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Size of a bouncing mixmaster universe
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An analysis is given of the evolution of a massive scalar field in a closed mixmaster universe of Bianchi

type IX. Although the scalar field violates the strong energy condition, the probability of the model
"bouncing" at a very early time is infinitesimally small; of the order of the ratio of the minimum to
maximum sizes of the universe —1P

I. INTRODUCTION

The singularity theorems of Hawking and Pen-
rose' are among the most precise and far-reach-
ing results of modern theoretical cosmology. They
postulate that reasonable restrictions on the cau-
sal structure of space-time and the positivity of
energy are satisfied in nature and then use the
latter condition to guarantee that gravitational fo-
cusing will inevitably create a focal point along
the congruence of causal geodesic curves in the
space-time. Since the development of such a focal
point would contradict the very causal-structure
assumptions used to derive it, one concludes that
geodesics can never reach these focal points. To
ensure this, there must exist at least one incom-
plete geodesic and the end points of all such in-
complete geodesics form the singular boundary of
the space-time. In some cases approach to these
boundary points may also be accompanied by infin-
ities in measurable physical quantities like the
material densities or induced tidal forces.

Attempts to avoid the conclusions of these theo-
rems regarding space-time incompleteness gen-
erally concentrate attention upon undermining one
of its assumptions —the positive-energy condition.
Two such positivity conditions are commonly em-
ployed in the proofs: the strong energy condition
requiring that for all causal vectors u"

(S) (T,„—~,„T)u"u"~ 0,
and the weak energy condition which is, accord-
ingly, less restrictive, demanding only

(W) T„„u"u"-0.
Typical examples of model universes in which

either (S) or (W) may be violated are those incor-
porating (a) bulk viscosity, ~ (b) a sufficiently large
positive cosmological constant, (c) torsion, via
an antisymmetric metric connection, (d) spontan-
eously broken symmetries, ' (e) spinor fields, ' (f)
negative vacuum stresses and quantum particle
production, ~ and (g) massive seals. r fields. ' This
last example will be pursued below and is relevant

because the massive scalar stress allows a viola-
tion of the strong energy condition. For this field

(T „—,'g, „T)—u'u"=(P,eu )' —,'m &f)2—.

Whether or not a violation takes place in a parti-
cular cosmological. model clearly depends upon
the space-time evolution of the Q field. From di-
mensional analysis alone we see that violations
are only anticipated at times ~nz '. The nonlinear
dependence of the en'ergy conditions upon the geom-
etry can be seen in a number of cases. For ex-
ample, although singularities may be avoided in
isotropic universes by the devices (a) and (c) cited
above, the results of Ref. 10 suggest they remain
in the corresponding anisotxoPic universes. This
shows the need to examine the most general pos-
sible dynamical backgrounds in conjunction with
possible energy-condition violations.

We shall examine the evolution of a massive
scalar field in a closed, homogeneous, and aniso-
tropic universe of Bianchi type IX,. which is among
the most general class of spatially homogeneous
space-times. " We shall show that the probability
of a violation of (S) leading to a "bounce" of the
scale factor in the quantum era (f -m ') of the
early universe is of the order of the ratio between
the minimum and maximum scales of expansion
for the model. Numerically this probability is
-10 ~ for our universe and confirms the results
of Starobinskii' obtained for the special case of
isotropic expansion.

This result provides an interesting example of a
point recently stressed by Tiplere: The violation
of an energy condition in a small region of space
or time will not generally be sufficient to avoid
the presence of an incomplete geodesic. For the
space-time to be singularity-free the energy con-
dition must be violated on the average when inte-
grated over the entire history of a causal geodesic.
Our results can be interpreted in this light: The
larger the expansion maximum of a closed uni-
verse the longer is the period of classical evolu-
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tion during which the energy condition holds.
Therefore the relative time during which a geo-
desic is dominated by the negative-energy effects
and the probability of singularity avoidance both
diminish. For a cosmological model to be
"bounced"' by a scalar field with high probability
it must never expand out of the quantum era to a
dimension greater than -10 " cm. Although this
discussion is able to take no account of quantum
gravity effects at t-10 4' sec it gives some cre-
dence to Wheeler's "principle of unanimity, "'
which conjectures that, except for a set of mea.-
sure zero, quantum equations of motion will pre-
dict "singularities" whenever their classical
counterparts do.

