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We discuss two related issues pertaining to the foundations of relativistic quantum field theories. First: the
question of observables; more particularly the question of what constraints, if any, are imposed upon the set
of observables by the requirement of relativistic microcausality. It turns out that this requirement is in fact
considerably less restrictive than has been supposed in the past. Second: the issue of physical states. We find
that, in contrast to the nonrelativistic case, it is not possible to define the quantum state of a system in
relativistic quantum field theories, because in this latter case no consistent description of how the state
changes as the result of a measurement can be developed.

I. INTRODUCTION

Any nonrelativistic quantum- mechanical system
may at any time in its history be associated with
well-defined values of some complete commuting
subset of the observables of that system, and these
values may always be verified directly by experi-
ment.

If, for example, some isolated physical system is
initially observed to have a total momentums, and if
the system is not subsequently disturbed in any way,
then the theory will describe this system as being
in a state of momentum P even at times when the
system is no longer being directly observed; fur-
thermore, the theory will predict that any future
measurement of the momentum will with certainty
confirm that this description is correct.

Our purpose in the present paper is to consider
to what extent these circumstances may persist
in the case of relativistic quantum field theories,
and this will take its natural form from two basic
questions: First, what kinds of quantities may in
principle be measured in these theories~ Second,
what are the states, or rather, can these theories
support the idea of a physical state at all&

Vive will begin in Sec. II by looking more care-
fully at nonrelativistic quantum mechanics with an
eye towards the transition to the relativistic case.
The nonrelativistic equations of motion and the
collapse postulate, which dictates how the state
of the system changes as the result of a measure-
ment, will together define a unique state history
for any system subject to given initial conditions.
Section II will briefly review the formal properties
of the nonrelativistic state, how the state may be
checked by appropriate experiments, and how the
probabilities of the results of experiments are

calculated in the nonrelativistic case; and in con-
nection with this last point it will be noted that the
capacity of the theory to predict probabilities is to
some extent independent of its capacity to def ine
a state for a given system. Indeed tlie main result
of the present work is that although relativistic
field theories have the former capacity, they lack
the latter one.

Section III will be concerned with the problem of
relativistic quantum- mechanical observables and
in particular with one central question, namely,
what conditions are imposed upon the set of ob-
servables by the requirement of relativistic micro-
causality~ This requirement has been thought to
give rise to new uncertainty relations, without
precedent in the nonrelativistic theory, which re-
strict the set of observables to purely local ones.
However, Sec. III will show explicitly how, through
purely local interactions between the measuring
apparatus and the physical system, these uncer-
tainty relations may be violated and various non-
local properties of certain systems directly mea-
sured.

In Sec. IV we will study a simple no nlo cal system for
which a complete commuting subset of measurable
observables exists, and consider whether, as in the
nonrelativistic case, the values of these observables
may be incorporated into a covariantdefinition of the
state of this system. Section IVwill show that in fact
no such state can be constructed, because no
relativistically satisfactory version of the collapse
postulate can be found. Those state histories
which may be checked by experiment will not
transform correctly between different frames and,
conversely, those which are defined so as to trans-
form correctly will lack the capacity to be verified
by experiments. Vfe give our conclusion in Sec. V.

21 3316 Qc 1980 The American Physical Society



21 STATES AND OBSERVABLES IN RELATIVISTIC QUANTUM. . .

II. THE NONRELATIVISTIC THEORY

I.et us first introduce some notation. %e will
denote both the observables of a physical system
and the associated operators on the Hilbert space
of states by capital letters A, B,C, . . . ; a, , b, , c, , . . .
will denote the possible results of experiments
which measure those observables (a, , b, , c„.. .
are, then, the eigenvalues of A, B, C, . . . ); and(» i i $~T2 iT3 ~ jg') i ~'''& 1& 2) ss'
will denote the probability that, if the results of
measurements of A, B, C, . . . carried out at times
T„T„T,, . . . , respectively, are given to be
a, b, c, . . . , respectively, then the results of mea-
surements of G, H, I, . . . carried out at times
t„t2, t3, . . . will be g, A', i, . . . . For the moment
it will be convenient to allow each of the capital
letters to represent some complete set of com-
muting observables; the lower-case letters will
then denote the corresponding set of eigenvalues
which will uniquely specify some physical state.

