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New ghost-free gravity Lagrangians with propagating torsion
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A new class of R '
type of actions without ghosts and tachyons is found in which both the vierbein field

e„' and the spin connection w„'" are independent and propagating fields. A complete set of spin-projection
operators for e„' and co~' is constructed. The particle content of these actions and other R ' theories in the
literature is given. The relation of this work to the interesting work of Neville is discussed.

. I. INTRODUCTION

Einstein's field theory of gravity seems perfect
as a classical theory. All recent experimental
data have confirmed it and have ruled out several
possible alternatives. However, as a quantum
theory it is less satisfactory since, as soon as
one couples to matter, the first-order quantum
corrections lead to a divergent S matrix. These
divergences are nonrenormalizable. Owing to
the dimension of a length of the gravitational
coupling constant, the one-loop divergences have
a different functiona/ form from the classical
action and they cannot be absorbed into the clas-
sical action by constant rescaling of the physical
parameters. Pure gravity has an S matrix which
is finite at the one-loop level and might be finite
at the two-loop level; this is still not known. One
possible alternative is supergravity whose S ma-
trix is not only one-loop but also two-loop finite
and might be three-loop finite. (In two-loop ordi-
nary gravity and three-loop supergravity danger-
ous counterterms do exist. The crucial question
is whether their coefficients are zero. ) There are
at present no arguments in favor of these possi-
bilities, but in our opinion they should be investi-
gated.

In this article we consider a class of gravita-
tional theories which contain, in addition to the

'

scalar curvature, extra R'-type terms. If in
these R+R' theories the only independent field
is the metric (or, equivalently, the vierbein
field), then such theories are in general higher-
derivative theories. Deser and van Nieuwen-
huizen' argued that such theories would be re-
normalizable but contain ghosts due to the P '
propagators. Stelle' proved rigorously the re-
normalizability of the most general R+R' type
of action without torsion

g = o R((u(e))+ PR'((u(e))+ yR„„'(ur(e)),

where ~(e) denotes the spin connection &u„" ex-
pressed in terms of the vierbein field e„.
Actually, not every higher-derivative theory

necessarily has ghosts or tachyons. For example,
taking y = 0 in (I), and using that the kinetic terms
of v-gR and v -gR' are proportional2 to
(P' —2P,') and 'P,', one finds easily from the
orthonormality of the spin projection operators'
that the propagator is given by the usual spin-2
propagator of the graviton plus the propagator
of a spin-0 physical mode with real mass.

The corresponding results for supergravity
were derived in Ref. 3. As shown there, physical
states and ghost states arrange themselves in
whole multiplets of global supersymmetry, and
the unitarity properties remain as in the purely
bosonic case.

The class of theories we will consider below
are not-higher-derivative theories, in which the
spin connection is an independent field which is
propagating. Thus, there are separate physical
modes for e„and e„"and one cannot eliminate
e„"as an independent field by solving its field
equation as in ordina. ry Einstein gravity (the
Palatini formalism). In two recent articles, "
Neville has considered such theories. However,
as becomes most clear in his second article, he
requires power-counting renormalizability as
proposed in Ref. 1, and therefore needs P 4 propa-
gators for the graviton and P ' propagators for
the spin connection in al/ spin sectors. Whereas
in the lower-spin sectors (as for instance in the
spin-0 sector in the example above) one can some-
times obtain that the possible ghosts due to
(p'+m, ') '(p'+ma') '=(ma'-m, ') '((p'+m, ') '
—(P'+m, ') '] are compensated by lower-spin
terms in the higher-spin projection operators,
no such compensation can take place in the spin-2
sector. Thus one expects that any power-counting
renormalizable theory will have ghosts in the
spin-2 sector and, indeed, that is what Neville
finds.

We will restrict our attention from the beginning
to theories which are unitary (free from ghosts
and tachyons). In particular, we will consider
the nine-parameter action which is the most gen-
eral action for e& and ~„"such that there are
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at most second derivatives. We could have added
higher-derivative terms since they sometimes
do not destroy unitarity; this we have not done.
We could also have taken, instead of (e„,e„")
the vierbein contorsion tensor as basis. This
would have led to a different nine-parameter
action, as the reader may easily verify. We have
preferred to work in the (e„,&uP") basis, since
this is the basis which seems to us preferable
for geometrical reasons. The problem me con-
sider in this article is which particular choices
of the nine coefficients lead to theories without
ghosts or tachyons.

Our nine-parameter action is generally coordi-
nate and local Lorentz invariant. Actually, we
believe that this is not a restriction for the fol-
lowing reason. An analysis of pure gravity in
terms of symmetric as well as antisymmetric
tensor fields of several years ago4 showed that
if one required unitarity, the solutions mere in-
variant under the linearized spacetime symme-
tries. Also, it was found that the antisymmetxic
tensor fields did decoaple from the asymmetric
ones. Thus in that case, general coordinate in-
variance and local Lorentz invariance followed
from unitarity, and we believe that the same re-
sult would be found in the present case.

