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An operator formalism of statistical mechanics of a gauge theory is presented in covariant gauges. ~e
derive and propose a simple statistical operator e ~ "~' instead of the usual form e ~ for the physical

equilibrium system in a gauge theory, where Q, is the Faddeev-Popov (FP) ghost charge. The diagrammatic

expansion rule for the partition function is discussed in this formalism, and Bernard's suggestion of the

strange rule that the FP ghost should be assigned a periodic temperature Green's function in spite of its

Fermi statistics is confirmed rigorously. The gauge-fixing condition independence of the partition function

and other physical quantities are also discussed.

I. INTRODUCTION

Recently, several authors have paid attention
to gauge theories at finite temperature and/or
densities, and discussed some important problems
that may arise in such a situation, e.g. , the res-
toration of spontaneously broken symmetries above
a critical temperature, ' the phase transition from
nuclear matter to quark matter inside nuclei or
a neutron star, ' etc. The problem of quantization
and renormalization of gauge theories under such
situations have also been discussed, "and, calcula-
tions of thermodynamic potentials to higher orders
have been performed. ' '

Usually, these arguments are based on Feyn-.
man's path-integral formulation of statistical
mechanics. ' The partition function Z(p) is repre-
sented as a functional integral over all fields de-
noted generically as $ with suitable boundary
conditions [periodic for bosons and Faddeev-Popov
(FP) ghosts, antiperiodic for fermions] weightedby
the exponential of the action' '.

-i8
Z(P) =X(P) [dg] exp i ) dx' xdZ(@),

(1.1)
where P is the inverse temperature and N(P) is a
normalization factor. We use units such that
K= c = 0 (Boltzmann's constant) = 1. A curious
point in the formula (1.1) resides in the periodic
boundary condition for Faddeev-Popov (FP)
ghosts, which was first stated by Bernard' and
used by subsequent authors: The functional inte-
grationover FP ghosts mustbe performed over the
periodic orbits in the interval 0 ~ &,- —~P despite
the fact that they are fermions Consequently. ,
the free propagator of the FP ghosts that appear
in the perturbation expansion of (1.1) is of Bose
form, 1/(k'+ &u„') with &u„=-2n~/P (n =integer).
This apparently strange rule originates from the
troublesome fact in gauge theories that the well-
known expression Tre " is a gauge-dependent

quantity and in general no longer the correct ex-
pression for the partition function. This gauge
dependence is caused by the appearance (in the
state vector space and the Hamiltonian H) of un-
physical particles such as FP ghosts and the lon-
gitudinal and scalar modes of gauge fields in the
unbroken theory. Such unphysical particles could
never come to equilibrium with a physical heat
bath. Therefore, in order to obtain the correct
partition function, we should calculate Tre
either in a special gauge in which no unphysical
particles appear (e.g. , Coulomb gauge, axial
gauge), or by restricting the trace operation to
a subspace of states which consists of genuine
physical particl. es alone.

Bernard' has obtained the above rule for the
FP ghosts by starting from the functional integral
in the axial gauge and transforming it to the ex-
pression in covariant gauges. However, his argu-
ment seems rather heuristic and intuitive. In
fact, he explains essentially as follows: In view
of 't Hooft's trick introducing FP ghosts, '

det I= [dc][dc]exp(icMc), (1.2)

it turns out that the FP ghosts c and c should be
periodic, because M is defined in the space of the
periodic gauge and matter fields and hence detM
is the determinant in the functional space of peri-
odic functions. However, it would not be so easy
to treat directly such a functional determinant in
a rigorous way. So it is desirable to verify his
conclusion in another way.

In this paper, we present an operator formalism
of statistical mechanics of a gauge theory in co-
variant gauges. We derive and propose a very
simple statistical operator for the physical equi-
librium system of gauge theory, and give a rigor-
ous proof for Bernard's suggestion. The starting
point of our formalism is the expression of the
partition function Z(P) correct in any gauges:
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Z (P) = Tr(e ~" "o~), (1.4)

where Q, is the Faddeev-Popov ghost charge. The
expression (1.4) can be regarded as a partition
function of a grand-canonical ensemble having
pure-imaginary chemical potential p.» =in/p for
FP ghosts, although we are discussing only a ca-
nonical ensemble throughout this paper. By virtue
of the form (1.4), the usual diagram technique in
ordinary (nongauge) theories" becomes applicable.