Now consider a simple example. Some physical
system is prepared in a specified state ~a) by
some complete measurement A carried out at
time T&, and is later subjected to some other,
complete measurement 8, the result of which is
~b), at time T2. We can make a list of some of the
properties of the nonrelativistic Schrodinger
picture as follows (some of these will require
further explanation below).

(i) The theory contains a covariant prescription
for calculating P(a, 5; T„T, /c, d, e, . . . ; t„ t2, fa, . . .)
where t&, t2, t3, . . . & T, and where P must satisfy
the usual requirements of a probability distribution.

Also, it will be possible everywhere in the future
of T, to def ine a unique succession of states of the
system, that is, to define a state history +(a, b;
T&, T2/c;f) such that:

(ii) 4(f) evolves in t in accordance with causal,
eovariant dynamical equations of motion at all
times except when the system is being measured.

(iii) @ transforms in accordance with the re-
quirement that the equations of motion be co-
variant.

(iv) If C~4(f)) =c~y(f)) then P(a, b; T„T/c;2f)
= l. (Note that the operator C which satisfies this
relation will depend both on the time and the frame
of reference. )

By "covariance" here we mean of course
Galilean covariance, and similarly when we speak
of transformations between different frames we
are referring to Galilean transformations.

Satisfying property (i), then, is certainly the
primary business of any physical theory. The
other three properties have a less directly ex-
perimental character. Their role in the theory is
to paint a picture around the experimental results, .

out of which the results can be seen to emerge in
a clear and natural way. This picture, the state,
is characterized by certain transformation proper-
ties and conservation laws and dynamical equa-
tions of motion.

Property (iv) guarantees that (ii) and (iii) can be
directly verified by experiment. (iv) asserts that
if we do go and look at the system, or more
specifically if we look at it in the way prescribed
by property (iv)„ i.e. , by measuring the complete
set of commuting observables C of which 4 (f) is a
simultaneous eigenstate, then we will with cer-
tainty observe that ii is what (ii) and (iii) predict
it to be. Moreover, the measurement prescribed
in (iv) will not disturb the history of the state in

any way; it will project the state exactly onto it-
self, and therefore it is referred to as a non-
demolition experiment. Finally, we can obviously
do as many nondemolition experiments as we like
within a given interval and check to any desired
degree of accuracy the complete history of the
system. indeed a limit can be approached in which
the state is checked at every instant by a non-
demolition experiment, and this we will call a
monitoring of the state.

So in nonrelativistie quantum mechanics one can
write down a complete history of the physical sys-
tem, even for times when the system was not
being observed, which transforms and evolves in
the appropriate ways, and furthermore this history
can be fully verified by experiment. %e say of
such a theory that it can support the idea of a
physical state.

All of the probability distributions which are
calculable in the theory can be built up out of the
fundamental probability P(a; T/b; f), which is in
turn derived from quantum mechanics via the
relation

P(a; Tj&; f) =
~
@(a; Tjb; f)

~

2

where +(f) satisfies (ii) and (iii) (the equation of
motion here being the Schrodinger equation) and
the boundary condition

A@(a; T/5; f = T) =a4 (a; T/5; f = T) .
More elaborate predictions may now be built up
purely on the basis of probability theory. Jf, for
example, a measurement of C is carried out after
a measurement of A and before a measurement of
B then

P(a, 5; T&, T2 /c; f)

P(a; T, /c; t)P(c T, = t/b; f, = T,)
P(a; Tq/b; t2 = T2)

%hat will be of interest for us in the above relation
is that one need not be able to write down
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@(a,5; T&, T,/c t) in order to calculate P(a, 5;
T&, T2/c; t) E. ach of the factors on the right-hand
side of (3) is a fundamental probability, and these
are calculated not from the full state history, but,
through (I), from the two-point propagators
4 (a; T,/c; t), 4 (c; t/b; T2), and 4 (a; T,/b; T,). The
generalization to still more elaborate circum-
stances (i.e. , to still larger numbers of suc-
cessive measurements) is now straightforward:
Given a complete set of two-point propagators,
and nothing more, one can calculate a complete
set of probabilities.