Before proceeding to prove these results, it is
worth inquiring into the possible astroPhysical
relevance of processes occurring during the first
10 sec of the universe's life. Until quite recent-
ly one would have said there was none. The earl-
iest cosmological time at which accompanying
physical processes led to observable predictions
was the epoch of'4 primordial nucleosynthesis
-1-10 sec. This may no longer be the case fol-
lowing the new development of grand unified gauge
theories of the strong and electro-weak interac-
tions" based upon simple non-Abelian gauge
groups like SU(5), SO(10), or E6. All these groups
allow the embedding of the SU(3) color group but
admit different possible breakdowns for the elec-
tro-weak symmetry, in particular SU(2) &&U(1).

These models of nongravitational interactions pre-
dict baryon nonconservation mediated by heavy

( ~ 10'4 GeV) lepto-quark gauge quanta which couple
to both charge and color. The dual coupling allows
quarks internal to the proton to decay into leptons
(qq -x-/q), with the observable consequence that
the proton is unstable. These properties could be
strongly manifested during the very earliest stages
of the big-bang cosmology and might enable an ex-
planation to be provided for the observed baryon
asymmetry and specific entropy of the universe. '

It therefore becomes relevant to observational
cosmology whether or not the universe ever got as
hot as 10' -10"GeV. Universes that are bounced
by massive scalar fields at t „-10 3 sec would
get no hotter than -10 QeV and for them the im-
plications of grand unification would be irrelevant.

The only other process occurring at -10 3 sec
which might conceivably have astrophysical rele-
vance is the process of primordial black-hole
formation. ' If the universe were to bounce at a
time t &, then the smallest mini black hole able to
form primordially would be roughly the horizon
mass -103 (t,gl sec) g. If f „were larger than
-10 3 sec then no black holes with a Bekenstein-
Hawking lifetime (Ref. 18), -10 (M/1 g) sec,

which generates the stress tensor

,'g „„(-&,—„&"+m'&) . (2)

We shall consider this field in a closed Bianchi
type-IX universe, the most general class of a
closed, homogeneous, and anisotropic universe.
The restriction to spatial homogeneity ensures g
is a function of time alone. The nonzero compon-
ents of T„„are

and

(4)

The scalar field exerts an isotropic pressure upon
the geometry regardless of any anisotropy in the
expanding geometry.

In order to generalize Starobinskii's analysis
away from the very special isotropically expanding
Friedmann background, we introduce the metric
for the type-IX geometry:

ds2=-dt2+a (t)(e "")q,&u + (5)

where the forms (d' are defined by their invariance
properties under the group action of the spatial
Killing vectors and exp(2P)&, is a matrix exponen-
tial of the diagonal traceless matrix p„(see Ref.
11).

The scalar wave equation (1) becomes

$+3—Q+m /=0,
a

and the Einstein equations written in an orthonor-
mal frame reduce to

equal to the present Hubble age could ever have
formed. The discovery of an exploding mini black
hole would constrain the possible epoch of a bounce
regardless of its cause.

Notation. Metric signature: (- ++ +); h =—c =—1;
field equations: G=(BvG/3)f; Greek indices p, ,
v ' ' ' run over 0, 1, 2, 3; summation convention
is suspended for bracketed indices T«, &, normal-
ization: u„u = —1.