Section II is devoted to the derivation of (1.4)
from (1.3). Some results of Ref. 10 necessary
for that purpose are briefly explained. In Sec.
III, the diagrammatic expansion of the partition
function Z(P) is discussed. It is explained in Sec.
IV that we can consistently formulate the statis-
tical mechanics of a gauge theory simply by adopt-
ing the operator e ~ '~c as the statistical oper-
ator for the equilibrium system from the begin-
ning, instead of starting from the complicated
operator I'e ". We prove there the gauge-fixing
independence of the partition function and other
physical quantities in our formalism.

H. DERIVATION OF THE FORM (1.4) FOR THE
PARTITION FUNCTION

We consider a multiparticle system described
by a (broken or unbroken) gauge theory in thermal
equilibrium. The gauge group G may be any com-
pact Lie group, and the Lagrangian density is
given by"'"'"

Z(P) = Tr(Pe "),
where I' is the projection operator onto a subspace
+p&p of states consisting of physical partic les
alone, With the help of manifestly covariant ca-
nonical operator formalism of non-Abelian gauge
theories, presented before by Ojima and one of
the present authors, '"we transform (1.3) to
another simple expression

covariant gauge-fixing term -(1/2n)(a „A")', and
the gauge parameter choice n = 0 (n = 1)corresponds
to the Landau (Feynman) gauge. The multiplier
B is necessary in order to ensure the nilpotency
of the BRS (Becchi-Rouet-Stora) transformation"
off the mass shell as well as to treat the Landau
gauge (n=0) unifiedly with nonzero n gauges.

As stated in Sec. I, the total state vector space
denoted as 'U of a gauge theory consists of many
unphysical particles as well as physical ones, and

the "trace" operation in the calculation of the
partition function Z(p) should be performed only
over the states in the subspace Xphy consisting
solely of physical particles (e.g. , the transverse
modes of gauge fields and other matter states in
the case of unbroken theory):

Z(P)= Q (n~~Pe ~"IP)q '8„=Tr(-Pe 8"),
n, 8

(2.3)

where I' is the projection operator onto the sub-
space X»„, H is the (total) Hamiltonian derived

. from the Lagrangian (2.1), and the metric matrix
q is defined by

n g= (nI &p, Zn 8n 'gy=&, . (2.4)
8

In (2.3), the summations are performed over all
independent states ~n) and ~p) in'U.

Equation (2.3), as it stands, is difficult to eval-
uate because of the presence of the projection
operator I'. However, the canonical operator
formalism of non-Abelian gauge theories of Ref.
10 enables us to rewrite the quantity (2.3) in
another simple form which permits an easy per-
turbation calculation. For this purpose, we need
two conserved charges of the system (2.1); BRS
charge Qe and FP ghost charge Q,. Qe is the
generator of the BRS transformation:

[if',A„]=D„c, [iQ,B]=0, [ig, y]=ig(T c)cp,

(i@+,c}= -—'g(c xc), (if', c}=iB, (2. 5)
g= g, + gGF+ gFP,

I P Vg = —4EPV E" +2
go~= —8"B A~+ ~nB'B,
gFp=-ie"c D„c,

(2.la)

(2.1b)

(2.1c)

(2.ld)

where q is the generic notation for the matter
fields and the T''s are the generators of the group
G in the representation to which y belongs. The
transformation generated by Q, is a scale trans-
formation of FP ghosts:

where

+/ V ~/+V ~ V+P+g+PXA V P (2 2)
D c = (d +gA& x)c.
,«„ in (2.1b) is the gauge-invariant Lagrangian

density of matter fields, Sop (2.1c) is a. covariant
gauge-fixing term with Lagrange multiplier field
B(x) included, "and Z „p is the corresponding
Faddeev-Popov (FP) ghost term. Our gauge-fixing
term (2.lc) is equivalent to the more familiar

[q„c]= —ic, [Q„c]= ic,
[e.,A„]= [a„B]= [~., ~]= o,

and its explicit form is given by

(2.6)