Finally, all that needs to be said about incom-
plete measurements here is tha. t introducing them
does not charige the foregoing or subsequent dis-
cussion in any important way. %hen incomplete'
measurements are brought into the picture then
+, as we have used it above, must be taken to
represent an entire subspace of the Hilbert space
of states, rather than a single state, but with this
understood, the various arguments and conclusions
retain essentially the same form insofar as they
will be relevant to our concerns here.

III. MONITORING EXPERIMENTS

In Sec. II we have reviewed some of the proper-
ties of states and measurements in non-relativistic
quantum mechanics, , and now we are prepared to
begin the real work of the present paper, which is
to examine whether, and in what forms, these
properties are also characteristic of relativistic
quantum field theories.

This section will be concerned with the subject
of monitoring experiments; that is, with property
(iv), which ~cade "If 4'(t) is an eigenstate of C(t)
with eigenvalue c, then P(a, b; T&, T2/c;t)=l. " We
do not know yet how big the set of relativistic
observables is, and this is clearly going to give
rise to problems with (iv), which simply has no
meaning unless C is an observable. In the non-
relativistic case any physically realizable P(t)
will, at any time t, be a simultaneous eigenfunc-
tion of some complete commuting subset of the ob-
servables, and so in that case (iv) does indeed
guarantee that any state history will be moni-
torable. The relativistic circumstances are, how-
ever, a good deal more involved. We should like
to know then what, in general, the relativistic
observables are and, in particular, whether there
are enough of them to do the experiments referred
to in (iv).

It has been noticed before that a new and serious
problem may arise here in the relativistic case.
The source of the trouble is the requirement of
relativistic causality, and the trouble is that this
requirement certainly imposes new limitations on SPAT& h/c. (6)

the kinds of measurement procedures that can be
carried out.

Imagine, for example, that it is possible to
design a nondemolition experiment for an arbitrary
single-particle momentum eigenstate. That is, we
have some experimental apparatus which interacts
with the particle only for an arbitrarily short time
and in such a way that, after the interaction has
ended, the state of the particle is entirely un-
disturbed and the apparatus is with certainty in a
state f (P), where P is the initial (and final) mo-
mentum of the particle, such that

f (P') &f (P) if P'&P. (4)
Now consider another one-particle system which
is initially localized to within some finite region
of space-time A (where A is taken to be large
enough to permit the number of particles to be
well defined, i.e. , its spatial dimensions are of
the order of the Compton wavelength of the par-
ticle). Since such a localized state is a linear
superpos ition of momentum eigens tates, and s inc e
the quantum-mechanical equations of motion are
themselves linear, the device which we have
imagined above is obviously capable of measuring
the momentum of such a particle. Suppose, then,
that a,t some well-defined time t& we carry out
such a measurement. Whatever the result is,
this measurement will instantaneously spread the
probability density uniformly all over space, so
that if another localization measurement is carried
out at time t&+e, this will have a nonzero prob-
ability of localizing the particle in a region which
is entirely spacelike separated from A. Such a
measurement, then, can move a particle around
at superluminal velocities, and such a particle, or
certainly an ensemble of such particles, can carry
information between spacelike- separated points,
and this is a direct violation of the relativistic
principle of causality. So this sort of nondemoli-
tion experiment is certainly impossible.

In the past it has been thought that this repre-
sents a restriction on the set of relativistic quan-
tum-mechanical observables. ~ That is, the im-
possibility of carrying out these particular ex-
periments has been taken to mean that the mo-
mentum of a system at some mell-defined instant
cannot be assigned any experimental meaning at
all, and more generally that the measurement of
any state of spatial extension hX must require a
time interval at least as large as AT to be carried
out, where

