3.22)

With these subtractions we find that

and if the counterterm for the ((()' 1PI vertex in Fig.
2(f) satisfies

i A,
' i A. m„' & m„'W('&(k„. . . , k, ) = —,—+, — 1+, "-,

I
ln

t A. 7T P —
X

/I

+ —+ — " E(*' m '&
]6@ 36 4$yg 2 4 p2 yfg

P ' x '
p ypg

X X X

(3.23)

where

2 2 4~ ' '~'
W(h', to„')=1 (, +1+ 1o(1 —2) —2,. )o ' —1 wtthr()=-, o-, 1—," for 2' ~ 0 (220)

g= L g 2
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and

2

E(0, m„2) =in ", +1, (3.25) (4.2)

with p,
' as in (3.19b), and p =k, +k, =-(k, +k, ). Note

that &' ' is defined for all p for which p' pm '.
Unlike W'2', the coefficient W'~' is momentum de-
pendent, so that the effective Lagrangian for p is
nonlocal, as discussed in Sec. II. The renormaliz-
ation equations (3.17), (3.18), and (3.20)-(3.22)
provide five equations in five unknowns, with the
solution

respectively. Clearly there is no consistent solu-
tion of this pair of equations. It follows that the
divergence in the g ' & coefficient cannot be elimin-
ated using the counterterms supplied by the origin-
al SO(2)-invariant Lagrangian. Similarly, the re-
normalization Eqs. (3.20)—(3.22) for the )t,
and p4 1PI vertices are replaced by

-D+3E =-
27T2

(4 3)

3$jV=
(4 4)

', , (X- ~/3),
32K Q

(3.26) 48 2 (4 5)

a=, (X- i./3),

(The reader is reminded that a', b, and c are all
nonzero. ) We therefore conclude that the counter-
terms of the complete Lagrangian ~g~, ~g„, and

Ag@ are sufficient to subtract all the divergences
in ~& ' and ~'~'. In principle, one should also
check the consistency of the renormalization pro-
cedure for the single g-loop contributions to W""'
when n~ 3. However, in the important px'0blem of
mass hierarchies this is unnecessary and we pre-
sume that no difficulties arise.

In conclusion, it follows from definition 1 of Sec.
D that to one-loop order in X, the effective field
theory for P described in this section is natural.
The ~"' and-g &' ' coefficients of the effective
Lagrangian (2.12) and (2, 18) are given by Eqs.
(3.19) and (3.23), respectively.

IV. UNNATURAL EFFECTIVE FIELD THEORIES

Examples of effective field theories which are un-

natural in our sense are easily generated from the
scalar field theory presented in Sec. III. One ex-
ample is obtained if p, and p2 transform as an ir-
reducible doublet under SO(2), and we demand that
the complete Lagrangian (3.2) be invariant under
such transformations. Then g» =0, and a' = 5 = c
=0. With our choice of sign of m„', the model has
spontaneous symmetry breaking. One can repeat'
an analysis in parallel with that of Sec. II. The re-
normalization Eqs. (3.17) and (3.18) for the p2 and

)i 1PI vertices in (3.8)-(3.13) are now replaced by

(4.1)

41 42 42 41 (4.8)

and demand that (3.2) be invariant under this trans-
formation [but not under SO(2)]. This requires a2
=c=0 in (3.4). The parameter b is nonzero, but bs
should be positive if rn& is to'be positive. Now
construct g' ' and W' ' as before. The renormal-
ization equations (3.17) and (3.18) become

2 2 2
n2y

( E) bv
2 3l 48'' (4 7)

and

D —E=
8~2 (4.8)

respectively, which are mutually consistent. The
renormalization equations (3.20)-(3.22) are now

respectively. Again there is no consistent solution
of this set of equations, so that the divergences of
g@„cannot be eliminated using the counterterms of
the original SO(2)-invariant Lagrangian. This ef-
fective field theory for P is unnatural according to
definition 2 of Sec. II, as a consequence of the
SO(2) invariance of the counterterms of the original
Lagrangian. In this model we encounter one ex-
ample of a general phenomenon, i.e., the p field is
a massless Goldstone boson [see (3.14)]. One con-
cludes from the above and its generalizations that
a natural effective field theory for a Goldstone bo-
son never exists because of the symmetry relations
imposed on the counterterms of the complete field
theory (see Sec. VIII).

An example of an unnatural effective field theory
with a discrete symmetry can also be extracted
from (3.2). Now assume that p, and p2 transform
irreducibly under the discrete group Z4 [C:SO(2)]
defined by
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A.D+3E =
2r2 (4.9}

crete symmetry supplemented by the requirement
that the coupling parameters take special values).

A,A,AE+bB =-
16~' '

p
2

W= —
48 2

(4.10)

(4.11}

V. A LOCAL EFFECTIVE THEORY AND MASS
HIERARCHY

A. Local limit

respectively, which are consistent among them-
selves. Homever, consistency of the entire set of
five equations (4.7)-(4.11) demands that b =21. As-
suming for the moment that this is not the case,
we conclude that the g4-invariant counterterms
provided by the original Lagrangian cannot remove
the divergences in both W' ' and ~& ' simultaneous-
ly. Again the absence of a natural effective field
theory is due to the symmetry constraints imposed
on the counterterms (in this case Z4).