Q, =i d'x[c (D,c) —a,c c]

d'x(c n —+w c),C C (2.7)

where w, (=ia,c) and m-, (= iD,c) are c-anonical



21 OPERATOR FORMALISM OF STATISTICAL MECHANICS OF. . .

momenta conjugate to c and c, respectively. The
commutation relation between these two charges
is given by

I.Q. , Q.]=- Q. . (2.8)

Note that the FP ghost charge Q„although Hermi-
tian (Q, = Q, ), has pure-imaginary eigenvalues

for the state (n& with FP ghost number n. (We
assign the FP ghost number +1 and -1 for ghost
c and antighost c, respectively. ) That is, FP-
ghost-number operator N» is given by N»=iQ, .
This unfamiliar feature is caused by the fact that
the transformation generated by Q, is a scale
transformation and not a phase transformation"
of FP ghosts.

Before proceeding, we must quote another im-
portant formula which we need soon below and
it becomes the key equation. Let P' be the projec-
tion operator onto the subspace of states containing
more than one unphysical particle. Then, the
following completeness relation clearly holds in
the total state vector space U:

E

1 =I'+P'. (2.10)

The nontrivial statement is that the projection
operator I" is written in the following particular
form in terms of the BRS charge Q~ and some
suitable operator R with FP ghost number -1:

P' =(Q„R). (2.11)

This was proved in perturbation theory by con-
structing I" and R explicitly. ""There is also
a general argument that proves the relation (2.10)
beyond perturbation theory (as long as the physical
content of the theory does not depend on the gauge-
fixing condition" ' ").

Now we are ready to rewrite Eq. (2.3). First,
notice that in (2.3) we can insert e '~~ between
I' and e " without causing any changes:

Z(P)=Tr(Pe "o~e s"). (2.12)

Tr(fQe, R)e 'o~e ")
= Tr(Re "o~e "Qe)+Tr(RQee "o~e ")
=Tr(R(e '~~, QI)e ")=0, (2.14)

This holds because all the states in the subspace
phyg onto which P projects have vanishing FP
ghost number iQ, =0. Then, by using P=l (Qe,R)—
owing to (2.10) and (2.11), Eq. (2.12) becomes

Z(P) = Tr(e 'o~e ")—Tr((Qe, R)e "oce ").
(2.13)

The second term of (2.13) can be shown to vanish:

where use has been made of the cyclic invariance
of the trace [Tr(AB)=Tr(BA)] and the (anti) com-
mutation relations

lQ. , If]=0,
fe '",Q,)= O.

[Equation (2.16) follows from (2.8).] Thus, we
finally obtain a very simple formula".

Z (p) = Tr(e o'e ")= Tre " oc . (2.17)

[Q„6)=(Q„e)=o, (2.19)

the expectation value of the physical observable
defined by

(8& -=Tr(Pe "6)/Tr(Pe ") (2.20)

coincides with that given by our "pseudo-grand-
canonical" ensemble

(6& = Tr(e " "o~8)/Tr(e ~e 'o~). (2.21)

III. DIAGRAMMATIC EXPANSION OF THE
PARTITION FUNCTION

In this section we derive the diagrammatic ex-
pansion rule for Z(p) [Eq. (2.17)] in the operator
formalism following the usual argument of ordi-
nary (nongauge) theory. " Although the discussions
of the previous section are based on the Heisen-
berg picture, we turn to the Schrodinger and inter-
action pictures in this section.

This is the desired result (1.4).
This Eq. (2.17) differs from Eq. (2.3) only in

the point that the projection operator I' is replaced
by e '~, but this is a great difference for practi-
cal calculations. The projection operator P has
a very complicated nonlocal form which is gen-
erally difficult to write down explicitly, while
the FP-ghost-charge operator Q, has a very sim-
ple form (2.7). As was already noted in the Intro-
duction, Eq. (2.17) can be regarded as a partition
function of grand-canonical ensemble with pure-
imaginary chemical potential p.» =in/P for FP
ghosts. (Recall that the FP-ghost-number oper
ator' N» is not Q, but iQ, .) So the usual method of
diagrammatic expansion is applicable to the eval-
uation of it. This will be discussed in the next
section.

