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Monte Carlo calculations have been carried out on Z, lattice gauge theories in d = 3 and d = 4 space-time
dimensions. For d = 3, for the gauge-Higgs system, the results show a phase diagram in which the Higgs
and confined regions are smoothly connected. There are lines of phase transitions surrounding the
unconfined region; first-order behavior occurs on and near the self-dual line. For d = 4, for the pure gauge
system, we confirm the results of Creutz et al., that the transition between confined and unconfined regions

is first order.

I. INTRODUCTION

In this paper, we report the results of our
Monte Carlo calculations on Z, lattice gauge the-
ories. The Z, gauge theory was first written down
long ago by Wegner,' as part of a sequence of gen-
eralizations of the Ising model. It is currently of
interest to particle theorists as a simple gauge
theory in which confinement can be studied. When
matter fields are present, the Z, action can be
written

S=K 3 [1-Uu@]+h L1 - 0@ U,@o(x +p)]
T o (1)

The plaquette variable Uk,(f) is expressed in terms
of the link variable U k({) by

U () =U,(xX) U, (x +R) Uplx +R + 1)U, (%) .

Both the link variables U,(x) and the matter
variables ¢ (v) are restricted to the values +1, If
they were instead allowed to take complex values
of the form ¢*®, the model defined by Eq. (1) would
be a lattice version of the Abelian Higgs model.?
We will keep this resemblance in mind by refer-
ring to % as the Higgs coupling and K as the gauge
coupling. Both are inversely related to the usual
field-theory coupling constants. We also refer to
the limiting region 2 -, K - as the Higgs re-~
gion, since for a continuous gauge group this is
where the usual Higgs mechanism is operative.
The opposite extreme 2 -0, K — 0 will be referred
to as the confinement region, since this is where
series expansions in K can be carried out and
confinement established.

The model of Eq. (1) is first defined for space-
time dimensionality d =2. However, by making a
Kramers-Wannier duality transformation, this
case can be mapped into an Ising model in an ex-
ternal field, a model whose properties have al-
ready been fully explored. For d =3, the model is
self-dual and highly nontrivial.® It is related to

previously studied systems only in the limits 2=0
or K=,

The main focus of our work has been to find the
phase diagram of this theory, and to classify the
order of the phase transition which occurs along
each section of the boundary between phases. Our
results for the phase diagram for d =3 are pre-
sented in Sec. III. We find a phase diagram (see
Fig. 1) in which the unconfined region is sur-
rounded by lines of phase transitions, These lines
are second order until they are quite near each
other and the self-dual line, where first-order
behavior occurs. First-order behavior continues
to occur along the self-dual line for a finite dis-
tance, where it terminates, perhaps in a critical
point, The Higgs and confinement regions are
found to be continuously connected, as required
by a theorem proven recently.*’> We have also
studied the pure gauge system (2 =0) for d =4. We
confirm the strong first-order transition, origin-
ally discovered by Creutz ef al.° Our results in
both three and four dimensions are in Sec. III. In
Sec. II, we give a general overview of the Monte
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FIG. 1. Phase diagram for the d=3 gauge-Higgs sys-
tem (GH®). Dashed lines: first-order transitions. Solid
lines: second-order transitions.
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Carlo method and how it is used to locate phase
transitions, relegating certain mathematical de-
tails to the Appendix. Section IV contains con-
cluding remarks.

II. THE MONTE CARLO METHOD
A. General description

In the Euclidean formulation, propagators and
other quantities of interest in quantum field the-
ory can be obtained by carrying out a calculation
in classical equilibrium statistical mechanics.
The action of the original field theory becomes the
Hamiltonian of the statistical-mechanics system,
and after discretizing with a lattice, the Eucli-
dean Feynman path integral becomes the config-
uration sum which must be evaluated to obtain ex-
pected values. Thus for the model defined by Eq.
(1) the expected value of a quantity O is defined by

©0)=[ 2 oexn-s)| [ T exp(-9)]. (@

a,Up o,Up

At this stage, the number of degrees of freedom
in the problem is still infinite. The obvious next
step is to approximate the infinite lattice by a fin-
ite one.

While possible in principle, direct evaluation of
expected values on a finite lattice is impractical,
since even for lattices which are only a few sites
on a side, the number of configurations needed to
evaluate (O) directly is prohibitively large.

