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Phase structure of non-Abelian lattice gauge theories
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The phase structure of four-dimensional lattice gauge theories based on finite non-Abelian groups is

studied by Monte Carlo computations. All models examined exhibit a two-phase structure with a first-order

phase transition. In three systems where the gauge group is a discrete subgroup of SU(2) the critical
temperature moves toward zero as the order of the group increases and the high-temperature phase has

confining properties.

I. INTRODUCTION

The lattice formulation of a gauge field theory
offers a very powerful technique to study its
quantum properties. ' It provides a regulariza-
tion of the ultraviolet divergences and allows
strong- coupling expansions. The continuum

theory is recovered in the limit where the cor-
relation length becomes infinite; it is therefore
quite crucial to have a knowledge of the possible
phase transitions. Thus, the charge-confining
properties of non-Abelian gauge models are re-
lated to the absence of any phase transition. The
confinement observed in the strong-coupling re-
gime is believed to extend all the way to the zero-
temperature limit, where one recovers the con-
tinuum system. On the contrary, the existence
of free charges in quantum electrodynamics re-
quires a phase transition, separating a strong-
coupling, confining phase from a low-tempera-
ture, spin-wave phase in the corresponding lat-
tice theory.

Very recently numerical methods based on the
Monte Carlo technique have been used to obtain
information about the phase structure of a, var-
iety of gauge models. ' ' The results have proven
quite encouraging and agree nicely with the con-
clusions of other analyses, based on perturbative
or semiclassical expansions. ' ' More specif-
ically, in Refs. 2 and 3 Abelian gauge theories
have been investigated, while in Refs. 4 and 5

the non-Abelian system with gauge group SU(2)
has been studied.

A rema, rkahle feature of lattice gauge theories
is that discrete gauge groups may also be con-
sidered. Thus, together with the model with

U(1) gauge group, one may study the whole cat-
egory of systems with the finite, Abelian groups
Z~. In the limit A'-~ one expects to recover
the properties of the U(1) theory. Indeed, one of
the main results of the numerical analysis of

Ref. 3 consists in the observation, for & large
enough, of a three-phase structure in the ~N

models, with two phase transitions, one of which
disappears at zero temperature, while the other
survives in the U(1) limit. Considerations about
this limit have also formed the main ingredient
in the study of the Z„models. of Ref. 6.

The interrelations between the properties of
lattice gauge theories with discrete and continuum
groups motivated this work, where we present
Monte Carlo results obtained for a variety of
gauge systems with finite, non-Abelian groups.
The main emphasis will be placed on models
where the gauge group is a subgroup of SU(2).
Three of these systems, with gauge groups of
8, 24, and 48 elements, respectively, have been
analyzed: All exhibit a single, very clear phase
transition, which definitely moves toward zero
temperature as the order of the group increases.
Internal energy and disorder parameters (Wilson
loop factors) of the high-temperature phase ag-
ree almost up to the transition point with those
already determined for SU(2).'

Contrary to the case of U(l), the manifold of
SU(2) cannot be filled with points of discrete sub-
groups which become dense in a suitable limit.
Only a finite number of nontrivial subgroups of
SU(2), related to the symmetries of the regular
polyhedra, exists. But this is a limitation only
in principle. %e recall from Ref. 3 that the two

phase transitions in the &„models are well sep-
arated already for W=8, with one transition es-
sentially where it is observed in the U(1) theory,
the other at a temperature low enough to approach
the limit of reliability of the computation. The
model with a 48-element group considered here
has the same energy (or action) gap as &8 (which
is contained as a subgroup) and the only phase
transition has already moved to a, temperature
lower than that for the Z8 theory. Thus our re-
sults, we believe, corroborate strongly the notion
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that four-dimensional lattice gauge theories with
non-Abelian continuum groups posses a single,
confining phase.

Section II contains a brief description of the
models considered and of the computational tech-
nique used. Section III presents the actual num-
erical results. Section IV is devoted to a few
words of conclusion.