Neville found in his first article one ghost- and
tachyon-free action which describes, in addition
to the graviton, a spin-0 "torsion, " but this so-
lution does not have a P ~ propagator in the spin-2
sector, in agreement with our comments above.
We will present several new solutions, depending
on up to five free parameters. We have com-
pletely analyzed the case where there are no ex-
tra gauge invariances beyond the spacetime sym-
metries and no mass degeneracies. It might be
interesting to extend our work to the case where
the masses of some of the propagating modes be-
come equal and the cases where the action has
more gauge invariances in addition to the space-
time symmetries. There is a large class of local
symmetries to choose from, which makes a com-
plete investigation difficult. Although our R+R'
theories are one-loop renormalizable as far as
power counting is concerned, it is not clear
whether they are truly renormalizable at the one-
loop level (to decide this, one would need to study
Ward identities to show that the one-loop & can
be absorbed into 2) and they are nonrenormaliz-
able from the tmo-loop level on.

A systematic study of the absence or presence
of ghosts and tachyons in gravitational theories
is virtually impossible if one does not use spin
projection operators. They were constructed for
the vi;erbein fields in Ref. 4 and used in Refs.
2 and 4-6. The extension to the spin projection

operators for the (e„,&u„") space was made by
Neville in the gauge e „=e„. We consider it
one of the main technical achievements of this
article that a complete orthonormal set of spin
projection operators for the fields (e„,~& ") has
been constructed valid in any gauge. To make
sure that it does not contain algebraic errors,
we checked it by using Veltman's algebraic manipu-
lation program SgHppNggHIp. ' Having obtained
this machinery, we were then able to investigate
the existing R' theories in the literature on their
ghosts and tachyon content. The results of this
examination appear in a list in the conclusions.

The article is organized as follows. In Sec. II
we discuss the nine-parameter action. In Sec. III
we invert its kinetic part by means of the spin
projection operators. In Sec. IV we require that
this propagator have positive residues at real
masses. Interestingly enough, one can completely
solve this problem because all algebraic equations
factorize when there are no other gauge invari-
ances other than the usual spacetime symmetries
and when all masses are different. It is here that
we find our new solutions. In the conclusions we
discuss how far these results justify the hope for
a unitary and power-counting renormalizable
theory. Also in the conclusions is the list of the
ghost content of existing R+R' theories in the
literature. In the Appendix the spin projection
operators are constructed.

II. THE LAGRANGIAN

where ~, a, b, e,P, q, r, s, t are nine arbitrary con-
stants. S&" = (2 &', 7„")are the vierbein field and
spin-connection sources, respectively, and Z„,
is not symmetric. The curvatures of the Poincare

.gl ollP Rpv (Rpv y Rpv ) are
b

Rp o evepa+ ~Vabev (i ~) t (2}

(4)Rpriab Sv&gab+~pa &mb (& b') ~

where h„"= (e„',u„") are the gauge fields as-
sociated with the translation and Lorentz rotation
part of the Poincare group, respectively. The
R„„,are usually called torsions. (We are aware
of other geometrical interpretations of the vier-
bein field. ) The contracted curvatures are

lJd p pa ubR,„=Rj~~e e g'0, , R =R„~pe e

We wish to investigate the particle content of
the following nine-parameter Lagrangian:

2 = —m+ (~4 at +2+x)(R, )'+&(—2a+b —sx)R„,
x R"'+—,

'
(—a + 2c —3A) (R.„')'+—,

' (2p + q) (R.„,)'
+&(2p+q —6r)R„„R'"+—', (p —q)R, b,aR

+ (s+ t)(R.,)'+(s t)R.,R"+ e„'l,".+ ~~b7~', (2)
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The choice of coefficients in the Lagrangian is
purely for convenience; it will simplify the pa-
rameter combinations appearing in the propagator
in Sec. III.

On the other hand, we choose (e„', &u„") as the
basis of our dynamical field variables. This is
a natural choice from the gauge-theoretic point
of view. Our Lagrangian is the most general
metric Lagrangian which is quadratic or less in
the derivatives on the gauge fields (e„', ~„"),
without cosmological constant. The 8' term need
not be included due to the use of the Gauss-Bonnet
theorem

(6)

for spactimes topologically equivalent to flat
space. A term R(z(e)), on the other hand, can
be related to those terms already in the Lagran-
gian by using the relation

f d'x [eR ((u) —eR((u(e))]

where &o(e) =-u, b(e) and

&bab(e) =
a [e a(evb, p e~, v)

+e,e'be&, e&' —(a —b)] . (6)

(loa)

(10b)

D "((u) (ev„,„)+ 2i„)= 0,
D((u)(eZ„,)= e".R„g &"„,

where D&(bJ) =&& —2+„,bo', S"~=(7'"„,Z', ), and
Ziab) = —,'(Zab —Z„). We will obtain these results,
at the linearized level, in Sec. III.