If we now arbitrarily impose the unnatural con-
straint b =2g, then a consistent solution of (4.7)-
(4.11) exists with

D=— 216m

3A.jV=
216m

(4.12)

g=0.

From (3.14) and (3.15) we note that a=0 and b =2K

implies that m~' =m„'. When &=2~, all the diver-
gences in the one-X-loop contributions to p" ' and
8'"' can be canceled by the counterterms of the
original Lagrangian. It follows that this effective
field theory for g is natural in our sense, at least
to one-loop order in X. Of course, in this case one
is unable to construct a mass hierarchy because of
the constraint m@2 =m„2.

It is clear from the discussion of this section that
the question of whether an effective field theory is
natural or unnatural is closely related to the sym-
metry properties of the original Lagrangian &~ as
well as the particular partition chosen for C = 4

X. From these results we conjecture the follow'-

ing. Let Q„.. . , g„(n ~ 2) be a set of scalar fields
which transform irreducibly under some group Q
(continuous or discrete), and let the Lagrangian
describing the interaction of these fields exhibit
spontaneous symmetry breakdown. Shift the fields
to the tree-level vacuum and form any nontrivial
partition of these new fields into fp, ) and (y ).
Then

(i) if the original Lagrangian breaks the G in-
variance maximally, then the effective field theory
for the fields p, is natural;

(ii) if the original Lagrangian is G invariant,
then the effective field theory for the fields fII), is
unnatural (with the possible exception of G a dis-

We turn our attention to the natural effective
field theory discussed in Sec. III. As remarked
earlier, it is not possible to perform the X-func-
tional integration exactly in any interesting model,
so that approximations are required. In Sec. III
me considered the y-functional integral to one-loop
order in the X field. In this section we consider
two further approximations, ~p'

~
«m„' and n~@'

«m„', which make the effective Lagrangian for p
approximately local, and establish a mass hier-
archy, respectively.

The ~"' coefficient, given by (3.19), is momen-
tum independent and hence local. Further, since
gI"' is momentum independent to one-loop order
in X, the coefficients g"' and Z'2' defined in (2.25)
vanish to this order in the y-loop expansion, al-
though they must be considered in higher orders.

Consider the 5 '" coefficient, which according
to (2.12), (2.13), and (2.18) is required for the de-
scription of processes with four external p lines,
with ki+k2+k, +k4 =0. Define p=ki+k2 and demand
that

~ p
2

~

«m„'. For momenta satisfying this re-
striction, (3.23) and (3.24) become

where

4f y m 2 ]6p2

1, 4P ~p2 2 0 P

(5 1)

m, '
A. (p, )e«k+ c ——+, In2 2

p2 g2
+ m„'

11
48sr' 3

»)

2 ln ~ +1

+ o(p'/m„'). (5.3)

The logarithmic term multiplying p'/m„' can al-
ways be neglected relative to the first logarithm in

2 2 4

F(p', m„')=ln ", +1+, +O, , (5.2)
m m

with g' =4gp e' &. When the effective Lagrangian
for g is constructed according to (2.12), (2.13),
and (2.18), the effective four-point p-field coupling
parameter A, ,« is given [in the approximation (5.1)
and (5.2)] by
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(5.3) when ~p' I/m„«1. A necessary condition
for the single y-loop approximation for 5 ~" to be
valid is that all the coupling parameters be small.
Given this, we can ignore (p'/m„')A, '/48«' relative
to the constant term in (5.3). To proceed further,
an additional restriction must be imposed. Sup-
pose that

g+C ——

where

2

m(p, )« —m — m ln48w' "
p,
' (5.6)

(5.4)

which can be satisfied for a wide range of param-
eters. We assume that (5.4) is true for the re-
mainder of this paper. We now have shown that
both W"' and W"' become local if

~
p' ( /m„' «1

and (5.4) is satisfied. At this point we should show
that the g'2"', g ~ 3 coefficients also become local
with these same constraints. This is almost ob-
vious, and for the important case of mass hier-
archies, unnecessary. We shall assume that these
coefficients are in fact local.

The momentum integrals in (2.18) are trivial
when the g""' coefficients are local. Constructing
the effective Lagrangian for the p field according
to Sec. II, we find

m'(p). «
~

&(p).ff
~4 eff 2 P 2 ' 4t

f (2n) (~)~ (m„)'" '

2
2 ln 2 « I, „„2m„ ln '2 &&nc& .

'% 67K

B. Mass hierarchy

It should be emphasized that the imposition of the
local limit is logically independent of the imposition
of a mass hierarchy. The contributions of coef-
ficients f""' in (5.5) to tree-level processes are of
strength m@'/m„' or m~ „,/m„' (to some positive
power). Therefore, without a mass hierarchy,
tree-level processes involving P'", g ~ 3 in the
Lagrangian cannot be neglected relative to those
with p' and p».