H. DESCRIPTION OF THE MODELS AND OUTLINE
OF THE COMPUTATION

s=g f(W,) . (2.2)

Of particular interest are the normalization fac-
tor itself, or partition function,

(2.3)

the free energy, defined as

1
&=—lnZ, (2.4)

W, being the number of sites in the lattice, which
becomes independent of the lattice size as N,
—~, and the internal energy

(2.5)

In this article we shall study the models ob-
tained with the following choices for g:

(i) The 8-element group of quaternions, denoted
by Q, generated for instance by the matrices iv„
and ia, (o, being the Pauli matrices).

(ii) The 24-element group T generated by the

A la,ttice gauge theory with group g is defined
by associating an element U, z(= g to each link

joining neighboring sites i and j. U, , = U „.and,
in a gauge transformation, U, ,- U,') = G '; U]; 6),
with the elements G,c g defined locally at each
site i. The quantities (Wilson loop factors)

(2.1)

where the sites i„.. . ,i„form a closed loop y and
Tr denotes a class function (i.e., Tr G 'UG= TrU),
are gauge invariant.

In the applications to quantum field theory the
lattice is usually taken to be a four'-dimensional
hypercubical lattice. Quantum'averages are
defined with a weight e ', where the action 8 is
given by a sum of suitable functions of loop fac-
tors extended to all elementary squares of the
lattice (plaquettes) ':

matrices —,'+ ~i& 3cr, and —,'+ (i'/v 3)cr, —(i/2&3)o, .
T contains &, as invariant subgroup and the factor
group T = T/Z2 is the rotation group of the tetra. -
hedron.

(iii) The 48-element group 0 generated by the
matrices 1/W2+ (i/v 2) 0„and1/v 2 + (i/D2) o„.
also contains Z, as invariant subgroup and the fac-
tor group 0=0/Zq is the rotation group of the
octahedron.

(iv) The 24-element group 0.
(v) The permutation group of three elements

S.3'
The groups Q, T, and 0 are subgroups of SU(2).

Their elements are represented by matrices of
the form

u = cos3+i sin30 ~ n, (2.6)
A,

n being a unit vector, and we choose cos3 as the
class function Tr appearing in Eq. (2.1). The ac-
tion is then defined by

f(Wo) = 1 —Wo. (2.7)

This agrees, in particular, with the normaliza-
tion used in Refs. 2-4 and allows a direct com-
parison of results, without rescalings.

The elements of 0 may also be represented by
matrices of the form (2.6), identifying however
u with -u. W is then defined by &=eos 3, as
appropriate for the rotation group O(3). f(Wo) is
again set equal to 1 —WG.

, The six elements of S3 fall into three classes,
one containing the identity I, another the two per-
mutations of all 3 elements, C and C, the third
one the permutations I', which leave the ith ele-
ment fixed. I, C, and C together form the in-
variant subgroup. Z3 and, to achieve the same
normalization as in Ref. 3, we assign f(Wo)
=0 to I, f(Wo) = ~ to C and C . The choice of ac-
tion for the remaining class is quite arbitrary
and we have performed computations with the
three values f({P,)) =-,', 1, and & . Averages of
loop factors have not been evaluated for this
group, so the choice of WD itself is irrelevant.

The groups Q, &, and 0 are all subgroups of
SU(2), and one of the main purposes of this work
is to study what happens to the phases of the cor-
responding gauge theories as the points represent-
ing the group elements become denser within the
manifold qf SU(2) . For comparison with the work
of Ref. 3, we notice that 0 has subgroups isomor-
phic to &8 and, in particular, the gap between the
action of an unexcited plaquette and the action of
a plaquette in the lowest state of excitation is the
same in both cases. 0 has been studied to see
how factoring out the center of the group alters
the properties of the model. S3 has been con-
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sidered for its own sake, also because the num-
erical analysis could be extended to this system
with a minimal cost in computing.

