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Are grand unified theories compatible with standard cosmology' ?
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The existence of superheavy monopoles is a necessary consequence of grand unified field theories.
Estimates of the number of monopoles produced in the early Universe are made under some very general
assumptions. Except possibly for the case of small Higgs mass, the number produced is many orders of
magnitude greater than that allowed by the standard "hot" big-bang cosmology.

A necessary consequence of grand unified theo-
ries of the strong, weak, and electromagnetic in-
teractions is the existence of point topological so-
litons which may be identified as magnetic mono-
poles. ' Zeldovich and Khlopov' and Preskill'
have estimated the density of such monopoles in
the early Universe and have found it to be larger
than that allowed by cosmological observations.
'These estimates of monopole production involve
the assumption that at some time the density of
monopoles was in thermal equilibrium. In fact,
monopoles are produced as the Universe is under-
going a phase transition and (as illustrated in the
calculations of the monopole-antimonopole anni-
hilation rate") the rates of reactions which create
and destroy monopoles are small. Consequently,
there is no justification for assuming an equili-
brium density of monopoles. In this paper we
describe a general method of estimating the num-
ber of monopoles produced during symmetry
breaking without assuming that the monopoles are
ever in equilibrium. We estimate this number in
two different ways. In both cases the number of
monopoles produced is intolerably large by many
orders of magnitude.

The mass of monopoles in grand unified theories
is of order M„/o. = 10"GeV, where M„= 10""
GeV is the ms.ss of the superheavy vector meson (the
unification mass scale) and n = » is the fine struc-
ture constant. Owing to their enormous mass, a
relatively small number density of monopoles may
contribute significantly to the energy density of
the Universe and hence affect its rate of expan-
sion. By considering the resulting change in cos-
mological helium production. Preskill' concluded
that at the time of nucleosynthesis'. r =N„/T'—
~ 10 ", where N „is the number density of mono-
poles and T is temperature. Monopoles (M) first

become stable after a phase transition occurs
which leaves unbroken a symmetry group contain-
ing a U(1) factor. Once produced, they may only
be destroyed by MM annihilation, which has been
analyzed by several authors. "' Preskill' con-
cluded that if initially x «10, assuming a Cou-
lomb interaction between monopoles, then anni-
hilation was negligible.

The high-temperature behavior of gauge theo-
ries was first discussed by Kirzhnits and Linde, '
who argued that symmetry restoration in gauge
theories occurs at high temperatures. The order
of the phase transitions and the critical tempera-
ture T, seem to be highly model dependent.

%'e will assume that the monopoles arise during
the phase transition and, for reasons expressed
earlier, in a lesser time than that necessary for
the monopoles to come into equilibrium with the
other species of particles present. To estimate
the number of monopoles produced, we employ a
method originally proposed by Kibble. '

After the Universe has cooled below the transi. -
tion temperature, the vacuum expectationlvalue
of the Higgs field points in some direction in the
manifold of degenerate vacuums. However, the
Higgs field need not take the same direction
throughout all of space. Suppose there is some
finite correlation length $, so that the order pa-
rameters at two points separated by much more
than $ are uncorrelated, while the order para-
meter is smooth on scales much less than $.
Now imagine dividing the universe into cells of
size $, so that the Higgs fields in the centers of
different cells are uncorrelated. Figure 1(a) il-
lustrates this for a two-dimensional xy model in
which arrows represent the direction of the order
parameter at the center of each cell. Three cells
surround a central region. Consider a closed con-
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tion-dominated universe can be found using the
time-temperature relation

45
(2)

(a) (b)

FIG. 1. (a) Kibble's construction for vortices in thoro

dimensions. The order parameter is oriented randomly
in domains A. , B, and C. (b) The group space for the
order parameter in (a). Values of the complex order
parameter are represented by points on a circle.

1
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where p depends on the exact structure of the or-
der parameter; in general, we assume p to be of
order +~o . (In the Georgi-Glashow mode19 it is'
—,'.) The question now becomes how large is $?

The magnitude of $ is a detailed dynamical ques-
tion depending on the nature of the phase transi-
tion, among other things. However, as long as
the Universe passes through the phase transition
quickly, there will be insufficient time for $ to
grow indefinitely. Within the context of classical
relativity and the standard cosmology, "an upper
bound on $ can be obtained by considering particle
horizons. The maximum causal length in a radia-

tour surrounding the region and passing through
the three cells. The Higgs field is continuous from
one cell to the next. We assume the variation in
the Higgs field is as smooth as possible, i.e. , we
take the shortest path in the order-parameter
space between the fields at adjacent cell centers
[Fig. 1(b)]. If the mapping of the path in real
space onto the manifold of degenerate vacuums is
topologically nontrivial, then there must be a vor-
tex inside the circle. The probability P that this
will happen is 4.'

In a gauge theory the order parameter at a point
can be gauge-rotated to any direction, but the
topological classes of the mappings of manifolds
in real. space into the group space are gauge- in

variant and topologically stable defects cannot be
eliminated by nonsingular gauge transformations.
Therefore, we may use this method in gauge
theories. For monopoles in three dimensions we
imagine that the order parameter is randomly or-
iented in domains centered at the vertices of a
tetrahedron and is as smooth as possible along the
edges and faces. Hence, the number density of
monopoles is N =p $

' and so

T A.