II. MASSIVE SCALAR FIELD IN

THE MIXMASTER UNIVERSE

Starobinskii' has argued that quantum effects
involving bosons play a negligible role near the
singularity of a universe that collapses isotropical-
ly from a macroscopic, classical radius. A study
of the problem in the Friedmann background in-
volves the solution of the scalar field equation
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+ -'o; o;.+a
I V(P) —1], (7)

V(t&) &1, (12)

conditions for a bounce to occur in the evolution
of the geometry. Clearly (9) and (ll) further re-
quire the following inequalities to hold:

a a
62&~'I. T«»(0') +P]a a

—2o;,o;;+a [V(p) —1] . (8)

1
amain

8mG

3
p~ amain

(13)

(14)
Here p and P give the density and pressure of any
additional classical matter fields and 0&, -=P;, is
the shear of the timelike normals to the surfaces
of homogeneity. The last term on the right-hand
side of equations (7) and (8) is proportional to the
negative of the three-curvature of the t = constant
spacelike sections. Note that the shear-free, iso-
tropic expansion of the Friedmann models cor-
responds to the vanishing of the curvature poten-
tial, V =—0. For our case V(P) may become larger
than unity and the three-curvature can change its
sign as the expansion evolves.

III. CONDITIONS FOR BOUNCE

In order that the negative stress of the massive
scalar field produce a singularity-avoiding bounce
at high density it is necessary that the scale factor
pass through a turning point. By (3) and (7) this
occurs at a =a „,where a(a „)= 0, and so:

+ m Q + 2p +. — (—,o';,o;;4m'

+3[V(P) —1]a „]=0. (9)

—T& &&&(&) (10}

Without solving any equations we may see qualita-
tively how difficult it is for the quantum stress to
effect a bounce in a classical geometry. The pos-
sibility of bounce depends on that very small posi-
tive part of the three-curvature which is respons-
ible for the existence of the expansion maximum
a „at a later classical epoch. Since any physi-
cally realistic equation of state generates densities
which diverge at least as rapidly as the scalar
stress p-a 3-a, there appears very little chance
of a turning point in the quantum era. This un-
likely situation can only occur if the P field is
anomalously small. At a minimum we also re-
quire a & 0, and so by (6) this implies

&t
' & —,'m'y' . (15)

IV. THE EXPANSION MAXIMUM AND MINIMUM

In the classical regime, m» a/a and the WEB
solution of (6) is the sum of the two elementary
solutions &t&, , Q2:

&t&
=- &t&&+ &t&2 =a ' (C cosmt+D sinmt), (16)

where the amplitudes C and D are constants to be
determined. It is clear that the bounce condition
(15) can only hold in the nonclassical region. The
expansion maximum is given by a =0 and a & 0
and lies in the classical region where (16) holds;
using (9) and (10) we find a „to satisfy

4~0» 2 8&ca~ m(C +D)+ p

+ "6
' +a - '[V(P) —1]=o ~ (17)

/

»om equations (12)-(14)we see that if a bounce
does occur then the last three terms in (17) must
be negligible. The equations governing the evolu-
tion of these terms guarantee their rapid decay
—a ""', e & 0, as a increases. We therefore see
that if a quantum bounce does occur, only the
terms involving the scalar field and the curvature
will be important near the maximum. We have
therefore, by (17), that

Condition (12} requires the three-curvature to
be approximately isotropic and in combination
with (13) says that the anisotropy energy must be
dominated by the isotropic part of the three-curv-
ature. All anisotropies must be small when a
bounce occurs and (9) shows that both the classi-
cal matter and shear energy must be dominated by
the very small scalar stress T00(&t). Finally we
note that (15) is the condition that the strong en-
ergy condition be violated and demands that the
bounce occur at an epoch t &,

~ m '.

where we recall that T«»(&t&} may be negative.
Using (3) and (4) this may be rewritten in the form
of an inequality governing the behavior of the field

m2y2 ) 2/2 + p + 3P +
4m

In summary, (9) and (11) provide the necessary

47&Gm2(C +D )=3a,„. (16)

If a solution has a bounce at a &„ then we can
specify this solution by the amplitudes of the two
elementary solutions at a „.When t& nz ' Eqs.
(6) and (7) yield &t&-A+Ba2-A+Bt to first order
for the two elementary solutions



21 SIZE OF A BOUNCING MIXMASTER UNIVERSE

Q2 B——t .
(19)

(20)