Quantum averages are evaluated numerically
by the Monte Carlo technique: Gne generates a
sequence of states Z,. in such a way that a definite
configuration of the spin variables U,.& appears
with a probability proportional to the Boltzmann
factor:

p(g) ~ -()'((c) (2.8)

The quantum average of an operator A(Z) is
then approximated by an average over configura-
tions in the sequence

(2.9)

~(UP )
-Bs'(U'. .) g &-() ('((('~) (2.10)

U~,
$j

The statistical process thus corresponds to touch-
ing the spin U, ,- with a heat reservoir at inverse
temperature P, all other spins being held fixed.
The procedure generated by this choice of p has
been called the heat-bath algorithm in Refs. 2-

An alternative possibility for p, originally in-
troduced by Metropolis et al. " and widely used,
consists of selecting only one new candidate value

U,.',. for the spin. If the new choice lowers the ac-
tion, U, j is changed to the new value. If not, the
change is made with conditional probability
expI-P [8 (U,.) —s (U, ,)P. The computer time

A number of states encountered at the beginning of
the sequence is excluded to ensure that statistical
equilibrium has been reached.

The configuration Z,-,&
is obtained from Z,. by

a stochastic process, whereby one of the spins of
the lattice U,.J is set to a, new value U,.'~ (possibly
equal to U;&) according to a definite probability
matrix p(U;,.- U,',.). f) is defined so that in statist-
ical equilibrium Eq. (2.8) is satisfied. After
U, ,-, a new spin U,'j is reset according to p, and

so on until all the spins of the lattice are probed
in succession. This completes one Monte Carlo
iteration. The whole process is then repeated
and many iterations are used to construct the se-
quence of states appearing in Eq. (2.9). We re-
fer the reader to Refs. 11 and 2-5 for a, more de-
tailed discussion of the method.

The matrix P(U, , - U,.',.) used in this analysis is
constructed as follows. For all possible choices
U,',. the total action 8'(U,.',.) of the plaquettes con-
taining the link ij is evaluated. Then p is chosen
proportional to e ij

needed to probe one spin with this algorithm is
shorter than in the heat-bath method, but the
heat-bath algorithm converges to statistical
equilibrium faster (the relative efficiency depend-
ing on the number of possible values for the
spins) and thus fewer Monte Carlo iterations are
needed. In the context of the present analysis
we found that the gain in convergence outweighs
the loss in computer time and the heat-bath al-
gorithm has been used throughout.

A technique of storing many spins in a single
memory word of the computer (multi-spin-coding:
see Ref. 2) to reduce memory requirements and

processing time has been utilized. The compu-
tations have been performed with a lattice ex-
tending for 8 sites in each of the three spatial di-
rections and 10 sites in the temporal one, sub-
ject to periodic boundary conditions but without
any gauge constraint. The total number of spin
variables is then 20 480, which, on the basis of
previous results, should be sufficient to pro-
duce reliable averages without excessive statist-
ical fluctuations.

III. THE PHASE STRUCTURE

While the basic feature of the Monte Carlo tech-
nique consists always in the stochastic readjust-
ment of the spins, there are a variety of com-
putations that can be done for a definite model.
There is arbitrariness in the choice of the initial
configuration, there is also the option of varying
the parameter p every iteration or every few iter-
ations, thus subjecting the system to a change in
temperature. In a sense, the Monte Carlo a,l-
gorithm creates a small specimen of the material
inside the computer. But the choice of what ex-
periment to do with i.t is left open.

In this study we have done the following three
types of computation'.

