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Influence of the self-energy diagrams on the solutions of a scalar Bethe-Salpeter equation
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The influence of self-energy diagrams on solutions of the Bethe-Salpeter equation is studied by taking a
g$",(x)$,(x)$2(x) interaction in the ladder approximation. The results show that for ground-state solutions
the self-energy diagrams will diminish the eigenvalues and alter the wave functions slightly. However, for
the excited states and antisymmetric solutions, the influence of the self-energy diagrams is considerable, and

completely alters the properties of the solutions. Their wave functions look like a 5 function and their
eigenvalues are independent of the binding energy and the quantum numbers. The results also show .that the
infrared behavior of the self-energy diagrams is very important for the solutions of the equation, and that
the solutions from the ladder approximation are meaningful only in the loosely bound cases, As the binding
becomes tight, the contribution from the self-energy diagrams becomes important.

I. INTRODUCTION

During recent years interest in bound states has
increased. We can use the Bethe-Salpeter (BS)
equation to describe bound states. In general, the
BS equation becomes very complicated in the case
of strong interactions. For example, the scalar
BS equation has the form

& '(p, )& '(p.)x(p) = ~(»p, p')x(p')d'p'

where

(2tr)'5'(p, +p, —P)X(p) = d'x, d'x, e "t"t ' s*s
4

x(0~ r(y, (x,)y,*(x,))~a),

(1.2)

p, =p+ p, p, = —p+ ,'p, S '(p) =t(p-'+m').

P„ is the center-of-mass four-momentum of the
bound state. p„ is the relative four-momentum;
m is the mass of the particles (equal-mass parti-
cles by assumption) which constitute the bound
states. G(P,p,p ') is the integral kernel deter-
mined by four-point irreducible Feynman diagrams
as well as by self-energy diagrams. Up until now
nobody has been able to add up all the diagrams
in order to solve the equation. Thus, some lower-
order diagrams are taken to solve the equation.
The ladder approximation is often used.

In 1954, Wick' and Cutkosky' studied the solu-
tions of a scalar BS equation in the ladder approx-
imation. Their results led to some understanding
of the equation in this approximation. They found

the existence of some abnormal solutions in the
case of strong coupling. The abnormal states do
not correspond to the solutions of the nonrelativis-
tic equation. The nonrelativistic bound states are
in three-dimensional space. The quantum numbers
are the radial quantum number and the orbital
angular momentum. However, relativistic bound
states are in four-dimensional space. The abnor-
mal states correspond to the quantization of four-
dimensional space-time. Many people have stu-
died this problem. ' There are some different
points of view. But up to now no physical states
have been found which correspond to the abnormal
solutions. Blankenbecler and Sugar' have dis-
cussed the importance of satisfying unitarity con-
ditions in the equation. Levine and Wright" have
solved a scalar BS equation. They found that in
the inelastic region the unitarity conditiotn

)+tot +elastic

can be violated if only ladder diagrams are taken
in the integral kernel. However, if the contribu-
tion of self-energy diagrams is included, then the
unitarity condition is satisfied in the inelastic
scattering region. We know that if the unitarity
condition is violated some unphysical effects will
appear.

In this paper we want to discuss what changes
will occur in the bound-state solutions if the self-
energy diagrams are included in the integral ker-
nel.

This paper is divided into six sections. In Sec.
0 we discuss the equation and the method used to
solve the equation. In Sec. III the solutions with-
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FIG. 2. Ladder diagrams with self-energy diagrams.

FIG. 1. Ladder diagram and self-energy diagrams in
the integral kernel.

out considering the contribution of self-energy
diagrams are given and compared with those ob-
tained by using other methods. In Sec. IV the so-
lutions with self-energy diagrams are given. In
Sec. V the wave functions which are obtained are
discussed. Section VI is a brief discussion of the
results obtained by us.

is denoted by m. P, (x) is a neutral scalar field
whose mass is denoted by p.. The kernel G is taken
up to second-order diagrams in the coupling con-
stant in Fig. 1. By using these diagrams (Fig. 1)
the four-point Green's function is denoted in Fig.
2. Each bubble of Fig. 2 is composed of self-en-
ergy diagrams as shown in Fig. 3.