The Monte Carlo method replaces direct evalu-
ation by a statistical procedure which can lead to
an accurate estimate of (O) for a finite lattice in
feasible computing time. The basic physical idea
behind the method can be described by first con-
sidering a real classical system with a large num-
ber of degrees of freedom. Starting from an arbi-
trary initial state, the system will generally relax
into thermal equilibrium. After an initial interval
characterized by the relaxation time of the system,
a time average of a quantity O will then be samp-
ling the Boltzmann distribution and as the time in-
creases, the time average of O will approach the
ensemble average of Eq. (2). The important ob-
servation of Metropolis and collaborators was that
any dynamical scheme can be used, as long as the
system is eventually guaranteed to approach equi-
librium.” The dynamics need not have anything to
do with the actual evolution of the system, and in
fact for our calculations where the equilibrium sit-
uation represents Euclidean quantum field theory,
the concept of time evolution has no direct physi-
cal meaning. Nevertheless, for computational
purposes a fictitious dynamics can be imposed on
the system and expected values computed as time
averages.

In the Metropolis method, time is a discrete
variable, and dynamics is a simple set of rules
for changing configurations. For our Z, lattice
gauge systems, a configuration is a specific as-
signment of values to the Higgs and link variables
associated with each site of the lattice. Referring
to the value of S as the energy, the rule for chang-
ing the value of a Higgs or link variable at a given
site involves a comparison between the present
energy and the new energy gotten by changing the
Higgs or link variable being considered. If the
new energy E’ is lower than the present energy E,
the change is accepted. On the other hand, if E’
>E, the change is made with probability exp[-(E’ -E)].
In practice, this is carried out by comparing
exp[-(E’' - E)] to a pseudorandom number £, 0<#<1,
If exp[-(E’'-E)]>%, the change is made, otherwise
not. At this point another site of the lattice is
chosen, and the process repeated. In most of our
calculations, sites were chosen by cycling through
the lattice in a systematic way, although some
calculations were also done by randomly choosing
the sites. The random choice of sites appeared to
have little effect on the final results. A complete
cycle through all the Higgs and link variables of
the lattice corresponds to what is called in the
Monte Carlo literature one Monte Carlo step/spin.
We will simply refer to this as one cycle or one
step. The calculation of the desired estimate for
O is accomplished by computing the average of O
over the Monte Carlo steps in the calculation. The
normalizing integral in the denominator of Eq. (2)
is never needed. The number of steps in a given
calculation is an important measure of its quality.
In principle, it is only the average of O as the
number of steps approaches « which converges
to the equilibrium expected value of O. In prac-
tice, an attempt is made to make the number of
steps in the calculation significantly exceed the re-
laxation time or the number required to reach
equilibrium for all practical purposes.

Standard proofs are available that a system .
evolving under Metropolis dynamics eventually
reaches the Boltzmann distribution,® A heuristic
discussion is given in the Appendix. Evidently,
the Metropolis scheme is only one of a variety of
different possible algorithms, but is one of the
most widely used, since it is simple and provides
a relatively rapid relaxation to equilibrium. Over
the years, an enormous amount of experience has
been gained in the use of Monte Carlo methods as
applied to Ising and other spin systems of interest
to condensed-matter physicists.® Of particular
interest for our purposes is the fact that Monte
Carlo calculations on lattices of moderate size
show strong evidence for the phase transitions
present in the infinite system.
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In a particle-physics context, Wilson first ad-
vocated the application of Monte Carlo methods to
lattice gauge theories, and is currently carrying
out calculations on non-Abelian theories.'® Sub-
sequently, Creutz ef al. have carried out and re-
ported on a number of calculations for Z, and Z,
systems,® and more recently for non-Abelian the-
ories.™

B. Monte Carlo and first-order transitions

The hallmarks of a first-order phase transition
in a real system are the possibility of phase co-
existence, a finite latent heat, and a correlation
length which remains finite at the transition. The
last property prevents a lattice theory from having
a continuum limit at a first-order transition.
Closely related to these other characteristics of
a first-order transition is the existence of metas-
table states, analogous to a supercooled gas or a
superheated liquid.

