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Surface geometry of a black hole in a magnetic field
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I

The Gaussian curvature of the event horizon of a black hole embedded in a magnetic field is examined. It
is shown that a zone of negative curvature develops if the magnetic field parameter exceeds a certain limit.

This particular limit depends on the radius of the black hole. Further, as the magnetic field increases, the

polar circumference increases while the equatorial circumference decreases. Possible ramifications to black-

hole physics are discussed.

I. INTRODUCTION

There is much interest in studying black holes
under realistic conditions, such as in the presence
of matter or external fields. ' ' Black holes seldom
exist in isolation, and in fact may often be found in
close binary-star systems where they actively in-
teract with their partner by sucking in mass flow-
ing out of the Roche lobe. This leads to the for-
mation of an accretion disk. The motion of the
hot pla. sma. a,round the black hole may lead to the
formation of a dynamo which in turn generates
powerful electromagnetic fields near the black
hole. The concentration of fields near the black
hole not only affects the hole itself but the dynam-
ics of infalling matter.

One model. representing a Schwarzschild black
hole within a uniform magnetic field has been
found by Ernst. ' This exact solution of the Ein-
stein-Maxwell field equations is axially symmetric
and time independent. Although the solution is not
asymptotically flat, it may represent a close ap-
proximation to physical reality in the near-zone
vicinity of the black hole. Exact solutions for the
Reissner-Nordstrom and the Kerr solution em-
bedded in a magnetic field have also been found,
though they are mathematically very cumbersome
to handle without linearization. "'

We intend to elucidate the effects of an external
magnetic field on the event horizon via an analysis
of the Gaussian curvature for varying values of
the magnetic field parameter in the metric. A

similar analysis for the Kerr-Newman metric has
been performed by Smarr, ' where it has been
shown that the polar zones exhibit negative Gaus-
sian curvature when the angular momentum pa-
rameter a exceeds a certain value. Further, if
any portion of the event horizon posesses negative
values of K, the Gaussian curvature, it cannot be
globally embedded in flat Euclidean three-space

but must be embedded in a pseudo-Euclidean
three-space with the metric ds'= dx'+ dy' —dz'.

II. GAUSSiAN CURVATURE

where

+ X 'r'sin'8'',

g= 1+ 4BO'y' sin'6) (lb)

and Bo is the magnetic field parameter (&,~ 0)."'
The Cartan components of the external magnetic
field are

II„=X 'B~cos0,

&g ——-V'&, (I —2m/r)'" sin8,

(2a)

(2b)

where 8= 0 represents the north pole and 8= p/2
the equator of the black hole. For ~-0, this
solution reduces to Melvin's magnetic geon. '

The event horizon of the black hole is at y'= ro
=2m, where m is the geometric mass (units of
length). It is mathematically described by the
two-dimensional line element

2 2
d~event horizon +0 ~O d~

+ r, 'X, ' sin'8dg',

where X, stands for the evaluation of X at z= z, .
In order to calculate the Gaussian curvature, we
define the following notation:

Z(8) = r,X, ,

G(8) = r,X, ' sin8.

(4a)

(4b)

Then the Gaussian curvature for a line element of

We shall be concerned with the exact solution of
a Schwarzschild black hole within a magnetic field,
which in spherical (r, 8, P, [) coordinates is

d 2'2dg2 ]
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ds2= E'(8)d8'+ G2(8)dy2 (4c)

On the other hand, at the poles 8= 0, m, we ob-
tain for the Gaussian curvature

lsxo

1 d&1 dG,
2EG d8 i EG d8

Upon performing the necessary differentiations
and simplifications, we get for K the following
rather complicated formula:

Ke o,=—,(1+6P2),
0

andfor allvalues ofB„K&0. Infact, asB,—,
K ~ and a cusplike singularity develops in the
surface.