hT& hX/c,

or, combining (5) with the usual x-P uncertainty
relation ~AP)@, we have
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If (6) is a new relativistic uncertainty relation,
that is, if it represents a real restriction on. the
set of relativistic observables, then it must be
true of al/ possible experimental procedures. Bat
the argument leading to (6) assumes that the
single procedure in question is capable of veri-
fying a state ip) for any value of p. If, say, we
were to design a procedure which verifies the
state ip = n) but which, when applied to another
momentum eigenstate iPI o), may alter or
destroy it (it may, for example, create new par-
ticles), then the argument leading to (6) will
collapse. Indeed the possibility of carrying out
such an experiment is entirely consistent with the
relativistic causality principle as long as all of the
interactions between the measuring devices and
the system are purely local ones, i.e. , as long as
we restrict ourselves purely to coincidence inter-
actions, or interactions with local densities, or
interactions involving internal variables of the
system which commute with the position. The
work of the remainder of this section will be to
construct a few explicit examples of such a pro-
cedure.

The trick is to design a procedure which com-
bines several local interactions in such a way as
to end up measuring some nonlocal property of
the system. ' To begin with, imagine a continuous
array of measuring devices designed to collective-
ly measure the position of a particle in the follow-
ing way: Each device interacts locally with the
particle through a term in the Hamiltonian of the
form

h "'=g(t)q "'x6 (x —x "'),
where x is the position of the particle, x'~' is the
position of the ith measuring device, q"' is some
internal variable associated with that device, and

g(t) is a coupling which is nonzero only during a
short interval tf &t (t2, when the device is
switched on. The interaction of the particle with
the full array is then

di h"'. (8)

So, in the Heisenberg picture,

where m"' is the momentum conjugate to q"', and
rr= fdi rr «' Thus, i.f we take a very short interval
(t, =tp) during which we may approximate x and q"'
by constants, then we have

rr(t & t») — (t »rtp)&

I"dtg(t)if
and this is how we use our device to measure the

(10)

—-=J)di = — di "' = g(t)x-
Bt J Bt Bq"'

position.
Now consider a two-particle system. What we

wouM like to do is to design some combination of
local experimpnts which will collectively measure
some nonlocal variable of the system. Here, in
particular, we will, with. out measuring any local
variables such as x, or x2, measure the nonlocal
variable x f xg.

We will work here with two arrays of devices of
the kind just described, which interact with the
system through the Hamiltonian:

IJf g dg kf +82

,rr»»(t )p«v'(t )—=pO vi,
q»»'(t, )+q«'(t, ) =o yi,

or, integrating over i,
»r» (tp) rrp (tp): 0

q» (tp) + q, (tp) = 0

(13a)

(13b)

(14a)

(14b)

Then we separate the arrays again and allow them
to interact with the particles. When the interaction
is over, the devices will have measured x, -x2;
that is,

rr, (t& t, ) —rr, (t& t, ) (15)

[where we have made use of (14a) to eliminate
rr»(t & t, ) —»r2(t.& t»)]. But they will not have mea-
sured x„x2, or xf +x&. Jn order to measure, say,
x», .we need to know rr»(t & t») —»r»(t& t2i; however,
ii, does not commute with Q, +Q2, that is, rr, is not
well defined for the state, [(13) or (14)] in which
the devices have been prepared initially. So no
measurement of xf. has occurred, i.e. , no informa-
tion about x»(tp) can be discerned from the devices.
Similarly,

[II„Q,+Q,]~o,
(16)

[II» +112, Q» +Q2] 4 0,
so no measurement of x2 or x, +x2 has taken place,
either. So we have succeeded. in designing a sys-
tem of purely local experiments which measures a
nonlocal property of this physical system.

gt is worthwhile to push this particular example
somewhat further along the following lines: Xf X2
and &,+P2 form a complete set of commuting ob-

where
i

h»'»'= g»(t)q» -'x»5(x» —x'»') (j = 1, 2) .
For the moment we will set g, (t) =gp(t). Now

imagine that at some time tp & t» [ t» is the time at
which g, (t) begins to be nonzero] we bring the two
devices together and prepare them in an initial
state which has the properties
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q4(to) +q2(to) =0,
m2 (to) + m4(to) = 0,

(to) q4(to'): 0
(19)

So, if we initially prepare our system in a state
I
n) with (X, -X,) I n) = l

I
n) and (P2+P2) I n) = p In),

then (17) [withg&(t)=g2(t)], (18), and (19) define
a procedure whereby

I n) may be verified. Fur-
thermore, the interaction by means of which this
measurement occurs may in principle be confined
to a single arbitrarily short time interval4; that
is, the procedure can serve as a nondemolition
experiment for this state (i.e. , an experiment that
does not disturb the state history, in principle, at
all), and so by means of a sequence of many such
experiments we can fully monitor the state history.