V(P) = ——-1+ p'+ —Q'
2 T 4C

(4)

with a second-order transition at T= T, . Assume
T varies with time according to Eq. (2). In mean
field theory the equilibrium correlation length $,
for T& T, is

For T& T, this expression has another interpreta-
tion:

~
$,

~

is the shortest wavelength for which a
fluctuation around @=0 is unstable. As T ap-

where t is time, nz~ the Planck mass =10" GeV,
and R = number of light-particle degrees of free-
dom. A photon moving along a null geodesic be-
ginning at the initial singularity travels a proper
distance 2ct; so we may assume the Higgs fields
at two points separated by more than 4ct are un-
correlated. Choosing $=4t(c=1), we find

~3g 1/2 T «3
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which, if particle horizons exist, can be consider-
ed a lower bound. For SU(5) theory N-100, so if
the phase transition occurs at the superheavy
mass scale (-10" GeV) then our causal lower
bound for the monopole density is r-10 ", which
is much too high. (To have r S 10 " requires T,
s 10" GeV. ) However, objections may be raised
against the concept of particle horizon, since
quantum effects might affect the singularity at
times ~ I/Alp)~~k. Moreover, I.t ls diff lcult to
understand how the Universe was homogeneous
and in thermal equilibrium if particle horizons
existed.

Estimates of the actual correlation length re-
quire a detailed dynamical analysis. A first-or-
der transition would proceed through the forma-
tion, within the metastable vacuum, of bubbles
of critical size enclosing regions of "true" vac-
uum, which then expand until the Universe is
filled with the broken-symmetric phase. "
would then be associated with the mean size of
these bubbles when they fill the Universe. Esti-
mates of the nucleation rate and subsequent ex-
pansion of these bubbles are quite sensitive to de-
tailed assumptions and will be reported elsewhere.
However, if the transition is essentially second
order, a crude estimate can be made.

Consider a temperature-dependent effective po-
tential" of the form
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proaches T, from above, d$, jdt approaches infin-
ity. However, we expect that the actual instan-
taneous correlation length $„ the length scale
over which the field is likely to be fluctuating in
one direction, cannot increase faster than some
number of order c. When $, reaches the length
for which fluctuations are unstable, we assume
that the symmetry is broken, and topological de-
fects are well defined.

We now describe the system in terms of small
oscillations about the broken-symmetric minimum
and topological solitons. Assuming that t, = $, for
d&, /dt & 1, and thereafter $, increases at the speed
of light, we find

4 45 m~T,
'

FIG. 2. Effective potential at three different tempera-
tures g2 & g~& 1"~. Q is the vacuum expectation value of
the scalar field.

For p. and T, of order 10" QeV, the result is
y = 10 '. Throughout the range of Higgs mass for
which the transition is approximately second or-
der, this estimate of x is many orders of magni-
tude above the allowed number. However, we have
assumed here that the. rate of expansion of the
Universe is not changed much near T,; it is diffi-
cult to assess the accuracy of this assumption.

In principle, the nature of the transition is de-
termined by the effective potential for the scalar
field. The key points may be illustrated in the
Abelian Higgs model, where the effective potential
has been computed" to be approximately

1
(Sg'+@X+ SA.'i')T~ P ~'+ XP', (6)

where g is the gauge coupling, A. the quartic scalar
coupling, and Q the classical scalar field. Recall
that iti„'=g'Q' and mz'= 2p'. The cubic term in

~
Q

~

makes the phase transition first order, but
the discontinuity in Q and the range of tempera-
ture of the metastable phases depend on the Higgs
mass. There are three temperatures of interest
(Fig. 2). At T, a, local minimum at Q a0 first ap-
pears; at T, the symmetric and asymmetric min-
ima are degenerate; at Ty the symmetric minimum
disappears. A first-order transition occurs
through the appearance of "bubbles" which can oc-
cur via quantum or thermodynamic fluctuations. "
However, tunneling processes are slow and if the
barrier is large the Universe could remain in the
metastable stage almost to T, .'

'The formation and growth of bubbles must take
place between T, and T„where T,&T,. From the
effective potential, one finds" that, for X-g',
(T, —T,)-O(aT, ) and T, -10" GeV. Thus, even if

the correlation length were to grow at the speed
of light throughout the interval between T, and Ty,
$ would not increase too much. In this regime,
the first-order nature of the transition can be
ignored. " However, if the Higgs mass is small,
A. -g', the transition becomes strongly first or-
der, higher-order corrections must be consider-
ed, and T, could become arbitrarily small. "'"
Postponing the phase transition to a much lower
temperature may lead to a large correlation
length and, hence, a small monopole density.

In summary, we have described a method of
estimating the number of monopoles produced in
the early Universe without assuming equilibrium
density. (It is worth noting that this method
should be applicable to other problems involving
the formation of defects in a fast phase transition
into an ordered state, as in superfluids or liquid
crystals. ) In all cases considered so far, a ser-
ious discrepancy has been found between the num-
ber of monopoles allowed by cosmology and those
produced according to grand unified theories.
Whether this problem persists for a strong first-
order transition remains to be determined. Within
particle physics, possible resolutions of the over-
abundance of monopoles include (a) the phase tran-
sition which occurs over an inordinately long time,
and (b) new physics which appear at energies far
below the unification scale, for example, one
might arrange for the U(l) symmetry to appear
first at a much lower energy. Among the cosmo-
logical modifications which might be entertained
is the possibility that the Universe was never hot
enough to be in the symmetric phase.

Considerations similar to those reported here
have been developed by A. H. Guth and H. S. -H.
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ing their results prior to publication " We also
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