Suppose one restricts the mass parameters so
that

(5.9)m~'/m„' «1,
in which case all terms of dimension greater than
four in the effective Lagrangian are suppressed.
We define (5.9) as the "mass-hierarchy" con-
straint, a condition which cannot be imposed by
any known natural condition. Assuming (5.9), the
effective Lagrangian becomes

2

(5 8)

Equation (5.8) restricts g to be of the order of
rn„2, although a wide range of values of p~ centered
on m„' are permitted. Before proceeding, we note
that it is possible to go beyond the one-g-loop ap-
proximation to g.ff by using the renormalization
group-to improve with respect to p~, and to elimin-
ate the constraint (5.8). Because of the infrared
safety of this particular scaling, one may extend
p~ all the way down to zero. At that stage Oa y2

~0(m„') is allowed.

Z(p) =X+c-—+ -—;ln ";-+1~.eff
A. 24)r g )

(5.7)

We have not evaluated the g""' coefficients, al-
though the restrictions jp'(«m„' and (5.4) should
guarantee that they are local. Note that the terms
with n ~ 3 cannot be neglected for general values of
m@'. Nevertheless, locality of (Ll»),« is associated
with momenta small compared to the characteristic
mass scale m„.

The coupling parameters g, Q, and c must be
small so as to justify the one-g-loop approximation
for (5.5) and (5.6), and the more general result
(3.19) and (3.23)-(3.25). These necessary condi-
tions are not sufficient to ensure the validity of the
X-loop expansion. Multiple- y-loop contributions to
W'"& will introduce powers of i. ln(m„'/p ), unless
this quantity is small. If not, the multiple-y-loop
contribution to 5 & "& will dominate the one-loop ap-
proximation. Therefore, in addition to small cou-
pling constants, we require

(5.10)

where m'(p. ),«and A(p),«are given by (5.6) and
(5.7), respectively. At this stage we have obtained
a local effective Lagrangian with interactions of
dimension four or less.

In the next section we verify that the effective
Lagrangian gives predictions which coincide with
those of the complete theory as the one-loop level.
In Sec. VII we shall renormalization group improve
(5.10).

VI. VALIDITY OF THE EFFECTIVE FIELD THEORY

In Secs. III-V we developed an explicit example
of a natural effective field theory in order to illus-
trate the general discussion presented in Sec. II.
In particular, in the limit

~
p'

~
«m„' and m~'

«m„', the effective Lagrangian describing purely
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g processes has a local limit of dimension four.
To one loop in the X field this local effective Lag-
rangian is

(g )
—(

(s y) 2 ~«( (P) ~2 ~«((P } ~4 (6 I)

with

2
2 — 2 ~ 3 m.

m«r (g) = my —
48 2 mg ln 2

m
(6 2)

m„'zr(w)=(a+c ——+ 2, (~ln
" +((, (63)24I ( P )

'

It is important to examine whether the predictions
of the effective field theory coincide (to desired
accuracy) with those of the complete theory evalu-
ated by the usual method of integrating over both
the (I( and g fields, i.e., over the 4 field when

~
p'

~

«m„2 and rn@' «m„. Since it is not possible to
evaluate the complete theory exactly, we will make
our comparison with p processes evaluated to one-
loop order in 4. This will place additional re-
strictions on mass scales and coupling constants
for 4-loop-wise perturbation theory to be valid.
If these are not satisfied, a comparison of the ef-
fective field theory with the complete theory, per-
turbatively evaluated, makes no sense.

With this in mind, we examine the complete the-
ory in one-4-loop approximation for low-energy Q
processes using the minimal subtraction scheme
for renormalization, and compare with the predic-
tions of Eqs. (6.1)-(6.3) in single-g-loop perturba-
tion theory. In performing these calculations, dif-
ferent mass scales enter the renormahzation of the
various loop integrals. The mass scales in ques-
tion are

(i) g, from X loops,

(ii) g, from y loops,

(iii) p, from 4 loops.

One can keep JTE., distinct, from g, in a natural ef-
fective field theory, since the y loops and g loops
can be renormaiized independently. (This will al-
low us to renormalization group improve the X-
loop expansion, and then treat the p loops perturb-
atively, as in Sec. VII.) We now consider I'"~'
evaluated different ways, in order to examine these
questions.

A. Ordinary perturbation theory-P2~~

Consider I'2"', the 1PI 2-point P function evalu-
ated by ordinary. 'perturbation theory. The Lag-
rangian is given by (3.V)-(3.16}, with the relevant
one-loop graphs given by I"ig. 3. The regulariza-
tion of these divergent integrals introduces a mass

(.h&

FIG. 3. Tree-level and one-loop graphs contributing
to I' ~ in usual, @-field perturbation theory. The no-
tation is the same as in Fig. l.