Now we are in a position to consider a question
of great importance for the problem of defining a
covariant state: What does this process look like
in another Lorentz frame? The two sets of inter-
actions in (17), governed by g&(t) and g2(t), occur
in spacelike- separated regions. In our original
frame they are simultaneous; in another frame,
then, they will not be, and this will change the
character of the procedure, as seen in this new

servables for this system; if we can measure them
both we can fully verify such a state. For this
purpose we employ now four different measuring
devices, which interact with the particles via'

B„,—. g/(t){q/x, +q2P/)+g2(t)(q/2+q, P2) . (17)

This needs some explanation, since none of the
four interactions in (17) are really local ones.
They may all be considered approximately local
in the following sense; Let the order of magnitude
of the separation of the two particles be large
enough so that even if the momentum of each of the
particles is reasonably well defined, the resulting
uncertainty in this separation is only a very small
fraction of the separation itself. We design our
momentum detectors, then, to measure the mo-
mentum with no greater accuracy than this, and
so our position detectors need only be as large as
the resulting position uncertainty. Thus, provided
we make the separation large enough, the four
measuring devices and their various interactions
may be considered, on the scale of the size of the
two-particle system, to be local. We have chosen
(17) for the sake of the simplicity of the subsequent
calculations, bui later on in this section, when
we discuss a more realistic sort of experiment,
we will take care to make use only of Purely local
interactions.

Now then, we prepare the initial state of the
devices referred to in (17) so that

v4(to) —m2(to) =0,
(18)

Our Hamiltonian is

H =g, (t')(q', x', +q,'p', )+g2(t')(q,'x,'+q,'p,'), (21)

where now

g, (t') =0 for t'& t„ t'& t„
g, (t ) =g for t, & t '

& t, ,

g, (t') =0 for t'& t„ t'& t4,

g, (t ) =g for t, & t' & t4,

t& & t& (t3 ( t4 and t, —t, = t4 —t&,

(22)

and we initially prepare our measuring devices in
accordance with the transformed versions of (18)
and (19). The equations of motion of the system
of particles and measuring devices are then

~ t 0 0 ~

g( =-gp =$3—-g4 —0,

aII
i

i

aIJ ., dB
Bx',. ' ' 8P,'.

x'=

which can all be integrated directly. Here we will
spare the reader a little algebra and simply note
some properties of the solution. First of all, the
process, as viewed in this new frame, remains a
measurement which verifies and eventually re-
constructs the initial two-particle state. That is,
for time T~ & t4,

x](T2 ) —x2(T2) =- l',

Pf (T2) +P2(T2) = P', -

(24)

so the two-particle state is the same at the end of
the process as it was at the beginning, and further-
more the state has been recorded in the measuring
devices, for example,

li xI(T ) xi(T )
2 ~ 2 4

v'(T ) —m'(T )
2 2 2 )t2dtg (t)1

and so on. However, the process does not leave
the full history of the two-particle system entirely
undisturbed, as it did in the old frame. Consider,
for example, the interval t, & T, & t3, where the
solution reads

frame, in an important way.
Here again in the interest of simplicity we will

make one more approximation, namely, that all
of the masses in the problem are large enough so
that, for the time scale in which we are interested
here, the kinetic terms in the Hamiltonian may be
ignored. We begin, then, with an initial two-par-
ticle state described by

(XI -X2)
I
n'& = l'

I
n'&,

(~2+~2) In'& = p'In') .
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~((T() - ~2(T() - (-'q2(T() = t '

P)(») +&2(T)) +Gq((T))=P'
—'((T)) + 7(2(T() + ~~((T() —~2t'q2(») = o

2(T() + "4(T() + G&)(T() + z ( 'q((T)) = o

with

t2
G =- dtg((t) .