(i) Starting at a definite initial value Pp of p (de-
termined on the basis of trial computations) and
with the system completely ordered (all U, , set
equal to the identity), 10 iterations are per-
formed, the internal energy is evaluated, and P
is lowered by an amount &P. The procedure is
repeated until P becomes zero (infinite-temper-
ature limit) and then P is raised again, in steps
of &P, up to the original value Po. This compu-
tation, which we shall refer to as "simulation of
a thermal cycle, "provides a general overview
of the phase structure of the system. The in-
ternal energy E is indeed a one-valued function
of 8 (with the possible exception of a first-order
critical point P, where E can take two values, E,
and E ) so that in equilibrium a single value for
the internal energy should be measured at any
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definite temperature. By changing p, however,
the system is constantly kept slightly off-equil-
ibrium. If the variation of p is slow, the depart-
ure from equilibrium is generally very small and
effectively a single value for E is determined.
But near a phase transition the relaxation time
becomes large and the plot of E versus P displays
the typical shape of a hysteresis loop.

(ii) In the initial configuration half of the spine
(those for instance emanating from sites with
temporal coordinate -5) are set equal to the iden-
tity, the other half are chosen at random. A

definite number of Monte Carlo iterations is then
performed for a few fixed values of P, selected
in the vicinity of a phase transition, and the in-
ternal energy E is plotted versus the number f of
iterations. These computations, which we shall
call "mixed-phase runs, "provide information
about the nature of the transition. At a critical
point of the first order there are two different,
stable phases. Slightly off the critical temper-
ature one of the two phases remains stable, the
other becomes metastable: In a mixed-phase run
the system approaches rather quickly a config-
uration in which half the lattice is in the stable

phase, and the other half is in the metastable
phase, but then the boundary of the stable phase
expands until this phase overtakes the whole lat-
tice and one observes a drift in E towards either
E, or E, according to the value of P. This be-
havior is qualitatively different from what is seen
in a phase transition of higher order, where the
curves E(t) tend to equilibrium values which vary
continuously when p is changed.

(iii) The loop factors W for rectangular paths of
sides rn and n are evaluated after equilibrium is
reached at a definite temperature, averaging over
all spacelike loops and also over a few Monte
Carlo iterations. 5'plays the role of order para-
meter. Increasing the size of the loop the cor-
relations among the spins decrease, 8'tends to
zero and -lnH' therefore to infinity. ' It has been
argued that -lnW should increase like the area
of the loop in a disordered, confining phase, like
the perimeter in a nonconfining phase. Thus,
the behavior of -lnS' versus m and n can be taken
as a measure of the order of the system.

The thermal cycles of the models with groups
Q, T, and 0 are reproduced in Figs. 1(a)-1(c).
The range of temperatures has been covered in
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FIG. 1. Thermal cycles for the models with groups Q, p, 0, and Zs. + (x) denotes the values of E measured while
increasing (decreasing) the temperature.
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steps &P =0.05 with the Q and T systems, &P
=0.1 with the 0 system. A, hysteresis loop sig-
naling a phase transition is apparent in all diag-
rams and it is also evident that the critical point
moves toward zero temperature as the order of
group increases: The groups Q, T, and 0, we
recall, are subgroups of SU(2) with 8, 24, and
48 elements, respectively. The thermal cycle of
the &8 model (from Ref. 3) is presented in Fig.
1(d) for comparison. The Abelian group Z, is
contained as a subgroup in 0 and the two models
have the same energy (or action) gap. But the
difference between their thermal cycles is im-
pressive. The Abelian model gives clear ev-
idence of two phase transitions and therefore of
three phases: a high-temperature, confining
phase, an ordered phase, likely to disappear at
zero temperature when the order of the group
increases, and an intermediate, nonconfining
spin-wave phase. There is no sign of a spin-
wave phase in the non-Abelian systems, and only
the high-temperature, confining phase" and the
ordered, low-temperature phase appear to be
present.

Mixed-phase runs have been made to determine
the order of the phase transition and the critical
temperature. Figures 2(a)-2(c) illustrate the

results of runs of 80 iterations with the Q, T,
and 0 models, respectively. The values of p
are indicated in the figure captions. Figure 2(d),
presented for comparison, shows the result of
a mixed-phase simulation with the Z6 model near
a critical point of higher order. In Figs. 2(b)
and 2(c) a, divergence of the curves E(t) to lim-
iting values E, and E is apparent. This trend is
not so noticeable for the intermediate values of
P in Fig. 2(a), but the results of longer runs,
presented in Fig. 2(e), suggest a first-order
transition for the system with gauge group Q as
well. A longer run [see Fig. 2(f)] has also been
done for the 0 model to locate more precisely
the critical point. These computations indicate
that the systems with gauge group Q, T, and 0
all undergo first-order transitions, at critical
temperatures given by P, = 1.23 + 0.02, P,
=2.175+0.025, and P, =3.21+0.01, respectively.