It is clear from the above derivation of (2.17)
that the replacement P- e "~ is allowed always
in the trace calculation of any operator A com-
mutative with Qe; i.e.,

Tr(PA) = Tr(e '~~A) when fQs, A]=0. (2.18)

Thus, since any physical observable 6 should be
gauge-invariant and has vanishing FP ghost num-
ber, '" i.e.,
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First, we decompose the total Hamiltonian H
into the unperturbed and the interaction parts

II=&o+ HI

H = (Id%( —l)p ')r- —$9 c'S c+''')
0 g c c f i

(3.1a)

(3.1b)

H, =g d'x[)p, (Apxc) —ia, c (A,. xc)+ ~ ~ ~ ],
(3.1c)

where the repeated index i means the summation
over the space indices 1, 2, and 3, and the dots
( ) represent terms not containing FP ghosts.
(We are mainly interested in the "behavior" of
FP ghosts and often make the same abbreviations
in what follows. ) In (3.1), operators are those in
the Schr5dinger picture and their Fourier expan-
sions are given by

c(x) = [, ]„,[c(k)e' "'"+c~(k)e '"'"]
(~ =- Ikl),

3

C(X) =
[ p pi p [C(k)8 + C (k)8 ] e

fc(k), c'(k')] = i5'(k -k'),

( (k), '(k)] =f-(k), -'(k')]=O.
(3.3)

Now we rewrite (2.15) as

Z(P) = Tr(e 8
p "opeaepe BH)

and apply Dyson's formula to et' o e 8",

888pe-SH % ( 1)8 ()8
n O + 0 ~e)0

x T, [H,(~,) . H, (~„)]

8
-=T,(exp( —

J dvriv(v))),
0

(3.4)

where the creation and annihilation operators
c (k), c (k), c(k), and c(k) satisfy the anticommu-
tation relations

3

~, (x) =
[ 2,2 ],„[c(k)e'" "- c'(k)e '"'"],

3 '"'"1,

(3.2) where T, is the v-ordering operator" and H, (7)
is defined by

H~(v) =8'HpH, 8 '"p. (3.5)

Then we obtain the perturbation formula for Z(p):

~8

X (d)IX, (e) = Tr/e
" e T, exp — dv B (v) Tr(e " "e

)
~e)p

T exp — dvHI 7 (3.6)

where Z, (P) is the partition function of the free
theory

Zp(P) = Tre 8"o 'oc (3.7)

and the thermodynamic average in the unperturbed
system ( ), is defined by

( ~ ~ ~ ), = Tr(e "p 'op ~ ~ ~ )/Zp. (3.8)

Now, the Wick-Bloch-De Dominicis theorem"
is applicable to the thermodynamic average of the
T, product (T, ),. (This is obvious if we re-
member that the present perturbation expansion
is identical to the usual one for the grand-canoni-
cal ensemble having FP-ghost chemical potential
y, F p=i)) jP.) We obtain from (3.6) the diagrammatic
expansion for Z(p) with free propagators D,
given by

g
A

D ep(xy X2) lg —T2) = —l(T p (f)~(X) p T) )(t)g(X2p T2)') p e

(3 9)

where (t) denotes the generic fields in the inter-

action picture with the "T-development" operator
Hp:

(I);(x, T) -=8"p'(I), (x)e "()',

g;=A„, c, c, or y.
(3.1o)

It is well known in nongauge theories" that the
temperature Green's function D (x, -x„v,—~,)
for a particle with chemical potential p. satisfies
the following boundary condition if we do not in-
clude -pN (N is the number operator for that
particle) to the 7-development operator H, :

D (x, —x„~,—T,)~.. .=+8 "D (x, —x„r,—v, )~, ()

(3.11)

where the signs + and —correspond to bosons and
fermions, respectively. Therefore in the present
case, since we are discussing a canonical ensem-
ble with vanishing chemical potentials except for
the FP ghosts, the propagators (3.9) of bosons
and matter fermions commutative with Q, satisfy
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periodic and antiperiodic boundary conditions in
the interval 0-~,+P, respectively. On the other
hand, the FP ghost fields, for which the "imaginary
chemical potential" term p»-N»= (im-/P)(iQ, )
is present, have a Periodic propagator in spite
of their Fermi statistics because of the additional
factor e "»=e'"=-1 in (3.11). Indeed, recapitu-
lating the derivation of (3.11), we can see this
explicitly. The FP ghost propagator D,—,, defined