In general, the methods used to analyze first-
order transitions with Monte Carlo methods are of
two types, thermal cycle or hysteresis methods,
and quenching. In a thermal cycle, a given coupling
is slowly changed, say increased. After a large
number of small increments has been carried out,
the process is reversed, and the coupling is slowly
decreased until the original starting value is
reached. If there is a first-order transition be-
tween the upper and lower extremes, a plot of a
typical energy of the system will show hysteresis
in a manner qualitatively similar to the familiar
plots of B vs H for a magnet. The location of the
interval over which hysteresis occurs can be used
to estimate the coupling value of the transition, and
the discontinuity in energy across the transition
similarly gives an estimate of the latent heat. In
our Z, system, there are two characteristic en-
ergy densities: the plaquette energy density Ep,
defined to be the value of K[1-U,,(x)], averaged
over all plaquettes of the lattice, and the link en-
ergy density E;, defined as the value of
h1-0x)Uyx)o(x+k)], averaged over all links
of the lattice. In Sec. III we give the results of
thermal cycles in K for both E, and E; at fixed #h.
The precise procedure followed is stated there.

The other method commonly used in Monte Carlo
studies of first-order transitions is called quench-
ing. Here after allowing the system to reach equi-
librium at some initial values of K and , a cou-
pling, e.g., K, is suddenly switched to a new val-
ue. If the new value lies just beyond a first-order
transition, the system will “remember” its start-
ing point, and the energy density will remain at its
original value for a large number of Monte Carlo
steps before finally relaxing rather quickly to its
equilibrium value at the new coupling. Thermal

cycles and quenches are thus different probes for
the existence of metastable states. We have found
in all our calculations that the two give mutually
consistent results. So in the following, we pre-
sent the information obtained from thermal cycles.

C. Monte Carlo and second-order transitions

Second-order, or critical transitions, are char-
acterized by the absence of phase coexistence and
metastable states, and have zero latent heat. A
thermal cycle should thus show no hysteresis
across a critical transition.’”® The correlation
length goes to infinity at a critical transition in a
real system, which gives rise to diverging fluc-
tuations, and characteristic singular behavior in
specific heats, susceptibilities, etc. For a finite
lattice, the correlation length cannot exceed the
lattice size. This leads to rounding of the singular
behavior present for the infinite system. A stan-
dard Monte Carlo test for a critical transition is
thus to study a specific heat of the system for dif-
ferent lattice sizes. If the infinite system has a
critical point with a diverging specific heat, the
finite system will have a peaked specific-heat
curve which sharpens as lattice size increases.
The maximum of the specific heat will approach
the critical point of the infinite system as lattice
size increases. The theory of how the location of
the peak in specific heat scales with lattice size
has been worked out in detail by Fisher and col-
laborators.'® In Sec. IIIB, we show the results in
d =3 of calculations of the link specific heat C,
=N, (E.;? - (E.)?), where the link energy density
is given according to its definition by

By=a ¥ [1- 0@ UWolx+R)],

L ;_c,k

where N, is the number of links of the lattice. To
obtain a good value for a specific heat at a given
value of couplings usually requires averaging over
several thousand Monte Carlo cycles through the
lattice. This is due to the large fluctuations char-
acteristic of a critical transition,

Thought of in terms of total energy density, the
contrast between first- and second-order transi-
tions is that the first-order case has a discontin-
uous energy density across the transition, with
finite fluctuations on either side, whereas the
second-order case has a continuous energy den-
sity with large fluctuations which diverge at the
critical point for an infinite system. These sharp
distinctions are blurred to some extent on a finite
lattice, but can be enhanced by increasing lattice
size and the statistical quality of the computation.

In Sec. III, we apply the standard methods de-
scribed above to our Z, system for d =3 and d =4.
The first-order transition found for d =4 is more



strongly first order than the first-order region for
d =3. For example, the d =4 system shows un-
mistakable hysteresis for a 4* lattice, whereas for
the d =3 system, it was necessary to compute on a
10% lattice to clearly resolve first- and second-
order regions.

III. RESULTS IN THREE AND FOUR DIMENSIONS

In this section we present our results on Z, lat-
tice gauge theories, first for the pure gauge sys-
tem in d =4 dimensions and then for the Higgs-
gauge system in d =3 dimensions. Periodic boun-
dary conditions are used in all cases. Our dis-
cussion of four dimensions is brief, since this
case has already been reported on by Creutz et al.®
Our work provides an independent confirmation of
their conclusion that the transition in this case is
first order in character and is a good example of
a strongly first-order transition. The three-di-
mensional gauge-Higgs system is more subtle,
involving regions of first-order behavior which
connect smoothly to second-order regions.