For a bounce to be possible (15) tells us that

B=6Am,

and the expansion minimum is then given by (9),
(19},(20) as

411(l+ 5 }Gm A =3a „[1—V(p}]

(21)

x 8.Gp+""' +3~(p} . (26)
~mSn

The inequality (21) implies that 5(1+ 52) '-6 and
the invariance of y(1+y )

1 under y-y allows
us to choose y & 1. Equation (25) therefore shows
that one of the two classical solutions Q„g2 must
differ from the other by a factor y-5(a „/a ),
which is -10~' in the actual universe if a -1.0"
sec and a „-10 3 sec. A quantum bounce re-
quires domination by the Q1 mode in the quantum
epoch and so we may use y as a measure of the
improbability of any classical solution undergoing
a bounce. Therefore the probability that the neg-
ative stress in the quantum region outweighs the
positive stresses in the classical region to give a
bounce is

amia 't

(probability of bounce) &
amax j

(26)

V. DISCUSSION

A single massive scalar may bounce the universe
at times earlier than -m ~ but only with the minute
probability (26) which is & 10 40 in practice and
must be small in any universe large enough and

(22)

We can now connect the conditions for an ex-
pansion minimum to the value of the maximum
scale a „by finding a relation between amplitudes
of the quantum (A, B) and classical (C,D) solutions.
The Wronskian W of both solutions has the exact
scaling property

441 421 =-(4'142 —424'1)~a"; (23)

and so we may evaluate 8' at the two extrema from
(16},(19), (20), and (23),

+$1,Q2] ~, , =5mA =a „+ymC, where y =D/C . —

(24)

Using (18}and (22) we have that

&a a
y(1 + 2) 1 6(1 + 62) 1

~

min min

ka max a max

old enough to evolve observers. To offset this re-
sult one might conceive of a whole ensemble of
scalar fields' extending to higher and higher
masses and whose total number is large enough
to give a bounce probability -1. However, the
higher-mass fields allow the possibility of bounce
only at earlier times and smaller values of a „
and by (26) this gives them a correspondingly low-
er probability of being effective.

In practice one anticipates that, even before the
quantum gravity era is reached, additional factors
will lower the probability (26) even further. For
example: (a) The ordinary matter terms in (8)
tend to produce singularities (in the case of stiff
rnatter P =p, and this simulates the scalar field
evolution in the nonbouncing p2 mode where the
massive component is negligible). (b) The aniso-
tropy terms will grow strongly on approach to a
singularity in the collapse phase of a closed uni-
verse, and violation of the constraints (12) and
(13) will inevitably occur unless the model is me-
ticulously regular. (c) A generic inhomogeneous
cosmological model would have an even smaller
probability for bounce simply because as we move
from region to region in the space-time the dis-
tribution of anisotropies and curvatures would
make a violation of the requirements (12) and (13)
in some region very much more likely, and a
singularity would appear on the past light cone of
that region.

In the range of models discussed, despite a vio-
lation of the energy condition, it is overwhelmingly
improbable that a bounce could occur when the
universal scale exceeded the Planck length "10~'
cm. On length scales smaller than this, a quan-
tized theory of gravity must be employed. Some
model calculations relevant to this era have been
performed in minisuperspace quantum cosmologies
where the homogeneous gravitational wave modes
are quantized. The results which emerge are,
unfortunately, dependent upon the boundary con-
ditions and factor-ordering prescriptions em-
ployed. For example, Misner's early work 0 on
a similar type-IX geometry to ours considered
the evolution of a classical state with a narrow
spread of eigenmodes centered upon a large (clas-
sical) quantum number. The conclusion of his
analysis was that the model followed an essentially
classical path to a quantum analog of the classical
space-time singularity. By way of contrast, De-
maret ' has shown that a different quantization
scheme leads to a vanishing of the wave function
as a -0 in anisotropic Bianchi type-I and type-IX
models with P & p perfect fluid matter sources.
Clearly an unambiguous investigation of this ques-
tion must await the long-promised synthesis of
quantum theory and gravity.
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