D;, (x, —x„v, —v, ) = —i(T,c(x„~,)c(x„v,)) o

=+ i(r, c(x„v,)c(x„r,))„
(3.12)

according to Fermi statistics of FP ghosts, "
where

d3k
c(x v) = ~' [c(k)e "'+'"'"+ct(k)e~' '"'"],

J [(2o)o2(uy»

c(x 7)= [c(k)e "'"'"+c (k)e ' '"'"]
[(2o )o2~]j»

satisfies

Doo (xi - x2, &i —&.) l .,-o =+ i(c(x. ~ 7.)c(x, , o)).
= iTr[e "o '~ (x„v, )c(x„0)]/Z,
=iTr[e "o "face "o' ooc(x„0)e "o cc(x„T, )]/Z,
= —iTr[e 8"o "ooc(x„p)c(x„v,}]/Z,

=Doc (xx x2~ x o)~ x=s,

where use has been made of the cyclic invariance of the trace and the relation

e "o" ot(x„0)e "o 'oo=-d(x„P).
The minus sign on the rhs of (3.15) is due to the commutation relation (2.6).

The explicit form of D„—can also easily be calculated with the help of the following formulas:

(3.13)

(3.14)

.(3.15)

(c(k)c~(k'))o= -(c(k)c~(k'))o = „5'(k —k'),

(c~(k)c(k'))o=-(c~(k)c(k'))o =—,5'(k -k').
Here, for example, the first of Eqs. (3.16) is derived as follows:

(c(k)c (k')), = Tr[e "o "ooc(k)c~(k')]/Zo

= Tr[e ~ "o "ooes "o"ooc~(k')e "o 'oo c(k)]/Z,
= —e~ Tr[e "o 'ooct(k')c(k)]/Z,

=-eB 'Tr(e s"o 'oo[-c(k)c (k')+i5'(k-k')]]/Zo

=e" [(c(k)c~(k')). —i5'(k -k')l,
where we have used the anticommutation relation (3.3) and the relation

o go+ 7r Q —t (k)
- B H o-% Q e 8 ~c t (k )

Thus, we obtain from (3.12)-(3.14}and (3.16)

(3.16)

(3.17)

D, („- „- ~ 7,) = — . . .exp[ik (x, -x,)+i~„(~,—&.)], (3.18)

where

&u„=- 2on/P (n = 0, + 1, a 2, . . . ) . (3.19)

Note that the momentum-space representation of
D„is of Bose form, 1-/[k.'+ (2~n/p)'], as claimed

by Bernard. ' This result is also easily understood
if we recall that the momentum-space representa-
tion of the (free) temperature Green's function in
nongauge theory for fermions with chemical po-
tential p is, of the form 1 flak'+ [(2n+1)o /P -i p, ]'].
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and that the FP ghosts have effectively the chemi-
cal Potential )(rp=iH/P in our case.

As for the interaction Hamiltonian Hr (T) [Ec(.
(3.1)], it takes the form

H, (~) =g ' d'x[H, (A, xP) —ie,.c (A,. x6)+ ~ ]

=g d'x[ a,c (A, xp) —is,.c (A,.xt)+ ~ ~ ~ ],

where (o„=2nrr/P for bosons and FP ghosts, and
v„= (2n+1)H/P for matter fermions.

For completeness, we comment on an alternative
method for evaluating Z(P) which is slightly dif-
ferent from but leads to the same Feynman rules
as the above method. We can take Ho+( o/p)Q, as
the 7-development operator instead of Ho in the
previous method, and apply Dyson's formula to
e "0'"& e " "~~. The equation corresponding to
(3.6) is given by

where use has been made of the relation

(3.20) Z(p) Tr(e aHQ cQc e(rHQ+ cQc e 8H OQc )
Z.(p) Tr(e CHo OQc )

o, (x, v) =—e'Hoo, (x)e '"o = —B,c(x, v). (3.21)

" d4k i " d'k
~ (2~)' p ~ ~ (2o)' ' (3.22).