III. GEOMETRICAL PROPERTIES OF THE EVENT
HORIZON

(6)

K=, , [X 0+ 2P'X,(4 cos'8 —sin'8)
O'Xo

—12P' sin'8cos28] . (6)

Here P= mB, is defined as the dimensionless dis-
tortion parameter, analogous to the quantity Smarr
uses in his analysis of the Kerr solution. ' As Bo
-0, for the Schwarzschild black hole Eq. (6) re-
duces to K= 1/2;2, the curvature of a sphere of
radius y'0 ~

As a special case for Eq. (6), notice that the
curvature at the equator reduces to

1 2Ke III 2 2 2 (1 P )
0 0

whereby

K&0 if P(1,
K=O if P=1,
K &0 if P&1.

For values of the magnetic field parameter
greater than 2/r„or for when we have P& 1, a
zone of negative Gaussian curvature develops near
the equatorial plane as shown in Fig. 1.

To get an intuitive idea of what. happens to the
shape of the event horizon, we can compute the
circumferences about the equator and the poles.
The relative sizes of these quantities give a mea-
sure of the prolateness. The equatorial circum-
ference is given by the definite integral

2' 2 II

goXO d = 2Fgp
0 0

Therefore as Bo increases, C, decreases because
of the Xo in the denominator. For the polar cir-
cumference, we have

21r 2r
C2= Ed8= r,k,d8= 2v20(1+ 2P') . (10)

0 0

As Bo increases, the polar circumference in-
creases as Bo'. In the Bp 0 limit, we get the
geometry of a simple sphere, C, = C~.

The surface area of the event horizon is easily
evaluated by taking the double integral

l.5—

Kc0 l-8=22

.6

FIG. 1. Graphic illustration showing the influence of
the external magnetic field on the event horizon. The
region where X& 0 cannot be visualized, since the sur-
face cannot be globally embedded in a Qat Euclidean
three-space.

FIG. 2. Plot of the deviation from spherical sym-
metry. Here the deviation is defined as 6= I,'C&- C,)
/C~ and'is the negative of the analogous quantity defined
by Smarr. As the magnetic field parameter Bp in-
creases, the event horizon becomes more prolate.
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refer to the 5 derived by Smarr for a Kerr-New-
man black hole).

IV. UNITS

FIG. 3. Behavior of the polar circumference (P)
and equatorial circumference (E) of the event horizon
as a function of p.

Jl' f JCEGdddd=2',
0 0

(12)

where X is the Euler characteristic for the com-
pact surface. Calculation yields X= 2, the value
for the surface to be homeomorphic to a sphere.

The magnetic field (as well as an electric field,
since the two fields are interchangeable through a
duality transformation} has the effect of elongating
the event horizon into a cigar-shaped object, the
long axis being parallel with the magnetic field
lines. The magnetic field lines remain perpendic-
ular to all points on the event horizon as seen in
Eq. (2b), analogous to electric lines of force about
a conductor.

By defining the quantity

' ——kp'(3+ P),
e

which is the negative of the analogous parameter
defined by Smarr, ' we can get a picture of the de-
parture of the event horizon from spherical sym-
metry by plotting 5 as a function of the distortion
parameter P, shown in Fig. 2. Figure 3 illus-.
trates the effect that the magnetic field has on the
polar and equatorial circumferences. Note that
C~ increases without bound. Our model allows any
value of Bp and still possesses a nonsingular event
horizon, whereas for a realistic Kerr-Newman
black hole a&m so that 5 remains finite (where we

+2' f+w

A=,
,

l EG d& d@ =4gyo',
&0 ~0

indicating that this quantity remains invariant. It
can also be shown that the surface is topologically
a sphere by applying the Gauss-Bonnet theorem.
This requires evaluating the double integral"

Up to now our study of the effects of the external
magnetic field on the event horizon of a static black
hole has been rather abstract; all results are spec-
ified in terms of the parameters m, the "geomet-
ric mass" of the hole, and Bp, the magnetic field
strength. Further, the introduction of the distor-
tion parameter P appears to be natural. However,
how are these parameters, specifically B„related
to known quantities (such as Gaussian units) so that
one can see how realistic fields affect the hole'P

yo and hence yn have units of length and can be
expressed in kilometers. For a black hole that is
as massive as the sun, x0= 2'= 3 km. The units
of Bo are inverse length, such as km '. Rather
than considering- Bp it is more natural to consider
P for physical situations. According to Wald'

(14)

where M is the mass of the black hole in solar
masses.