When second-order diagrams are included in
the kernel, the integral kernel in the BS equation
has the form

II. THE EQUATION AND THE METHOD

For the sake of simplicity we still discuss a
scalar BS equation. The interaction is chosen to be

iA,
G(p,p,p ') =~,

-» (p) (p, '+m') (p, '+m') 6'(p —p '),
36, (x) =~y,*(x)y, (x)y, (x), (2 1) (2.2)

where P, (x) is a complex scalar field whose mass where

a(p) =
(m+P )

"(m+P )
2

(p, '+m') [a' —(m+ p)']'~'[o' —(m —p)']'~'
0' ((x —m ) (p~ +o —gE)

(p, '+m') [o' —(m+ p)']'~'[cr' —(m —p)' j'~'

(T (o —m ) (p2 +o —EE)
(2.3)

The expression h(p) of the self-energy diagrams is
obtained by using the method of the spectral func-
tion. Renormalization has been carried out.

Substituting formula (2.2) into Eq. (1.1) and after
Wick rotation, the equation can be written in the
form

(P,'+m') (P,'+m') x(p)

f~+ oo 00

ti(p) =—, dp!
~

dip'I
~( I~(p, )

A(lp'l, p,')

+»(P)y, (p), (2.6)

(P4-P4) + ~p~ + ~p'~ +p
2 Ip l Ip' I

where Q, (a) is the Legendre function of the second
kind and

... , »(p)(p," ')(p, ' ')x(p). y, (P) = L(P)f, (P),
&'(P) = (lpl'+P. '+1 —n')'+ 4A.', (2.'I)

(2.4)

Now both momentum p and p' are in Euclidean
space. In the rest frame of the bound state, by
using the rotational invariance of the equation, we
single out the three-dimensional harmonics cor-
responding to the orbital motion, and discuss the
case in which the orbital quantum numbers are l
and m:

M 2m+ B
9=2m= 2m

where B is the binding energy, M is the rest mass
of the bound state, and q is a parameter which is
related to the binding energy. All the quantities
in Eq. (2.6) are in units of m, and hence are dimen-
sionless.

Equation (2.6) is a two-dimensional integral

x(P) = (-(f (Ipl P.)& (~ 4).1
ipI ' (2.5)

Substituting formula (2.5) into Eq. (2.4), we obtain FIG. 3. Bubble diagrams of Fig. 2.
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~.(~ p, )
2 Q~(~(P.))+ Qi(s(-P,))

I (~)I-(P ') (2.9)

Because h(P) is an even function of the variable

p4, we have

kr(IPI P ) =+ ks(IPI P ) ~ (2.10)

It is obvious that no nonrelativistic approximation
exists for g, (p); hence, it is the anomalous solu-
tion. In the following calculation, g,

' and g, are
solved separately.

. Now we introduce the following new variables:

1+& 1+/
IVI=I „, P.=l

then the regions of the integration of new vari-
ables x andy become (-1,1). The method of
Gaussian quadrature is used to solve the integral
equation. We obtain a set of algebraic equations

(2.12)

where

2(&a&(&i&m)
(1 —x)(1—y )(1 —x )(I —y )

( ),(, (2.13)
~*' (1 —x,)(l-y, )~*"'

equation in Euclidean space and is invariant under
the transformation p4 —-p4. Using this symme-
try, the equation can be rewritten as

q', (p) =»(p) v', (~)
goo goo

+&
J

dP' „die'I&'(P P')tl(P')
0 0

where

The v, 's are the weights of Gaussian integration.
Equation (2.12) is a set of coupled algebraic equa-
tions which is solved numerically on a DJS-8 com-
puter.