A.d=4

In four dimensions, the pure gauge theory de-
fined by the action of Eq. (1) with 2=0 is self-
dual.® The coupling K* of the dual theory is re-
lated to the original coupling K by K* = - In(tanhK).
Assuming a unique phase transition, the coupling
atthe phasetransition must satisfy K, =% In(tanhK,),
which is solved by K, = 3 sinh™}(1). For K<K,, the
theory is characterized by electric confinement:
The Wilson-loop integral will fall off exponentially
in the area of the loop, while for K>K_, the loop
integral varies with the perimeter of the loop.
Since the theory is completely self-dual, the re-
gion K> K, corresponds to confinement of magnet-
ic charge, and shows an area law for the Wilson
loop defined in terms of the dual gauge variables,

In four dimensions, as mentioned above, the
transitionin the pure gauge theoryisfirst order in
character. In Fig. 2, we display a thermal cycle
on a 4* lattice. The procedure was to remain at
each value of K for N =40 complete sweeps through
the lattice, then to increase or decrease K by AK.
The value AK =0.0005 was used. For the part of
the run with K decreasing, equilibrium was first
established at K =0.6, whereas for K increasing,
K =0.3 was the initial value. The quantity plotted
in Fig. 2 is the average plaquette energy density
E, (see Sec. IIB for the definition of E, and E,),
where the bar implies an average over the N steps
at each K. The quantity K[1-~U,;(x)] which con-
trols E, is the analog of the square of field
strength F, in the continuum limit of a U(1) the-
ory. For our Z, theory this quantity can only take
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FIG. 2. Thermal cycle in K of Ep for the d=4 pure
gauge system.

two values. Zero field strength corresponds to
Uk,(x) =+1, while maximum field strength corre-
sponds to U, (x)=-1. For large K, the state of
the system becomes essentially pure gauge with
zero field strength on most plaquettes, and E p is
small. This is the unconfined region for electric
charge. For the opposite limit of small K values,
there is no strong suppression of plaquettes with
nonzero field strength and the energy density E
is much larger. This is the region of electric
confinement. For values of K away from the phase
transition, our Monte Carlo values for £, agree
well with those calculated from series expansions
available in the literature.

In Fig. 2, the difference between K increasing
and K decreasing shows up as clear-cut hyster-
esis, and provides convincing evidence for a first-
order transition. The midpoint of the hysteresis
loop is at K =£0.443, which is very close to the
value of K, = sinh™}(1)=0.441, which locates the
transition for the bulk system. The curve shown
was obtained by cycling through the lattice sys-
tematically. We have checked that random cycling
has a negligible effect on the results. Quenches
from either direction to values of K just beyond
the transition show metastable behavior quite
clearly. The metastable behavior is stable
against all the perturbations we have tried in-
cluding random cycles through the lattice and
flipping two different links per site.

B.d=3

We now turn to our results for the Z, system
with gauge and Higgs variables in d =3. The
basic facts known prior to our work are the fol-
lowing: (1) The model is self-dual® with dual
couplings K*, n* related to original couplings
K, h by K*=~%In[tanh(%)] and 2* =% In(tanhK).
(2) Known results'® from the d =3 Ising model im-
ply that there is a critical phase transition on the
h axis at h=h (K = ) =0.2217; by duality there is
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also a critical point on the K axis at K =K (2 =0)
=0.7613. (3) A recently proven rigorous theorem
requires that confinement (K, z small) and Higgs
(K, n large) regions be continuously connected by
a region free of phase transitions.**® (4) A the-
oretical argument given by Wegner' suggests that
the critical points on the axes are terminating
points of critical lines extending into the finite
h-K plane, i.e., that a phase transition second
order on the boundary of the phase diagram will
remain second order for a finite distance into the
interior of the phase diagram.

The presentation of results is organized as fol-
lows: We first show the results of thermal cycle
or hysteresis runs where K is either slowly in-
creased or decreased, holding % at a fixed value,
These results serve to map out the region where
there is evidence for first-order behavior. Next,
we show specific-heat calculations, and compare
specific-heat maxima for different lattice sizes to
establish regions of second-order behavior. Fig-
ure 1 is the simplest phase diagram consistent
with our results.