III. CALCULATION OF THE PROPAGATOR

Terms of the type R'(&v(e)), (D~R,q, )', or
(D„R„~,)R"""' are not included because they con-
tain derivatives of the gauge fields higher than
two.

The action is invariant under general coordinate
and local Lorentz transformations

5hp" =(Dqe) +e Rqg

where e"= (e', e'") are the gauge parameters of
the Poincare group and (D„e)"=D„&"+fse"h„e
the sum being over the structure constants of the
Poincarh group. The gauge fields of h„" were
defined under (4). Owing to these invariances
there are two source constraints which can be
obtained from (2) and (9) by reading off the co-
efficients of the independent parameters ~' and

ab.

Pab Nab) 2 (hah+ bubba) i

X.b= Ibi.b) =2(&.b —hb. ) .
(12)

Keeping only the terms bilinear in (v, q, )t), the
linearized quadratic Lagrangian 2 ' can be
written as

(13)p uG 8
cx, s

where &z= (~,.b, y„,x.b) and 6„8is the wave
operator which contains Kronecker &'s and at
most two derivatives. The saturated propagator
can be written as

II = — S„G ~~~S8) (14)
4a &8

where S„=(r„»Z~ »a, Z „i).)In order to invert 8 ~

we use the fact that the fields (e„„h„)are re-
ducible under the Lorentz group. Therefore, they
can be decomposed into subspaces of dimension
(2J+1) with definite spin-parity J . Since under
the three-dimensional rotation group a four-vec-
tor decomposes into a vector part (J~ = 1 ) and a
scalar part (J = 0"), &u„b and Ib, b have the de-
composition

(u„b= (1 t)) 0')8 (1 8 0') 8 (1 6 0')
= (2')t)b 2(l )e) (0')6) (2 )b) 2(1")9 (0 ), (15a)

a,„=(1-8, 0') e(1-I)) 0')

=(2')Eb 2(l )Eb 2(0')6 (1'), (15b)
where the numbers in front of the parentheses
denote the multiplicity of those states. There-
fore, considered as a 40&40 matrix in the field
space, 6 & decomposes into two 1& 1 subblocks
(J"=2, 0 ), one 2X 2 subblock (J = 2'), two 3X 3
subblocks (J = 1', 0"), and one 4&& 4 subblock
(J =1 ). In order to achieve this decomposition
and subsequently the inversion of 6 ~, we use the
spin-projection-operator formalism. In the Ap-
pendix we have derived the spin projection op-
erators Pf~(J~)„~ which connect the fields
$8= (&u«» @a»)(ab) with the same spin-parity J .
The indices i, j label the projection operators with
multiplicity greater than one. These projection
operators are orthonormal and complete in the
following sense:

PP(1&) PJ~(J~)„=5'"5"5~'5„5.,P~,'-b(J )„„
(16a)

e =q„,+Ib„„(lb„,( «I.
From here on we can drop the distinction between
the Greek and Latin indices. The Minkowski
metric in our convention is q, b

= (+ ——-). It is
convenient to define

%e first linearize the Lagrangian by making
the weak-field approximation P~@(J~)„8=1 p, . (16b)
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Since these 40 operators are crucial for our
analysis, we have checked their orthonormality
on the computer, using the algebraic manipulation
program QQHOONSCHIP. We can now expand the
wave operator 6 8 in terms of these projection
operators and write 2' as

g(2} Q aug(JP)y Ptlg(JP)
P

&n ~8 ~

where a~~(J~) denote the coefficient matrices.
Once they are calculated, the saturated propagator

is (for nonsingular coefficient matrices)

a '"~~ J S I'&,@J~ „SSB 18
$n~ Aflak J

due to the properties of the projection operators
given in (16). For singular coefficient matrices
we apply the method of Ref. 8, which we shall
briefly discuss below. The calculation of the co-
efficient matrices is straightforward but tedious.
We only present the result here. If the action in
(2) is decomposed as in (1V), the coefficient ma-
trices a)~(J ) are given by

a (2 )=pk'+ —'a,
a (0 ) =qk'+b,

(19a)

(19b)

(2r + t)k'+ ~6 (a + 4b)

(2b -a)
3 2

3 2
(2b -a)

X

—(-'k')'I'(2b —a) (u
3 2

—(k')'t'(a+b)
3

(19c)

——(-'k')' '(2b -a) ——(k') ' '(a+ b) ~ (a+ b) k2

CU x

' (P+s+t)k'+, (a+4c) (2c —a) —(k')' '(2c —a) —(k')'t'(2c -a) (u
3&2

1

3 2
(2c -a) ~ (a +c)