III. SOLUTIONS WITHOUT CONSIDERING THE SELF-
ENERGY DIAGRAMS

In order to examine the influence of the self-en-
ergy diagrams on the solutions and check the
method used to solve the equation, we first solve
the equation without considering the self-energy
diagrams, After removing the self-energy term
h(p) from Eq. (2.8), the equation becomes a stan-
dard Fredholm integral equation whose proper-
ties are well known. In the corresponding alge-
braic equation (2.12), after removing the term cor-
responding to the self-energy diagrams, we use
ten Gaussian points and solve the eigenvalues and
eigenfunctions of a 100x 100 determinant. The pa-
rameters q and p, are taken to be

g = 0.0, 0.2, 0.4, 0.6, 0.9, 0.99,

p. = 1,0.1,0.01.
The symmetric and antisymmetric ground states
and several excited states are solved for the S
and P waves. The eigenvalues for p, =1 are shown
in Table I, in which A. ', „are the eigenvalues cor-
responding to the symmetric and antisymmetric
wave functions with the orbital angular momentum
l and quantum number n, respectively, where n is
labeled according to the magnitude of the eigen-
values from 0 on. The A. *'s were obtained by Zur
Linden and Mitter' by expanding the wave function in
the four-dimensional spherical harmonics and
solving the resultant one-dimensional integral

TABLE I. Eigenvalues without considering self-energy diagrams at p = 1.

0.0 0.2 0 0.6 0.9 0.99

002

iso

i 00

3.416

3.419

16.69

45.02

16.30

46.18

85.82

16.33

46.45

73.82

109.4

3.342

3.344

16.40

44.44

16.02

45.57

85.07

16.20

46.09

72.97

108.4

3.114

3.115

15.52

42.67

15.17

43.51

82.81

15.80

44.98

70.35

106.4

2.717

2.718

13.90

39.41

13.68

39.89

79.01

15.12

43.09

65.60

102.3

1.665

1.665

9.79

29.72

9.80

30.43

68.17

13.51

38.60

51.71

91.13

1.010

1.014

7.07

23.04

7.73

25.05

59.16

12.87

36.79

42.21

84.91
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TABLE II. Eigenvalues without considering aelf-
energy diagrams at p = 0.1.

TABLE IV. Eigenvalues considering self-energy
diagrams at p = 1.

0.0 0.2 0 4 0.6 0.9 0.99 0.0 0.2 0 4 0.6 0.9 0.99

o ~ 6.04 5.85

11.65 11.38

~, o 5.95 5.76

11.56 11.19

17.60 17.30

5.93 5.S1

11.55 11.31

hop 2 PP8 1 946

5.28

10.55

5.20

10.10

4.31 1.86 0.63

9.00 3.79 1.4p

4.22 1.82 0.61

8.31 3.64 1.29

16.38 13.59 6.35 2.42

5.45

10.59

4.81 3.08 2.19

9.29 5.69 3.95

. 1.757 1.434 0.608 0.185

A,
p g 2.39 2.39 2.39 2.39 2.39 2.39

X() +g 2.40

~() p 2.39

&g p 2.39

2.40 2.40 2.40 2.40 2.40

2.38 2.37 2.38 2.37

2.39 2.39 2.39 2.39

2.37

2.39

IV. INFLUENCE OF THE SELF-ENERGY DIAGRAMS

A,
() o 2.282 2.262 2.196 2.053 1.484 0.97

equation by using 32 Gaussian points. From Table
I we see that A. * a,grees with A,,', obtained by us up

to the third significant figure. Pagna. menta' solved
the equation (without self-energy diagrams) by
using 12 Gaussian points and obtained A, ,= 3.4182
(for q = 0.0), which agrees with our result also up
to the third significant figure. Schwartz exploited
the variational method to calculate A. o x, &,

'
0, and

A., „and his results agree with ours up to the sec-
ond or third significant figure. The eigenvalues
corresponding to p. =0.1 and 0.01 are given in Ta-
bles II and III, from which we see that for fixed
q, A, decreases as p. decreases; i.e. , the spectrum
of A, becomes denser as p, decreases. In order to
examine the stability of the results obtained, we
have also used eight Gaussian points to solve the
equation and compared the results with the above-
mentioned ones in various references. It turns out
that the eigenvalues tabulated in these tables re-
main unchanged up to the third significant figure
for the ground state, and up to the second or third
significant figure for the excited states.

TABLE III. Eigenvalues without considering self-
energy diagrams at p= 0.01.