~m '~ —+F(P', m,', nz„')+0(~) ~,

where

(6.4)

F(P', m@', m„')=ln ", —
2 In

~2 t(~4 )
2m' '

l(m 4&l
(6.6)

p, ,' =4m'' "p,,'. (6.6)

'The counterterms of Figs. 3(d) and 3(h) remove the
divergent poles from Figs. [3(b)+3(c)] and Figs.
[3(e)+3(f)+3(g)] respectively. The finite part of

Graphs [3(a)+3(b)+3(e)]=i[p'-m. „'(g,)] ', (6.7)

with rn, «'(y, ) given by (6.2). The finite part of

. Graphs [3(c)+3(f}+3(g)]
pe 2 2', (p' m~')' X-+c — im~' ln

(6.8)

scale p3, where we use dimensional regula'ization '

with minimal subtraction, as we did in constructing
the effective Lagrangian. The only nontrivial
graph is Fig. 3(g), which is momentum dependent.
When [p'[ «m„', m~'«m ', and (p')«m~'

i & 2 A.
Graph 3(g) =
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to leading order in p'. Note that the independent
contributions A. +c, ——,

'
A.'/X, and ——,'X'/X come from

Figs. 3(c), 3(f), and 3(g), respectively, adding to
A. + c —P/A, which, to the order required in this
problem, is g,«. Also we may write (p' —mz')
= (p'-m, «') in Eq. (6.8), correct to the order we
are working.

When (6.7) is added to (6.8), one obtains

r ""&p)-p' (I +
96ir'

2
2 — Xcg 2 TRAN~e«(P3)+ 32 2 y n 2

ir P3

ir
it tl

lp

1 i.', m„'
m„ ln

A.

J 96 2

(6. Qa)
FIG. 4. Tree-level and one-loop graphs contributing

to I',
,

in effective p-field perturbation theory. The
double dashed line stands for the effective @ field. The
rest of the notation is the same as in Fig. 1. The shaded
box represents the nonlocal, four-point interaction.

2
& err— m, + 32--, m, ln-

ir

1+ —~m„' ln
m„' '

48ir
(6.9b)

In arriving at (6.9) we have assumed that the one-
4-loop approximation to p"~ is a good approxima-
tion, which requires

b c A. A. ,g
32m 32K 32m 32i ' 32r

"'

The renormalized parameters nP„,«and As,«in
(6.13) depend explicitly on p, , and implicitly on g~,
due to the independent renormalization of )& and g
1.oops.

In terms of renormalized quantities, the effec-
tive Lagrangian becomes, suppressing the sub-
script A and mass-scale dependences for notational
convenience,

as well as

(6.10)
meff + 2 ~cff E 4

2 E' 4 l f (6.14)

m2'", ln ~ «1
ir )M3

(6.11)
'The graphs which contribute 1",~& to one-loop order
in P are shown in Figs. 4(a)-4(c). Prom Eqs.
(6.2), (6.3), and (6.14) one finds

I',«~'(I -loop)
, ~1+—ln48i' ( Z p.,' m„' (6.12)

=P —,m.«(Vi)+
2

eff 2 m
2m@ ln

ir 92
(6.15a)

B. Local effective theory; one P loop

We now compute the one-p-loop contribution to
I &2+' using (6.1)-(6.3). Since we are considering
a natural effective field theory, the renormaliza-
tion of the y-functional integration is independent
of that of the p-loop expansion. Hence, the quanti-
ties (6.2) and (6.3) are renormalized quantities with
respect to the X field, but unrenormalized quanti-
ties with respect to the «&& perturbationtheory. If
we are to do g perturbation theory to the one-loop
level, we should write

and

eff

32ir

48m' x

2mg
m@ ln

P,2

m. 'ln (6.15b)

16'' ' (6.16)

when (p'i «m„' and m@' «m„'. Also, it follows
from the renormalization of I',«~' that

m,«' = ms „,'(I +D'/e),

(6.13a)

(6.13b)

3~eff (6.17)

~e« ~Re«& 2 ( /e)' (6.13c)

Expression (6.2) is a valid one-loop approximation
to I"&2«~' if, in addition to expression (6.10), we re-
quire that
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2.

&in 2 «1eff m~
2

(6.18)
tion (with nonlocal vertices) and is found to be

3geff g 2 g g m @E/— ---
A. +c————+-

16m' 4j.y, 3 z 4 rn„'
m m@

2 ln
w p~ mx

One might attempt to enforce equality of I',«~& [Eq.
(6.15)] to I'&2~& [Eq. (6.9)] by demanding that

(6.19)

m„'- p-k ' (6.21)

With this nonlocal vertex we find, using dimension-
al regularization and minimal subtraction, that the
renormalized two-point vertex function is, for ) p'~
«m', given by

( I g2
I&24& =p2 ~1+ff

k 96m

2jeff 2
n&,&& (p, ) + 32, m~ ln

327

m„'
48 2 m)( ln (6.22)

1 g m
i6g' 24m' z m ' (6.23)

The E'renormalization coefficient can be deter-
mined from the effective one-loop four-point func-

—
(
—/~ )& /&.

and (since A,'/X«1) by ignoring the nonlogarithmic
terms in (6.9) proportional to &&/A. . However, for
such an equality to be meaningful, it is necessary
that: conditions (6.20) lead to equality of I'&P~& with
I"& "~& to one-loop level for every N We h.ave
checked this possibility for M=4 and found that it
is not the case. We conclude that no relationships
between p.» p» and p,, will allow our /ocal effec-
tive Lagrangian to reproduce the results of the us-
ual method given above. What has gone wrong?
The answer is simply that the effective Lagrangian
(6.1) is only local when [p' [«&n„', but the &t&-loop

integration in Fig. 4(b) samples the effective four-
point vertex in a momentum range from zero to in-
finity. We therefore must use the momentum-de-
pendent effective four-point vertex derivable from
expression (5.1). Fortunately, to the one-loop lev-
el in the effective &p field, we can drop all but the
first term in (5.1}. This term arises from the X-
field tree graph, Fig. 2(a), and, as shown in Fig.
4(d}, contributes an extra, heavy propagator to the
effective four-point coupling. That is, the nonlocal
effective four-point coupling is (speaking loosely)
given by