(2o)'5'(k, + k, + ~ ~ ) ——.(2m)'5'(k, +k, + )

x 5p +(() + ~ ~ ~
77~ )l 2

Then, in view of (3.18), we see that i(c„(k,.) is
multiplied at the A, -c-c (A,.-c-c} interaction
vertex.

Thus we obtain the following Feynman rules
which exactly agree with those of Bernard'; that
is, to make the following replacement in the usual
zero-temperature rules":

ko~ Z(d„)

8

Tr e "o "QOT, exp — d~8r(r)
0

Tr (e- 5 Ho- cQc)

(3.23)

where, in contrast to (3.5), H,(T) is def. ined by

H, (r) =. exp Tl H, + —Q, Hrexp —r H, + —Q,

(3.24)

We obtain the diagrammatic expansion for
Z(P)/Z, (P) in the same way as in the above. In
this case, the FP ghost propagator D~-, and the
interaction Hamiltonian Hr(T) are given by

I),—, (x, -x„r,—7,) -=-i(T,c(x„r,)c(x„~,)) o

=e ('" "'r 'o)L)' (x -x T —r )cc 1 2~ 1

" d3k
, exp[i k (x, -x,) + i(o„(r, —7,)], (3.25)

H, (v) =g d'x[ (oA.,xc) is, c (A,-xc)+ .]
4

=g d x[ —(s, —im/p) c (A, xc) —iR,c (A, xc)+ ~ ~ ~ ], (3.26)

where

(u„= (O„—H/p = (2n —l)H/p,

(X T) = eT (Ho+ (c /8)Qc)~ (X)e- &(Ho+ (& laQc)
i

for Q,. =A „,c, c, o„o,—,«c .

In (3.25) and (3.26), we have used the following
relations:

c(x, T)=e "'/ "c(x,~}, c(x, ~)=e"" "c(x,r),
H, (x, r) = —(s, i/p) c7((x, r) .- (3.27)

We should note the peculiar property of D,~. Con-
trary to D;, , it satisfies the antijeriodic boundary
condition [note that (o,= (2n-1)I(lp in (3.25)], but
its Fourier transform is the same as that of D„—,
i.e., 1/(k'+ (o„'). Corresponding to this fact, in
the A, -c-c interaction Ha.miltonian (3.26), c
appears in the form (9, -i oP/)c, so that it is not
~„but u„ that is multiplied at this vertex. Thus,
all the Feynman rules in momentum space for
this alternative method are completely the same
as those for the previous one.
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IV. DISCUSSION —GAUGE-FIXING INDEPENDENCE

We have shown in this paper that the physically
meaningful statistical operator is not e " but
Pe ", and that the following remarkable replace-
ment is allowed for this statistical operator in the
evaluations of the partition function and the physi-
cal observable expectation values:

"H '@c (4.1)

In the evaluations of gauge-variant quantities, of
course, such a replacement is no longer possible.
However, sincere are interested only in physical
quantities, we can change our standpoint here and
adoPt the operator e '@& from the beginning as
the statistical operator for an equilibrium system
in gauge theory, completely forgetting about the
complicated operator Pe ". Then, the Green's
functions, which are generally gauge-variant, are
simply defined by

where

e l"Q(x;}e 'l",
g, =Q;(x;, 7,.}=- or

&] EH+(&/ 8 }@&&W I i 7'~ &H+«/~ &0C&e.
(4.3)

gauge-variant Green's functions (4.2). (The parti-
tion function and the expectation value of physical
observables really have such a form. ) Hence it is
sufficient to prove the gauge-fixing independence
of the quantity (4.4). Next, following the usual
proof in the zero-temperature case, we consider
the response of the quantity (4.4) under an infini-
tesimal change of gauge-fixing condition. Take a
gauge-fixing condition with arbitrary gauge-fixing
function F [F= B„A'f.o.r our covariant gauge-
fixing choice (2.1c)] in which the gauge-fixing and
corresponding FP-ghost Lagrangian density is
given by