When the self-energy diagrams are taken into
consideration, we have to solve Eq. (2.21), which
contains the diagonal terms

In solving the equati. on, ten Gaussian points are
still used. The eigenvalues obtained are given in
Tables IV-VI. From these results we make the
following conclusions:

(1) For p, =l, there exists a ground-state solu-
tion of the symmetric wave function whose eigen-
values are lower than that when the contribution
of the self-energy diagram is neglected (30% lower
for q =0). This difference diminishes as q in-
creases, and for g -1. They approach the same
limit which shows that the contribution of the self-
energy diagrams is small for loosely bound states
(q -1). This can also be seen from Fig. 4. This
result agrees with Blankenbecler and Levine. "

(2) For p, =1, all antisymmetric solutions and
symmetric excited solutions are degenerate and
the eigenvalues are independent of g. In this case
the calculated results show that

1 1
(p)X(p) 2

(p
2 1)(p 2 ])

0.2 0.4 0.6 0.9 0.99
" x(p')d'p'

" (p p')'+u' '-
0.0

oi2 7.29

4.72 4.24

7.14 6.68

4.68 4.53 4.06

1.31 0.22

5.55 1.98 0.39

3.26 1.24 0.23

1.830 1.773 1.598 1.296 0,525 0.111 Hence, the contribution of the self-energy diagrams
is dominant. In this case the eigenvalues are
equal to the inverse of the maximum of h(p). For

9.02

7.62 6.91

8.83 8.28

5.64 2.11

7.08 2.51

0.31

0.56

TABLE V. Eigenvalues considering self-energy
diagrams at p, =0.1.

A, op 4.44 4.35 4.05 3.51 1.92 0.67 0.60.0 0.2 0.4 0.9 0.99

p

7.29 6.77

9.01 8.82

5.74 2.86

7.01 3.23 O.S6

0.3317 0.3317 0-3317 0.3317 0.3317 0.1714

~(),g 0.332 0.332 0.332 0.332 0.332 0.332
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TABLE VI. Eigenvalues considering self-energy
diagrams at p = 0.01.

20

0.0 0.2 0 4 0.6 0.9 0.99
OI
+

Ago 0.1378 0.1378 0.1378 0.1378 0.1378 0.0889

A. p',+, 0.1378 0.1378 0.1378 0.1378 0.1378 0.1378

A p p 0.1378 0 1378 0.1378 0.1378 0.1378 0.1378

~o.i 0 1379 0 1379 0 379 0 379 0 1379 0 1379

ILL, =1, we obtain

g(p) =0.417=X ',
hence

Z = 2.39.

IO

0
0

I I I

0.2 0.4 0.6 08 I.o
It is the same as the calculated results. Since the
terms corresponding to the self-energy diagrams
control the solution of the equation, the discrete
spectrum does not exist and only the continuous
spectrum exists. For the ground state of the anti-
symmetric wave function, its integral kernel K
is small. This kernel causes the larger value
A, p 0 16.33 if self —energy diagrams are ignored.
For the excited states of both symmetric and anti-
symmetric wave functions there are some zero
points in the wave functions which cause the inte-
gral

FIG. 5. E igenvalues without considering self-energy
diagrams at p = 1~

of ~0
~ 1& ~0, 2& ~1 0& ~1 1& ~l 2& 0, && I o 1 l

(Table l). These results show that the integrals
are small in the case of the ground state of the
antisymmetric wave function and the excited
states. Thus, the self-energy term controls the
solution of the equation in these cases.

(3) For p = 0.1 and 0.01 all the eigenvalues of the

for the excited states
& (P -P')'+I '

to be small. This can be seen from the large val-

I

"o,z

l5

I + I

0.0 ) I.O 10

0
0 0.2 0.4 0.6 0.8

FIG. 4. Eigenvalues at p = 1. Ap p is the eigenvalue of
the ground state without considering self-energy dia-
grams. Ap p, X~ p, and g p are eigenvalues considering
self-energy diagrams.

0.2 0.4 0.6 0.8

FIG. 6. Eigenvalues at p, =0.1.

I.O
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V. WAVE FUNCTIONS

0
0 0.P. 0.4 0.6

'9
0.8 1.0

FIG. 7. Eigenvalues at p, =0.0j.. -

ground state corresponding to q & 0.9 are constant,
i.e. , 1(h . Only for loosely bound states (q & 0.99)
can the different eigenvalues be found and the
ground state of the symmetric wave function exist.
These eigenvalues approach the values without
considering self-energy diagrams. The calculated
results show that as p. gets smaller the h(P) values
get larger.