Therefore it can be seen from Eq. (14) that only
for very massive black holes and very strong mag-
netic fields is there an appreciable distortion.
Such conditions where Bp = 10 Gauss 2nd M = 10
solar masses may exist at the center of some
galaxies and perhaps even quasars.

Furthermore, notice that as yp decreases, the
stronger the field needed to bring about sufficient
distortion to make E(0 along the equatorial zone.
Thus one sees the "soap bubble" analogy of the
black hole here in that large black holes are easily
distorted, whereas very strong fields are required
to influence the small holes. One would expect
this to occur on an intuitive level if one adapts the
concept of surface tension for a black hole. " The
larger the soap bubble (black hole), the more
easily it is swayed by the wind (external field).

Since our model becomes less realistic for large
B„ it is impossible to conclude that external fields
may never destroy black holes from our analysis.
More realistic time-dependent solutions must be
discovered and investigated. Further, it has been
speculated quite often in the literature that very
large black holes may reside in the centers of
some galaxies. These entities would be expected
to have masses on the order of several billion
solar masses, or an appreciable fraction of the
galactic mass. It has been conjectured that such
holes may be surrounded by fairly powerful mag-
netic fields. " Assuming that infalling matter has
little effect, one can envision the galactic magnetic
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field distorting this hole appreciably —a distortion
which could affect the distribution of matter falling
into the hole. Further observations concerning
the magnitude of the galactic fields are necessary
-to determine if this can indeed be possible.

V. CONCLUSION

Our analysis indicates that black holes are in-
fluenced by their environment. They tend to re-
main spherical if they are small, though they may
in general be fairly complex in shape. For spin-
ning black holes in a magnetic field, ' there are two
forces acting to distort the event horizon —the
rotation and the external field. According to
Smarr's' work, the rotation causes C, &C~, where-
as our analysis shows that for magnetic distortion
C~& t",. Exactly what happens when the two effects
combine remains unanswered. Further, the in-
fluence of external masses via their gravitational
fields also has an effect on the geometry of the
event horizon. "

From Eq. (11), it is evident that the surface
area of the event horizon remains constant for any
value of &0. This can be understood by invoking
Hawking's theorem, which states that the total
surface area of black holes can never decrease
(in the classical domain). " This must be con-

sidered as the most serious flaw in our model,
since for a time-dependent situation the surface
area of a black hole in an external field will in-
crease with time because the black hole absorbs
the energy density of the field. One can envision
a black hole moving into a region of space with a
large magnetic field: The hole is initially spheri-
cal, though once it enters the magnetic field it
becomes slightly distorted (the magnitude of dis-
tortion dependent on Bo). The black hole desires
to remain in its "lowest energy" state, and does
so by drawing in the field in its neighborhood —in
the process, the hole becomes larger.

In our model the external field is capable of dis-
torting the geometry from spherical symmetry,
though the hole does not absorb the field around it;
rather, a state of equilibrium occurs.

We have attempted to shed some light on the
question of how external fields interact with black
holes and have used the simplest model available.
Although it is our desire to be as realistic as pos-
sible in our research, the addition of physical pa-
rameters tends to make the equations not only
more difficult to handle, but may disguise inter-
esting phenomena. Perhaps by obtaining a better
understanding of existing metrics, we may ulti-
mately be able to find those solutions which more
adequately portray reality.
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