The behavior of the Wilson loop factors has
been studied in the model with gauge group 0.
Starting from an initial configuration where the
system is in statistical equilibrium, averages
of the loop factors have been taken over 12 Monte
Carlo iterations and over all spacelike loops.
For initial configurations we have chosen those
encountered along the descending temperature
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branch of the thermal cycle for P=1, 1.5, 2, 2.5,
and 3; those encountered at the end of the long
mixed-phase runs (160 iterations) for P =3.2 and

3.22. In Table I we reproduce the values of -in%'
thus determined for all the loops which give -in%"

& 5. I arger values of -lnW correspond to loop
factors so close to zero that they cannot be dis-
tinguished from statistical fluctuations. These
statistical fluctuations, not reported in the table,
are of the order of 10, with the exception of the
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TABLE I. The quantity —lnW for different values of P and rectangular loops of sides m, n
in the model 0 model.

P=1
5

1.42 2.79 4.10

1.02 2.02
4.11

3.01 4.06

0.70 1.37
2.69

2.03
4.17

2.69 4.03 4.59 4.99

0.42 0.78
1.35

1.11
1.87
2.57

1.43
2e37
3.14
3.94

P= 2.5
5

1.75
2.90
3o 77
4.52

2.08
3.40
4.39
4.87

2.41
3.93
4.70

2.75
4.34

0.30 0.54
0.90

0.76
121
1.56

0.98
1.51
1.91
2.27

1.20
1.81
2.25
2.62
2.99

1.41
2.11
2.62
2.98
3.28
3'.65

1.63
2.41
2.90
3.26
3.59
3.88
3.89

1.84
2.71
3.07
3.23
3.38
3.51
3.05
1.41

1
2.

4
5
6
7
8

0.26 0.46
0.75

0.64
1.01
1.32

0.82
1.25
1.59
1.89

/=3. 2
5

1.01
1.49
1.83
2.15
2.40

1.19
1.71
2.05
2.35
2.59
2.89

1.37
1.93
2.26
2.58
2.81
3.00
3.10

1.53
2.07
2.36
2.49
2.58
2.56
2.39
1.28

P = 3.22
5

0.050 0.079
0.111

0.107
0.140
0.170

0.135
0.169
0.199
0.228

0.163
0.199
0.229
0.259
0.290

0.192
0.229
0.259
0.289
0.319
0.349

0.219
0.255
0.284
0.313
0.341
0.369
0.390

0.225
0.235
0.236
0.236
0.236
0.235
0.228
0.045
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lowest temperature (P= 3.22), where they are
smaller.

From the table it is apparent that -in%' in-
creases with the area of the loop in the high-
temperature phase, whereas it is area indepen-
dent in the low-temperature phase. This be-
havior becomes particularly manifest if one com-
pares the values of -ln& for loops of the same
perimeter and different areas, such as are found
along the diagonals.

A quantitative determination of the coefficient T
in the area term, or string tension, may also be
attempted, but finite-size effects introduce some
degree of ambiguity. Indeed, loops of size one
and two are very likely too small for a measure-
ment of the size dependence of the loops (they
tend to give a larger area term, when inserted
in a, fit); on the other hand, as the loops approach
the size of the lattice, increased correlations due
to the periodic boundary conditions tend to make
-lnW smaller (-1nW would be exactly zero for
square loops of side eight in an Abelian system).
Thus, for instance, for P=2.5 comparison of

loops measuring 3 x 3 and 4 x 2 gives T =0.20,
comparison of loops measuring 4x4 and 5x3
gives T =0.17, a fit to the square loops of sides
i, 2, and 3 gives T=0.145, a fit to those of sides
2, 3, and 4 gives T =0.075. In spite of this
degree of uncertainty, the computation reveals
clearly a confining behavior of the high-temper-
ature phase, with a disorder parameter T which
decreases for increasing P, has a discontinuity
at the phase transitions, and vanishes in the low-
temperature phase.