tg

a...=g(t)((T'„"q, +o',"q, +o',"q,
&

o(2&q +o(2&.q p o(2)q )

and we prepare the device initially so that

0( =9'4g V2 =Qgp V3=@t, g

lip 7T4 7T2 775 7T3 7T6

With the aid of (30), we can rewrite (29) as

H„,=g(t)[ (o'„"+o'„')(q) +q4)

(29)

(30)

This is not what the history would have been with-
out the intervention of the measuring devices.
During this interval the full state cannot be
separated into a two-particle state and a state of
the measuring devices (that is, the full state can-
not be written as a direct product of two such
states), rather, the two systems are inexorably
entangled here, and the interesting thing about
this entanglement is that it is purely a product of
the I orentz transformation. In the old frame the
two systems never get tangled at all, or more
precisely the process of getting tangled and that
of getting untangled, which occur in the intervals
t, —t2 and t3- t4, respectively, in the new frame,
are simultaneous in the old one.

In the old frame, then, this procedure, without
disturbing in any way the state history in. that
frame, has changed the transformation properties
of that history. So although the capacity of some
experimental procedure to verify a given state is
preserved under Lorentz transformations, the
property of being a nondemoiition experiment is
not. This kind of procedure cannot monitor the
history covariantly. In Sec. Ip we will show that
indeed there can be in principle no process of any
kind capable of covariantly monitoring such a state
history.

Now we proceed to the more realistic and familar
case of an Einstein-Podolsky-Rosen (EPB) ex-
periment. We begin with some spin-0 system
which decays into two spin- —,

' particles in a state
~o) where

+ (o
&() +o(2))(q +q )

+ (o',"+ o,&2))(q, +q, )]-,'

and the resulting equations of motion for the o

are

(31)

a (o&() po(2)) g(t)[(q +q )(o&1) +o(2))

—(q, +q, )(o&,"+ o',")]-,',
8

(o&1) +o&2&) g(t)[ (q +q )(o()& +o(2&)

+ (q2+ q6) (o."'+o(.")1-' (32)

(o((& + o&2&) g(t)[ (q + q ) (o (1) + o Q))

—(q2+q5)(o'."+o&.")]2.
By inspection, then, the constant functions defined
in (28) are a solution of (32), so the procedure we
have designed here is indeed a nondemolition ex-
periment for

~
n). The reader will note here that,

as promised, we have made use strictly of local
interactions in (29); that restriction has posed no

difficulty in this case because all of the relevant
variables commute with x, and x2.

As a final example we will apply the formalism
which we have just now developed for the EpH ex-
periment to another sort of measurement. Con-
sider a single-particle state

~ P) in which the par-
ticle is in a superposition of two localized states:
one at x& and the other atx2, i.e. ,

(27)

where o,&(' ~+ —,'), =+ -„.
'

~+ —,')» and so on. We want
then to design a nondemolition experiment for

~
&2).

This is simple enough. First, we note that
~
o)

may be uniquely defined by the requirements

Now we define an operator g(,"by

o,") x =x, = + —,
'- x =—x,

o' x ix) =—
~ x ix)

(33)

g (1)+g (2) 0g

g (i)+g (2).
O

g (1) +g(2) . 0g g

(28)

and we will design our experiment t,o measure
these quantities. So, in the now-familiar way, we
design our measuring devices so as to interact with
the particles through the Hamiltonian

and we define (T and o, so as to satisfy the ap-
propriate spin commutation relations with o,. If
the particle is a boson, then

[o;"',o,'"1= 0 (35)

and (28) will then uni(luely define ~P). Everything
now proceeds as before; that is, we have now de-
signed a nondemolition experiment for

~
P).
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This example is interesting in relation to the
discussion of causality at the beginning of this
section. Since we have used nothing other than
purely local interactions in our measuring pro-
cedur-e, we may be certain that the procedure
cannot give rise to any violation of relativistic
causality, However, if, say, we prepare the par-
ticle initially in the state ~x&), rather than

~ P),
and then apply our procedure, there is certainly
a nonzero probability that this measurement will
instantaneously produce a nonlocalized state out of

~x&); and this, at first glance, would seem to lead
to causal problems. But it is easy to see merely
by inspection of (29) that no such problems actually
arise, that is, that the probability that at the end
of the measurement a particle may be located at
&~ is entirely independent of the initial conditions
at x&. So if, at the end of the procedure, we find
a parh. cle at x2, j.t ~s impossible to determine
whether the particle has been moved there from x,
or created by the device at x2. There is not any
means, then, of transferring information between
x& and x2 in this way, and so there is not any viola-
tion of causality.