2 Gr +Zrp BF——+ B'B ——c '[Qll, F], (4.6)

and consider an arbitrary infinitesimal change of
the gauge-fixing function I -E+~, which causes
the following infinitesimal change on the total La-
g rang ian density Z:

bZ = bZ or + err B' bF———c [Q~, bE] . (4.7)

Noting that this ~Z can be written in a particular
form

bZ =JQ~, c ' bF),
by using (2.5) we can easily convince ourselves
that the change of the Hamiltonian H is also given
in a similar form

Although these Green's functions themselves de-
pend on the gauge-fixing condition imposed and

be =fq„bG), (4.9)

(T,ltl, ' 'Q„) o Tr(Pe "T,[g, ' Q„])/Tr(Pe "),
the physical quantities calculated by using these
Green's functions do not depend on the gauge-fixing
choice. This situation on our trick of the replace-
ment (4.1) is very similar to that encountered in
the famous Faddeev-Popov trick of gauge fixing.
In fact, the factorization of infinite volume of the
gauge group in fixing a gauge by the FP trick was
possible only in' the evaluations of gauge-invariant
quantities, although that was sufficient for physical
purposes.

The gauge-fixing-condition independence of the
partition function and other physical quantities de-
fined through our statistical operator e ~& can
be proved explicitly in the same way as in the
usual proof~ ' of gauge-fixing independence in the
zero-temperature field theory. First we notice
that all the physically measureable quantities can
be brought into the form

Tr(e c 0)

with some gauge- (BRS-) invariant 6,
[Q„6]=0,

(4.4)

(4.5)

even though they are actually evaluated by utilizing

with a suitable operator ~G of FP ghost number
-1. For instance, the change of gauge parameter
o, to o + bn is realized by taking bF = bn B/2,
and the change of the parameter y to y + 4y in the
B&-like gauge fixing F= B„A"+yQ (Q =Goldstone
mode of Higgs field). corresponds to bF = by ' Q.
In such cases as these examples in which ~ in-
volves no time derivatives of fields, the Hamilton-
ian change bfI is& nothing but -bL, = —fd3xbZ and
hence b G = —fdax c ' bF. Now, the form (4.9) of~ immediately leads to the desired gauge-fixing
independence of the quantity (4.4). Indeed the
change of (4.4) is confirmed to vanish as follows:

b Tr(e'" 'c 0)

0 '@cg
0

d~ Tr(e )dl(q bG) %le K}ge BH 6}
0

dhTr(e ~bGe~(e ~,q,]e '"6}=0,
(4.10)

where we have used the cyclic invariance of the
trace, Eqs. (2.15), (2.16), (4.5), and (4.9), and the
formula
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BH B (H+b H) BH

B

dye ~~e
0

(4.11)

We notice that Eq. (4.10) in this proof is quite
similar to Eq. (2.14) showing the decoupling of un-
physical particles in the justification of the re-
placement P-e '~' in Sec. II. This fact reflects
two aspects of the gauge invariance implied by the
BRS symmetry, the decoupling of unphysical par-
ticles under a fixed gauge condition on the one
hand, and the gauge-fixing independence of physi-
cal contents on the other.

Finally we add a comment: All the temperature
Green's functions in the present formalism of
statistical gauge theory smoothly continue to the
Euclidian Green s functions in ordinary (zero-
temperature) field theory in the limit P -~. The
reason is as follows: First, although we are
working in an indefinite-metric formulation of
gauge theory in covariant gauges, the spectrum of
the Hamiltonian is boulded belozv and the lowest-
energy eigenvalue Eo is realized by the unique vac-

uum as is known since the Gupta-Bleuler formal-
ism. Hence, only the vacuum state ~0& domin-
ates in the trace evaluation of operators including
e " in the limit P-~; that is, for any operator A
not depending explicitly on P,

lim Tr(e "A) =lim e 0(0 ~A ~0&.
B-+ eo B~so

(4.12)

lim ITr(e " ' 'T,[Q,
' ' P„])/Tr(e " 'o')j

= lim (e 0(0
~

Tg Q&
' ' ' P„]

~

0&/e 0(&0
~

0)j
(4.13)
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Thus, noticing e 'o~
~0&

= (0&, we obtain the desired
result
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