Clearly I'&2&(& in (6.22) is identical to I'&'~& in (6.9)
if we choose p, = p., = p., as the relation between
mass scales. Also D' and E' given by (6.31) and

(6.32), respectively, are precisely the results at-
tained by the usual method (with dimensional regu-
lar'ization and minimal subtraction) for the coef-
ficients of e in the one-loop pole expansion of
bare quantities «'+ f&v /6 and A. + c —A.'/X, respec-
tively. We conclude that our method, which uses
dimensional re gularization and minimal subtraction
in both the &&- and the effective p-field renor-
malizations, is completely identical to the usual
(4]-field method where dimensional regularization
and minimal subtraction are employed, provided
we use nonlocal effective parameters (where nec-
essary) and choose p, , =p, =g, . Also, because of
the necessity of using nonlocal couplings, we must
include in the effective Lagrangian terms of dimen-
sion greater than four.

It would be disturbing if our effective Lagrangian
had to be a nonlocal, infinite polynomial in order to
reproduce the results of the usual perturbation the-
ory in a domain where both methods are supposed
to be valid. Inherent in the concept of an effective
fieM theory is the hope that the local effective Lag-
rangian, with terms up to dimension four only, can
be used. (This is necessary if we want the Wein-
berg-Salam model and QCD to arise as the low-
energy manifestations of a grand unified theory ).
From the above analysis this wouM not seem to be
the case. However, one must be careful. Expres-
sion (6.22) for I',&&2&~& differs from expression (6.15)
for I'&~f& (derived from the local effective Lagran-
gian) by a finite wave-function renormalization and

by a logarithm involving a heavy mass. 'The finite
wave-function renormalization clearly has no phys-
ical content. Furthermore, the heavy logarithm
can always be absorbed into a- redefinition of the
effective mass parameter. Not only does this re-
definition establish the formal equality of expres-
sion (6.22) and (6.15), but in addition, the new ef-
fective mass renormalizes according to the local
renormalization equation (6.16) and not (6.23). It
follows that the nonlocal effective Lagrangian is,
physically, completely equivalent to the local ef-
fective Lagrangian for the computation of the one-
loop, two-point function, at least when

~

p'
~

«m@'. "That is, natural effective field theories
defined by minimal subtraction give predictions
which coincide with those of the complete theory
with nonminimal subtractions, when (p'(«m&'. A
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complete discussion of this issue appears in a
subsequent publication. '

This result reestablishes the utility of our effec-
tive Lagrangian method. It is muck simpler to use
a local effective Lagrangian with minimal subtrac-
tion to calculate (P,f-field processes then it is to
calculate the same processes with the (4„)-field
method. Furthermore, it is obvious from our ap-
proach that the effective ((t),) fields can be renor-
malized by an independent, light field renormaliza-
tion scheme, a result which is difficult to establish
(and to understand) using the usual (C„)-field
method.

respectively. Similarly, the y functions for ns and
a are found to be

(7.4)

(7.5)

de(t)
( )dt (7.6)

'The renormalization-group scaling equations for
arbitrary coupling constant 6 and mass parameter
+ are given by

VII. THE X-FIELD RENORMALIZATION GROUP d1if(t)—=-y (t)m(t), (7.7)
It should be clear from the discussions in Secs.

III, V, and VI that our effective field theory method
involves two independent renormalization schemes.
First, it is necessary to renormalize the diver-
gences occurring in the ()t)-fie1d loop expansion
which leads to the effective Lagrangian. For nat-
ural effective field theories, this can be done using
the counterterms available in the original Lagran-
gian, with a minimal subtraction procedure. Once
a finite, effective ((t))-field Lagrangian is obtained
perturbation theory can be carried out in the effec-
tive f(t)j field. Divergences in ( p)-field loops
must be removed, which can be done using counter-
terms available in the effective Lagrangian, again
with minimal subtraction. Clearly, this second re-
normalization procedure is independent of the
first. It follows that for each of the above renor-
malization schemes, there is associated an inde-
pendent renormalization group. The {(t) -field re-
normalization group scales the effective field the-
ory according to the independent, light field renor-
malization scheme. This "decoupled, *' light field
scaling has been widely discussed in the litera-
ture. ' "We will not discuss it here other than to
remark once again that the existence of such scal-
ing follows trivially from our effective Lagrangian
method. This method also reveals a new kind of
scaling based on the ()()-field renormalization. In
this section we will study the (1()-field renormaliz-
ation group within the context of the natural effec-
tive field theory introduced in Secs. III and V.