All of this is less than sufficient, however, to
determine whether there are enough relativistic-
field-theoretic observables to monitor every pos-
sible system's history. The particular methods
which we have outlined here have limitations. For
example, the state

l~) = I,&+ I,&+ lx, & (36)

simply cannot be characterized by the values of
any complete commuting set of linear combinations
of local observables, and so it cannot be verified
by the sort of procedure we have discussed here.

But at least one general conclusion can be drawn,
and that is that (5) and (6) are certainly not un-
certainty principles; indeed we have seen explicitly
how to violate them. Whether the principle of
relativistic causality imposes any restrictions at
all on the set of observables, however, remains to
be seen.

ig) = iP) for t&0,

~g) = (x=x, ) for t& 0.
(37)

The current density associated with this history

be reconsidered in the relativistic case,, namely,
how are the initial conditions for the propagator
determined by exper imental results?

In the nonrelativistic case a measurement is
taken to set initial conditions for the propagator
over the equal-time hypersurface of the measure-
ment event via (2). ln the relativistic case, how-

ever, different observers will in general have
different definitions of this hypersurface; pre-
sumably, then, if each observer applies (2) in his
own frame, different observers may derive dif-
ferent sets of probabilities. That this is not the
case follows from the requirement that local ob-
servables must commute at spacelike separations'
and from the remark that, although we may mea-
sure nonlocal properties of various physical sys-
tems, we always carry out such measurements by
means of local observations on the system of the
measurement apparatus. 6 In fact, all of these dif-
ferent sets of initial conditions will produce identi-
cal probability distributions, and indeed a mea-
surement may be taken to impose initial conditions
over any spacelike hypersurface containing the
measurement event without altering these prob-
abilities.

So the relativistic theories satisfy property (i),
whether or not they can support the idea of a
state. Y

.Now, finally, we will turn our attention to
this latter question.

Suppose that in a certain region of space a
double-mell time- independent potential of the form
depicted in Fig. 1 is established so that a particle
placed at x& will remain there, or near there, for
all times, and a particle placed at x2 will likewise
remain near x~. At time t= —~ a charged boson
is prepared in the state

~
P) of Eq. (33), and later

at t=0 the particle is localized at, say, x=-x,.
The state history of this system will read

IV. Do STATES EXIST?

The calculation of probabilities in relativistic
quantum theories proceeds much as in the non-
relativistic case: The fundamental probabilities
P(a/h) are calculated from the propagators via
(l), and these probabilities may then be combined
in order to build up more elaborate probability
distributions such as (3). Furthermore, the
Lorentz covariance of these distributions will
follow from that of the propagators, and this in
turn will follow from that. of the equations of motion
of which the propagators are defined to be solu-
tions. There is only one question which needs to

V(x)

FIG. 1. An infinite double-well potential.
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is

j (x I) =(g ~'fl V y —+V "@ ~g.) e (3 8)

with the zeroth component

p(X, f) =(q~e*~ +-4*~q) te (39)

where 4 is the scalar field operator. This history
is mapped in Fig. 2, where the integral of p(x, f)dx
across any of the solid lines has the value —,'e.

Consider how this history will appear in another
frame boosted with respect to the original one,
say, in the x direction with velocity p. j,(x, f)
transforms as a four-vector:

j.(x, t) = A~ j„' (x', t'), (40)

where A"„ is the I orentz-transformation matrix
for four-vectors and (x', f') is the Lorentz-trans-
formed point (x, t) Figur. e 3 maps the history in
this new frame; in the figure, tang=6—= tanhe and
the new charge density is

p'(x', t') =p(x', f') coshn —j,(x', f') sinhn. (41)

Now the problem is obvious. The history of
Fig. 3 certainly cannot be verified by experiment:
In Fig. 3 the "state" at time t'=I3, for example,
does not carry the correct total charge. Indeed
by the same token this is not a state at all, that
is, it is not an element of the Hilbert space, be-
cause it cannot be assigned well-defined values of
any complete commuting set of observables.