(4) From Tables V and VI we see that as parame-
ter p, gets smaller the corresponding eigenvalues
are also smaller because the h(p) values get lar-
ger as p, decreases.

These results are shown in Figs. 4-7. From
them we can see that the influence of the self-en-
ergy diagrams is considerable.

In Fig. 8 the dot-dash line represents the wave
function g,",corrected by the self-energy diagrams
(p. =1,7i =0). This correction diminishes the eigen-
values from A, o p 3 14 to A. p p 2 01 However, it
can be seen from Fig. 8 that the correction to the
shape of the wave function is small. Moreover,
this correction becomes smaller as g increases.
For q = 0.99 (Fig. 9) Po', with the contribution from
the self-energy diagrams and go, without the self-
energy diagrams are nearly the same. The effect
of the self-energy diagrams on the shape of the
wave functions is much smaller for the ground
state of the symmetric case.

Figure 10 represents the antisymmetric wave
function g, , of the ground state without considering
the effect of the self-energy diagrams /=1, q =0).
The behavior of the wave functions is very smooth.
We cannot find any strange behavior comparing it
with the wave function go+,.

Figure 11 represents the eigenvector y, , (Fig.
10) by the formula (2.13). After the correction by
the self-energy diagrams, X, , changes into a 5-
function-like solution, as shown in the upper right
corner of Fig. 11. The central position of X, , is
just where h(P) takes the maximum. In this case
the self-energy diagrams are dominant in the
equation.

VI. CONCLUSION

As q-1 the eigenvalues A. approach the same
limit in the cases without self-energy diagrams

&o,o
+I
o,o

0.39 1.3% 5.23

2 .52

gC( )P~ /
Zo~z~

Zo.zs

E0.19

0.01 0.07 0.19 0.74 2.52 13.82

FIG. 8. Wave functions Q() o and Qo o at g = 0 and. p, = 1.
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q =0.9

0.74 2.52

0
+ c'

O
+o

XE 8 8348 8/ E.74
80.39

80.19

/0. 07

0.0 I 0.07 0.39 1.34 5.23

FIG. 9. Wave functions Qp p and $'p p at p = 0 ~ 99 and p = 1-

and in those with self-energy diagrams for the
symmetric ground state. The self-energy dia-
grams are not important for the loosely bound
state and the ladder approximation is better in this
ca,se.

The influence of the self-energy diagrams on the
shape of the wave function of the symmetric ground
state is small, but the influence on the eigenvalues
of the symmetric ground state is large in a tight-
binding region.

The influence of the self-energy diagrams on the
abnormal states and excited states is very large.
Their eigenvalues are independent of g and the
state's quantum number. The wave function looks

like a 5 function. In configuration space such dis-
tributions cannot correspond to a normal bound
state.

The parameter p, is related to the infrared be-
havior of the self-energy diagrams. As p, decreas-
es, the contribution of the self-energy diagrams
increases. For p, =1 there exists a symmetric
ground state in all g values, but for p, = 0.1 and 0.01
it is only when g & 0.99 that the symmetric ground
state exists.

The equation without self-energy diagrams is a
standard Fredholm integral equation, but the equa-
tion with self-energy diagrams is not. The gen-
eral Bs equation can be written as

P4

l.44

0.02 & O. I I 0.69 %22

I PI

FIG. 10. Wave function gp p at g = 0 and p = 1.
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XO 0

49.37

O
10
X

0.02 Q. I I 0.3l l.44 8.84 49.37

FIG. 11. Wave function yp p and Xp, p at Q
= 0 and p =1-

x(P) =&(P)x(P)+ G(I',P,P')x(P')d'P' (6 &)

The function A(p) denotes the contribution of all
the self-energy diagrams and G.denotes all the
four-point irreducible Feynman diagrams. In this
paper only the simplest case is discussed. In gen-
eral, the equation is very complicated. However,
the results obtained by us show that the balance
between the two terms is needed in order to obtain
a physical solution. In the configuration space
the term of -the self-energy diagrams represents

the nonlocal interaction. In the case of the strong
interaction the nonlocal interaction is important.
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