The renormalization constants for the X-field re-
normalization are given in (3.26). From these con-
stants, the P functions corresponding to parameters
A, , b, and c are easily derived and are given by

3A.
&~(» =,6„2

(7 2)

respectively. 'These equations are to be solved
subject to the boundary conditions that ~(0) =8 and
3)I(0) = 3/. It follows from (7.6) and (7.1), (7.2),
and (7.3) that

A.(t) =k(l- 3xt
16m

(7.8)

(7.9)

(7.10)

(7.11)

Similarly, from (7.7) and (7.4) we find that

(7.12)

m 2 =2m2
Xv'

X' (7.13)

under the renormalization group. It follows that

(7.14)

(7.15)

Using (7.7), (7.5), and (7.14) we find that

m2™
a'(t) =a'+ ™-1 — —1

2 16g2

m„A. 3~/
6 X 16~' (7.i6)

o proceed, we must determine the scaling behav-
ior of m„and v'. 'This is done by demanding the
persistence of the relation

16m' 9p ' (7.3) The above solutions are only valid for values of I;
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for which the running parameters are sufficiently
small that the one-loop approximations to the P and

y functions are valid. It is clear from the above
that this will be true only when

(7.17)

The fact that t can be continued to a large negative
number follows from the infrared safety of the X
sector of the theory. We can now turn to the X-
renormalization-group improvement of the effec-
tive Lagrangian. The action of the effective Lag-
rangian can be written as

r,«[y]=f d'k, " d'k, „(2«)'5(k, + ~ +k„)
%=1

& W&'~&(k„. . . , k, „)y(k,) ~ ~ ~ y(k, ),

where

W&"(k„k,) =-'. (-k,„k,"-m,') —t W&'&(k„k,), (7.19) 2(
W&'&(k„k, ) ==.'k, k "- (7.25)

tor involving anomalous dimensions since we are
considering components of a zero-point function.
Note that we are got scaling the momenta, but ra-
ther the mass parameters p, The utility of the
right-hand side of Eq. (7.24) is that it is a valid
approximation to g "~~ for a much wider range of
mass scale (e't&, ) than is the left-hand side (mass
scale t&,,). Insertion of the right-hand side of
(7.24) into the action (7.18) constitutes the renor-
malization-group improvement of the action, and
hence, the effective Lagrangian. Note that renor-
malization-group improvement of the effective
Lagrangian is entirely independent of the momenta
k,. and any assumptions about mass parameters.

To be more specific about the X-renormalization-
group procedure, let us now consider the one-loop,
local, m&2 «m„', effective Lagrangian given by
(5.10). For such a theory, the action is given by
Eq. (7.12), where

(7.20)

W' '(k„. . . , k, „)= iw' '(-k, &. .. , k, N)& N& 3.

W"'(k„k2, k„k4) =— (7.26)

(7.2V)

[41=0. (7.22)

Inserting (7.18) into (7.22) and realizing that &I&(k)

is arbitrary, we conclude that

dr@~' &

(k„.. . , k2„)=0 (7.23)

for each N~ 1. The solution of Eq. (7.23) is well
known and is given by

rxr(2 &)fS.
~ ~ ~ 2g ' . mX ~ ~ ~

(7.21)

The action (7.18) can be viewed as the connected,
zero-point function of the y-field theory, where the
&t& field plays the role of an external potential. We
emphasize that the pure &t-field Lagrangian g~
[see (3.8)] must be included as part of the )&-field
zero-point function, since counterterms from g@
are necessary in the renormalization of W[0; p].
Now I" „[&t&] contains both implicit (in the renor-
malized parameters) and explicit dependence on the
mass scale p., introduced in the X-field renormal-
ization procedure. However, the basic tenet of the
renormalization group is that

and m «&&. «are as defined in (5.6) and (5.7), re-
spectively. As discussed in Sec. V the one-loop
approximation to m, ff' and ~,«. re only valid if p,
is restricted to be of 0(m„'). Let t&0& be such a
mass s&&ale. Then from Eq. (V.24) it follows that
the renormalization-group improved tV&" coeffi-
cient is given by

——,k,&&k2
——,m,«'(t),

where

t&(t)&&(t)'

(7.28)

X(t), m„'(t);m„(t) lnr 8 ppg
(V.29)

0 -e Vox + Woi ~
( t (7.30)

A check on the correctness of expression (7.29)
can be made by inserting the one-loop running pa-
rameters in (7.29) and power series expanding
them in t. We find that

The running parameters in (7.29) are given in Eqs.
(7.18)-(7.16). From Eq. (7.1V) we see that (7.28)
and (V.29) are valid for t such that -~ & t & 0 and,
therefore, for mass scale e'p, „such that

=W&'~&[k„.. . , k, ; Z(t), ... , m„'(t), . . . ; e "q,'],
m„,'(t) = m„,'+ 0(t), (7.31)

where &&.(t), m„'(t), etc. , are the "running, " re
normalization-group parameters. There is no fac-

where O(t) can be ignored to the one-loop level of
our calculation. This is the correct behavior if
Eq. (7.24) is to be satisfied. Kmilarly, the renor-
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x„,(t) = x(t) + e(t)— x'(t)
x(t)

x'(t) n2„'(t)
+ —

4
2- ln- 2",- 2-=+1

24+
(7.33)

and the running parameters are as defined in Eqs.
(7.8)-(7.16). As above, this expression is valid in

the expanded mass-scale range (7.30). Inserting
the running parameter into (7.33) and expanding
them in g we find that, to the one-loop level,

realization-group improved ~' ' coefficient is given
by

~ so(2) ~so(3) ~ sR ~

where

1
2

&so( )
= (Bpe)f(s e)l+

(8.1)