It is possible to define a monitorable state
history in the primed frame; this history will
collapse along t'=t, . The problem is that such
a history will not be the Lorentz-transformed
version of Fig. 2. There are, then, no states at
all which both transform properly and may be
monitored in any frame; indeed in the relativistic
case these two requirements [properties (iii) and
(iv) of Sec. IIJ simply contradict one another.

It merits some emphasis that the discussion of
nonlocal measurements in Sec. III has had a cen.-

tral role to play in the present argument. If the
nonlocal variables could not have been measured,
if (5) had been a real uncertainty relation, then it
would have been without any empirical meaning to
assert of a system that it was in some eigenstate
of a nonlocal operator. The question of monitoring
these systems certainly could not have arisen at
all in this case; even the introduction of such
states into the formalism would arguably be super-
fluous to the physical content of the theory. That,
in fact, these measurements can be carried out
vastly changes the picture: There are indeed for
this case sufficiently many nonlocal observables
to uniquely characterize and to monitor nonloca1.
state histories, it does indeed have empirical
meaning in a given frame to define such states
(i.e., to attribute values of such variables to the
system). The problem is not that these variables
cannot be well defined, but rather that their as-
signment to a state does not transform properly.

Several other authors, 8' noting that the postulate
of collapse. along an equal-time hypersurface is
manifestly not a covariant one, have argued that
in the relavistic case the collapse must be taken
to occur along some invariant spacelike hyper-
surface containing the measurement event. pari-
ous different prescriptions have been proposed,
all of them based on the remark first made by
Bloch and later proven by Hellwig and Kraus that
all possible choices of this hypersurface will lead
to identical probability distributions for all local
observables.

Consequently, these proposals all suffer from a
common flaw: They have restricted their atten-
tion to local observables or, equivalently, they
have ignored the requirements of monitorability.
Bloch, for example, suggests that the collapse
may be taken to occur along an equal-time hyper-
surface in some arbitrary frame, since any choice
of this frame will lead to the same local probabili-
ties. , Jut this is exactly the prescription which

~ ~ f~O

FIG. 2. The reduction of ~p) to )x=xt) at t= 0.
FIG. 3. The history of Fig. 2 as seen in the primed

frame.
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we have just now considered in detail, and which
we have seen to be unsatisfactory because certain
of the nonloeal variables, such as the total charge
in the system, ' will not transform properly here.
Hellwig and Kraus, who would prefer on aesthetic
grounds that the prescription take the same form
in all Lorentz frames, propose that the collapse
be taken to occur along the backward light cone of
the measurement event, as is illustrated for the
problem we are considering here in Fig. 4. The
reader can verify by inspection, however, that
this prescription will not conserve the total charge
even in a single frame.

light
cone

V. CONCLUSION

Our central purpose here has been to consider
whether relativistic quantum- mechanical systems
may be described in terms of some subset of their
observable physical variables, even at times when
the system is not directly being observed. We
have been interested, for example, in whether a
system measured to have momentum P at some
time may consistently be described as being in a
state of momentum P at later times when it is no
longer being observed, if it has not been disturbed
in any way in the ensuring interval.

We have found that, in the relativistic case, such
states do not exist; that in this case the various
elements of the definition of the state are mutually
exclusive. A description of the physical system in
terms of its observables simply cannot consistent-
ly be written down.

This does not diminish the predictive power of
these theories, but certainly it alters their con-
ceptual content. Even if, say, one can predict
with certainty that any measurement of the total
charge of a system at any time in any frame will
yield the value e, still neither this charge nor any
other physical property may be consistently at-

FIG. 4. The proposal of Hellwig and Kraus.

tributed to the state.
The equations of motion and the postulate of

collapse enter into the calculation of probabilities
exactly as they do in the nonrelativistic case, but
they can no longer be thought of as describing the
evolution of the physical system, because it is
impossible to define a consistent description of
the system which collapses, or evolves in ac-
cordance with these equations.
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