The thermal cycle results presented are for a
10° lattice, using AK =0.0005 and N =40, just as in
the d =4 case. To conserve computer time, for
each value of %, the region of possible occurrence
of a phase transition was located by using larger
values of AK and smaller values of N, e.g., AK
=0.001 and N=10, The final very slow calculations
with AK =0.0005 and N =40 were made between a
lower value K,(%) and an upper value K,(#), with
K,(n) - K,(1) =0.2 surrounding this possible phase
transition. This value of K, —K, greatly exceeds
the interval in K over which there is rapid vari-
ation of energy density or other significant struc-
ture. The quantities plotted are the average pla-
quette energy density E, defined in the same way
as in d =4, and the corresponding average link
energy density EL. The quantity corresponding to
E, would represent the gauge-invariant photon
mass term in the U(1) continuum Higgs model. We
have checked that our results for E, and E; agree
with results from other methods of calculation in
the following limits: (1) For large K(K =0.8), and
n=0, EP can be obtained by taking the dual of the
high-temperature expansion of the Ising model.'s
In fact, these same values work well at finite 7,
showing only mild reduction up to #2=0.2, which
reflects the O(%*) nature of the effect of the Higgs
coupling in this region.' (2) For large K, (K 21.0),
the value of EL is given quantitatively by the Ising-
model energy density at coupling z. This reflects
the freezing out of the gauge degrees of freedom
for large K. (3) For small K and % (K 0.5, and
72<0.3) both E, and E, are well represented by
high-temperature series available in the liter-
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ature™ for 2 =0, and extended to finite 2 by Jay-
aprakash.'® (4) For K =0, E, is given by E, =21/
(1+e°").

The most striking feature of the thermal cycles
for E, and E; shown in Fig. 3-Fig. 10 is the
hysteresis which is clearly evident for 2= 0.24,
and has faded away by 2=0.30. This constitutes
strong evidence for first-order behavior in this
system. We suspect that the actual onset of first-
order behavior occurs at approximately 7 =0,22,
but calculations of high quality on a much larger
lattice would be required to verify this. For val-
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ues of 7 greater than 0.30, there is no sign of any
further-first-order behavior, although there are
large fluctuations in both E, and E, in the region
connecting low and high K values. We have made
several sweeps at much larger values of 2 and
found no significant structure of any kind. In our
calculations, the Higgs and confinement regions
are truly connected.

To study the possibility of second-order or crit-
ical phase transitions, we have compared the maxi-
ma in specific heat curves for d =3 cubic lattices
with 6, 8, and 10 sites on a side. While our ther-
mal cycle calculations were done in the “gauge”
mode, moving the value of K at fixed 7, the spec-
ific-heat calculations were done in the “Higgs”
mode, moving the value of 2 at fixed K. While by
duality the two are ultimately equivalent, there is
a computational advantage to calculating in the
Higgs mode. The reason can be seen as follows:
The critical transition on the K axis occurs at
K =0.7613. The line of critical transitions which
extends to 2>0 from the critical point on the K
axis lies in the interval 0.7T<K <0.76 for 0 <7 <0.2.
The dual of this region corresponds to 0.252>1
20.222 and © >K >0.811. For these large values
of K, the plaquettes are not strongly fluctuating
and the system is dominated by the link behavior.
We have found that in this dual region, the Monte
Carlo procedure produces good values for the total
link energy and its fluctuations in less computing
time than it does for the total plaquette energy den-
sity and its fluctuations in the original region,

This is not surprising, since although it produces
self-dual values, the Metropolis algorithm is not
itself a self-dual procedure.

In Figs. 11 and 12, we show the behavior of the
link specific heat C; defined in Sec. IIC for dif-
ferent size lattices. The values shown are the
averages of two runs, both consisting of 8000 com-
plete steps through the lattice at value of z. To
ensure equilibrium, an initial set of 8000 steps
was eliminated. The K =« curves are of course
just the d =3 Ising model and our values agree well
with those of Landau.’” The curves for K =0.85
are qualitatively similar. Both cases show the typ-
ical sharpening of the peak expected for a critical
transition as the lattice size increases. We have
checked that our results are consistent with finite-
scaling analysis, but without results from one very
large lattice, e.g., 25°, we cannot give more than
rough estimates for critical exponents.