(8.2)

we will show that this conjecture is correct in a
spontaneously broken SO(2) theory L. et p„
and p, be three real scalar fields, and assume that
under SO(2) group actions g, and p2 transform as
an irreducible doublet and P, as a singlet. The
most general SO(2) symmetric Lagrangian for
these fields, which is invariant under the discrete
transformations g,.--p,. (the other two fields un-

changed) for i = 1, 2, 3, is given in terms of bare
fieMs and parameters by

x„,(t) =x,«, (7.34)

which is the correct behavior. We emphasize that
it is necessary to include g@ in the g zero-point
function in order to arrive at Eqs. (7.31) and

(7.34). To conclude, we have shown that the re-
normalization- group improved, one-loop, local
effective Lagrangian for m~2 «m ' is given by

whel'e rn ff2 (t) and X,«(t) are given by (V.29) and

(V.33), respectively. If we redefine p, , =e'p„, then
the range of mass scale for which (7.35) is valid is
given by

(7.36)

Not only is (7.35) a better approximation to the ef-
fective Lagrangian then (5.10) but it is also valid
over a much wider range of mass scale [expres-
sion (7.36)J than is (5.10). The fact that p, , runs
from 0(m„) down to zero follows from the infrared
safety of the g sector of the theory. The heavy-loop
renormalization-group improvement is potentially
useful in theories where mass scales are so far
separated that the inequalities [such as (6.11) and
(6.12)J necessary to guarantee the validity of the
one- loop approximation cannot be simultaneously
maintained by a single choice of mass scale.

g2o&» is invariant under SO(3) group actions which
transform g„p2, and p2 as an irreducible triplet,
while 22a breaks this SO(3) invariance down to
SO(2). The sign of the mass term in (8.2) is chosen
such that symmetry breakdown occurs spontane-
ously. We define the renormalized parameters by
expressions (5.5), and expand the renormalized
fields around the nonzero vacuum expectation value
(chosen without loss of generality to be)

(8 4)

0,
Denote the shifted one- (Higgs), two- (Goldstone),
and three-direction fields by X~, P~, and p~, re-
spectively. Partition the fields into (g,}=(pzj and

(X j =(Xz, Pzj. In terms of these renormalized
fields and parameters, partitioned as above, the
Lagrangian is given by

+ «(~) + &~(2) + &~(.)-&~»

where (dropping subscript & and powers of p, )

(8.6)

VIII. A NATURAL EFFECTIVE FIELD THEORY
WITH A GOLDSTONE BOSON

2

(8.7)

In Sec. IV we showed explicitly that if a field the-
ory contains a Goldstone boson, and if that Gold-
stone boson is included in the (P,j partition, then
the effective field theory for fields p, is unnatural.
We conjecture that if the Goldstone field were
placed instead in the set (X j, then the p, effective
field theory would be natural. Since Goldstone
bosons occur in many field theories of interest,
this question is an important one. In this section

m 2
+& (S y)2 0 q2 p4 (8.8)

(8.9)

4 x- —x4 x ——xpg,4 l 4I

(8.10)
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and

m 2

—(XZ+ cC) 4)g (8.11)

~C(
&

= "- (D-Z)=+ " (11-3E) + ~ ~
m~ ng x'

X 4 E

(8.12)

/
In

I

bZ(@) („)=-u(AE+bB) " + ~ . (8.13)

We have ignored eight counterterms that are not
needed to renormalize the theory at the one-loop
level. Also,

(d) 'L
I I

I
I \

2bv (8.14)

A.v'
X

(8.15)

(8.16)

)Q I ')Qo

Note that we have given the Goldstone boson a mais
m&' in (8.8). The Goldstone boson mass is, of
course, zero and we will take the m&2-0 limit at
the end of the calculation. We now turn to the con-
struction of the effective Lagrangian for p. Note
from the structure of Lag~angia~ (8.5) that
g &~&(k„.. . , k„) vanishes when N is odd. To one-
loop approximation, the graphs contributing to
W't"(k„k, ) are shown in Fig. 5. Counterterm 5(c)
will subtract the divergences in graphs 5(a) and

5(b) if the renormalization constants satisfy

PPl 5 'a
48~'

(8.17)

Similarly, counterterm (f) will subtract the diver-

(b)

(OO

/
/

X
/

/ 'll

FIG. 6. Tree-level and one-loop graphs contributing
to W (k f k2 k3 k4) in a theory with three scalar fieMs.
The notation is the same as in Fig. 5.

gences in graphs 5(d) and 5(e):

(8.18)

With these subtractions, we find that

(8.19)

where p, =4wp, 'e' ". To one-loop level, the graphs
contributing to W"'(k„. . . , k~) are shown in Fig. 6.
Henormalization equation (8.18) is sufficient to al-
low the divergences in graphs 6(c) and 6(d) to be
canceled by their respective counterterms. The
divergences in graphs 6(b) will be canceled by the

X mass counterterm if
2

D —3E = - 13+ —~-
24m' m '

X

Similarly, the divergences in graphs 6(e) and 6(f)
will be canceled by their counterterms if

(d) (e) (5)

FIG. 5. One-loop graphs contributing to W (k&, k2)
in a theory with three scalar fields. The double solid
line stands for the g field. The rest of the notation is
the same as in Fig. l.