Simulations of thermal cycles and mixed-phase
runs have been done for the models with gauge
groups 0 and S3. The results are displayed in
Figs. 3 and 4. &/=0.05 for all thermal cycles.
The three cycles for the S3 model correspond to
different choices of the action to be associated
with the odd permutations P,

All thermal cycles show hysteresis loops. In
the S3 model, as one might expect on general
scaling considerations, lowering the action
f((P,.J) has the effect of increasing the value of p
where the loop appears. The mixed-phase runs
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temperatures being very close to the critical tem-
perature. The behavior of the other curves is
rather typical of a first-order phase transition.

IV. CONCLUSIONS
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Our results give numerical evidence that all
non-Abelian models considered have a two-phase
structure with a first-order phase transition.
In the three systems where the gauge group is a
subgroup of SU(2) the critical point definitely
moves toward zero temperature as the order of
the group increases. The analysis of the Wilson
loop factors done for the 0 model, moreover,
shows that the high-temperature phase is confin-
ing, with a string tension that becomes discon-
tinuously zero at the critical point.

Very much as the phase structure of the &~
models is suggestive of that of the system with
gauge group U(l), this study strongly supports the
notion that a single, confining phase should be
present in the model with gauge group SU(2). We
have compared our results for the 0 model with
those obtained by Creutz for the SU(2) model.
The values found for the internal energy in the two
different systems are displayed in Fig. 5: The
agreement almost up to the critical P is impres-
sive. We notice that the confining phase of the 0
system extends well beyond the value of P where
Creutz finds a transition between the strong-
coupling regime and the behavior predicted by
asymptotic freedom or where instanton contrib-
utions are detected; ' thus already with the finite
gauge group one finds confinement throughout the
region where one would expect the most inter-
esting effects to take place.

The values -lnW found in Ref. 4 for the square
loops also agree well with those we find for the
0 model (for P &P,). For instance, Creutz finds

0. 1—
1 ~ 2

0. 0
0. 0

I

60. 0 80. 0

FIG. 4. Results of mixed-phase simulations for the 0
model and the S~ model with f((P;})= 1, respectively.
The values of p are as follows: (a) P=2.1(+), 2.3(x),
2.4(h, ), 2.5{p), 2.6(*), 2.8(O). (b) p=1(+), 1.03(x),
& 05(~), &.07K'), &.&(*).
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[done only for f((P;})= 1 in the S3 model] indicate
that' the transitions are of the first order. The
two intermediate curves in the 0 model diverge
very slowly, but this may be attributed to the
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k ~~ ~
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FIG. 5. Comparison of the internal energies of the
systems with gauge group 0 (+ and x) and SU(2) (0).
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values 0.43, 1.36, 2.46, and 3.50 for square loops
of side 1, 2, 2, and 4 at P = 2.5 to be compared
with our values 0.42, 1.35, 2.57, and 3.94. This
remarkable agreement between quantities mea-
sured in the two models suggests the interesting
possibility of using the 0 model, or the model
based on the 120-element subgroup of SU(2), for
reliable approximate computations of observables
of the SU(2) system itself. The saving in mem-
ory requirements and computing time could allow
the study of larger lattices.

Our understanding of non-Abelian gauge sys-
tems has certainly progressed during the last few
years. The hypothesis of confinement, that not

so long ago was a mere conjecture, is now strong-
ly supported by a variety of numerical, pertur-
bative, and semiclassical computations. The
time may be ripe to promote the hypothesis into
a theorem, with the rigor of analytical proof.
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