In Fig. 1, we give the simplest phase diagram
consistent with our results. We have used the cen-
ters of the hysteresis curves to locate the first-
order transitions, and used the maximum in spec-
ific heat for the 10° lattice to locate second-order
transitions. These latter values of course differ
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from the true values expected for a bulk system

by finite-size effects. For example, the Ising
transition which should be at 2 =0.2217 (K = ») is
instead at 7 =0.2275 from the 10° specific-heat
maximum. The curves between the points located
by the specific heat maxima of Figs. 11 and 12 are
supported by less extensive specific-heat calcula-
tions. For the first-order transitions, the centers
of the hysteresis loops for 2 >0.24 fall very close
to or on the self-dual line % =—3 In(tanhk). Finite-
size effects are less crucial for first- order tran-
sitions, so these values are more likely to apply to
the bulk system.

We are confident of the following main features
of the phase diagram of Fig. 1: (1) Both first- and
second-order behaviors are present in this sys-
tem. (2) Higgs and confinement regions are
smoothly connected. (3) The unconfined region is
completely separated from the rest of the diagram
by lines of phase transitions. A detailed question
which deserves further study is the precise nature
of the switchover from critical to first-order be-
havior which occurs near the self-dual line. It is
not ruled out, for example, that the critical lines
which come off the 7 and K axes remain critical
all the way to the self-dual line. The question of
whether the first-order behavior on the self-dual
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FIG. 12. Specific heat C; vs  for K=0.85 on 6%, 83,
and 10° lattices.
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line terminates in a critical point at 2~0.3,
K ~0.62 also deserves further study.

IV. CONCLUSIONS

We have found Monte Carlo calculations to be a
versatile and useful method for locating and clas-
sifying phase transitions. Although by itself the
Z, system we studied is too simple to be a realis-
tic model in particle physics, it has been sug-
gested by 't Hooft'® that the Z, theory is relevant
to the analysis of SU(2) lattice gauge theo‘ries,
since Z, is the center of the group SU(2).

Our results in d =3 dimensions for the Z, gauge-
Higgs system show a phase diagram with sur-
prisingly rich structure. Although expected when-
ever Higgs and gauge variables transform in the
same way,* it is nonetheless striking to see a con-
crete example where Higgs and confinement regions
are continuously connected. It is also noteworthy
that the theoretical argument of Wegner® is valid in
this model over a wide range. The Higgs coupling
7 not only fails to destroy the transition separating
confined and unconfined regions for infinitesimal #,
but in fact the transition survives with little change
in its character up to 2 ~0,22, Finally, the fact
that there is first-order behavior in this system
was at least to us, unexpected. It would clearly
be of interest to gain insight into the mechanisms
which cause a critical transition to continuously
“harden” and finally become first order.
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APPENDIX

Starting from an initial configuration x,, we
sequentially apply the Metropolis algorithm to gen-
erate new configurations x,,...,xy. Let P,(x) be
the probability that xy =x after N steps in the se-
quence, where x is an arbitrary configuration.
What we want to make plausible is that as N—,
Py(x)—~ce™®)  where c is a normalizing constant.

The probability after N +1 steps is related to
Py(x) by
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PN+1(x)
=Z,W(x’——x)P1v(x') + (1 - ZW(x"’xl))PN(x)

=Py(x) + 2 [Py(< )W (x' = %) = Py (x) W (x~ 2] ,

(A1)
where W (x—x") is the probability for the transi-
tion x - x’.

From Eq. (A1), it is clear that P,(x) satisfying

PF@W (x—=x") =Pz )W (x" -~ x) (A2)

will be a stationary probability distribution satis-
fying Py . 1(x) =P y(x).
The distribution P®i(x) is also stable in that if

Pylx,) S W (%, ~ x,)
Pylx,)  W(,~x,)

then after an iteration of the Metropolis algorithm
Py o1(x)<Py(x,) and Py, 1(x,)> Py .1 ().

This means that each successive iteration brings
P ,(x) closer to satisfying Eq. (A2), and therefore
P, asymptotically will approach P *(x).

At the Nth step in the Metropolis method, one
considers the possibility of transitions between the
present state x and a fixed state x’. The transi-
tion occurs with probability W (x—x") defined by

1, Ex)>E(x)
e (BN =Ex)] , E(x) <E(x")

W(x——x’)={

and thus from Eq. (A2) P*(x)=ce %), Q.E.D.
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