) 2

AE+cC =
24 2 y

(8.21)

(8.22)
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respectively. Taking the limit m& -0, the five
renormalization equations are given by

A. 2 m„ m~ m„2 4 2

m« =m@ —.„2 m„ ln ~ +2 2ln-
48« " p, m„p j '

be'B A.
2"--(D —E) —a A— (8.23) (8.29)

A.

8g

13$D-3E=—

(8.24)

(8.25)

m2 1 m' A&2

+24 2 ln ~ — 1+ —
2 lng, p, m p,

(8.30)

(8.26)

AS+cC =-—
24g

(8.27)

m 2

(8.28)

where

Equations (8.23)-(8.27) are consistent with each
other and constitute five equations in five un-
knowns, which can be solved to give renormaliza-
ti.on constants A. , 5', C, D, and E. We therefore
conclude that counterterms gg~+7, , gg~„~, and

hg~@~ ~„~ are sufficient to subtract all the diver-
- gences in g "& and g '4&. We assume that these
counterterms are also sufficient to subtract one-
loop divergences in 5 (2"&, g &3 coefficients. Then
from definition 1 in Sec. II it folloms that, to one-
loop in the (X„) fields, the effective field theory
for g is natural.

The g '4' coefficient is„of course, momentum
dependent. In the limit m&2-0 there is no momen-
tum regime for which g' & becomes local. It fol-
lows that there is no momentum regime for mhich
the effective g-field Lagrangian can be approxi-
mated by a local Lagrangian. Secondly, some con-
tributions to g ' "&, n &3 are proportional to
(m&') " and become large in the m&2-0 limits. It
is therefore impossible to approximate the effec-
tive Lagrangian with the terms of dimension two
and four only. We conclude that the partition (p, j
= (d), {)I J = {g,pf (that is, the Goldstone boson
included in (g )) leads to a natural effective field
theory for P, but since m&' =0, the effective Lag-
rangian is a nonlocal, infinite power series in P.

Now let us assume for a moment that m& is not
zero. Renormalization equations (8.17), (8.18),
and (8.20)-(8.22) remain five consistent equations
in five unknowns. It follows that the effective P-
field Lagrangian is still natural. Furthermore, if
we let M=min(m&, m„)t, then for momenta p =4,
+k, such that )p'~ «18, the effective Lagrangian
i.s (approximately) local. Finally, assuming m~'
&&M', we can drop terms of dimension six and

larger and find that the local, p-field effective
Lagrangian is given by

This result indicates that, for any theory where the
Goldstone boson has a large, nonzero mass param-
eter in the Lagrangian, the above partition (Gold-
stone boson included in {y„))leads to a natural
effective field theory for the p field. Further-
more, the effective Lagrangian has a local limit
and can be approximated by the dimension two and
four terms. This is precisely the situation that
occurs when the above scalar fields are minimally
coupled to an SO(2) gauge field using the A& gauge.
In this case the Goldstone boson has nonzero mass
parameter m&' =g'v'/g, where g is the gauge cou-
pling constant, g is the scalar vacuum expectation
value, and $ is the gauge parameter. The massive
gauge field and ghosts slightly modify the renor-
malization equations and Eqs. (8.29) and (8.30), but
the effective field theory for g remains natural.
Unfortunately, in such a theory both m,«' and ~,ff
are $ dependent. It is therefore necessary to mod-
ify the gauge-fixing procedure to ensure that m, ff'

and A,«are g independent. This problem has been
solved by S. steinberg. The modification does not
affect the above results. We conclude that in spon-
taneously broken gauge theories, the Goldstone
bosons can (and must) be included in the {)t„}par-
tition in order to ensure that the effective (p, j
field theory is natural.

IX. CONCLUSIONS

We have presented a systematic method for the
construction of effective field theories and their
renormalization- group improvement with respect
to the arbitrary mass scales of the renormaliza-
tion. Two classes of effective field theories were
distinguished, natural and unnatural, according. to
certain independence criteria placed on the coun-
terterms. Natural effective field theories may be
separately renormalization- group improved with
respect to the two independent mass scales which
enter the renormalization procedure.

It was shomn how restrictions on masses and ex-
ternal momenta lead to a local effective field the-
ory of dimension four. The predictions of the local
effective field theory mere compared with those of
the complete theory in a domain where both were
valid. It was argued, by example, that the predic-
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tions of a natural effective field theory, minimally
subtracted, coincide with those of the complete
theory only if the complete theory is nonminimally
subtracted. It was also argued that Goldstone bo-
sons must be placed in the set of fields "integrated
out" if the effective field theory is to be natural,
and that the local limit was not attainable unless
the scalar fields were coupled to gauge fieMs.

The various issues raised in this paper were il-
lustrated by examples from scalar field theories.
In subsequent work we will extend our analysis to
unnatural effective theories and to gauge theories.
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