3
(k')'t'(a + c) —(k')'t'(a +c)

(19d)

--(k')"(2c —a)3
(k')'t'(a+ c)3

3(a+c)k' 3 (a+ c)k'

——(k2)'t2(a+ c)
3

3(a+c)k' 3(a+c)k'

(d

r
(2P —2r+ s)k'+ ~a ia(—,'k2)'t~

a~,~(1') =
—ia (-'k') 't' (a+A.)k' (19e)

CO

(2p —2r + 4s) k'+ c ic (2k2)' ' 0

—sc(2k )' ' 2(c —A)k' 0

0 q

(19f)

Our convention is that A'=m' with real m for
physical particles. so that the square roots are
positive on-shell. The square roots of (k2) cancel
similar square roots in the spin projection op-
erators whereas the factors i cancel similar fac-

tors due to an odd number of derivatives in the
action. The P sector and }t sector have sepa-
rately been treated before, ' but the ~ sector has
not separately been investigated before. It is
obvious that the J~ = (1', 0') sectors are degenerate
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and of rank two. Therefore, J = (1', 0') sectors
have one, J~ = (1 ) sector has two left and two
right null eigenvectors. Suppose

gP R, n) gP O

j
(20a)

& "~ gJ' &. . g& =0 (20b)

where V, '"~ (J ) is the nth right null eigenvector
of the J~ sector and we have suppressed the (gg)
label of the coefficient matrix. Equation (20) im-
plies the existence of the following gauge invari-
ances and source constraints:

curved. ) One also finds the source constraints

8,2;,b=o,

~cTcab+~tab] 0 ~

(23a)

(23b)

Equations (22) and (23) are in agreement with the
linearized form of the previously written gauge
invariances and source constraints given in (9)
and (10). Another check on (19) is that for
A. = (8m G) ', a = b = c =p = q = z' = s = t = 0; it reduces
to (8wG) 'k'[Pz~z~(2') —2P~»~(0')] which is the
familiar Einstein Lagrangian )see (7)]. Another
way of deriving (23) is to consider Einstein-
Cartan theory. Going from first- to second-order
formalism,

z&,j,g, n

V', "'(J')P,„(J').,y, (J ) for any k,
~pab+ g„geo(s k~ ay s x~pa s x rap )gab

g V', "'(J )P„(J ) sS8=0 for any k,

(21a)

(21b)

~ab ~ab ~b, a &

~ cab = —~ab, c ~

(22a)

(22b)

where e„and e, are functions of f parameters in
(21a). Clearly, these results are the linearized
general coordinate and local Lorentz transforma-
tions; in particular, there is no term with &b in
6~, since this term is nonlinear, being of the form
e,5++ (5e,)~. (Note that in lz„ the first index is

where we have suppressed the (gQ) label of the
projection operators arid fq(J ) is arbitrary. Ap-
plying these general observations to the J = (1', 0')
sectors, one finds the invariances

and adding e~2'~, the requirement that the anti-
symmetric part of the total e~ source vanishes
and its symmetric part is conserved leads to (23).

We now proceed to invert these matrices to
obtain the propagator. In Ref. 8 it is shown that
the correct propagator is obtained by taking the
inverse of any largest submatrix with nonzero
determinant and saturating it with sources. It is
gauge invariant. If such a matrix is nzxm, the
deletion of (n -m) rows and columns merely
amounts to choosing (n nz) gauge —conditions, and
due to the (n —m) source constraints the saturated
propagator will not depend on the choice of gauge.
We choose to invert the upper-left 2x 2 matrices
which we denote by bZ'~@(J ) in the J =(1') sectors
Together with the inversion of the other sectors
one obtains the following result for the inverted
coefficient matrices:

a ' (2 ) =(pk'+-,'a) ',
a ' (0 ) =(qk'+b) ',

(25a)

(25b)

(a+6)
3

—(2b —a)
3&2

& ,,'"(1')= [4(a+b)(2r+ i) k'+-,'ab]
(2r + t)0 +'

3 2

(25c)

(a+ c)
3,

(a —2c)
R2

[3 (a +c)(p + s+ t) k'+ —,'ac]
a —2t: „, a+ 4c)
3 2

(25d)

a+ A.)k' —ia(-,' k') 'i'

a,&" (2') =~ k '[(a+ A)(2p —2r+ s)k'+-,'aA] ',
(ia(-,'k')'i' (2p —2z +s)k'+—

2

(25e)
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b;,"'(o') =

(c —A. ) —ic (-', )i*)'i'

k '[2(c —X)(P r-+2s)k' —cA.]

l ie(-,'k')'~' (p r-+2s)k'+ —l
2r

(25f)

It should be noted that these results only hold if
the only gauge invariances are those assumed
from the beginning, namely, general coordinate
and local Lorentz invariance. However, if there
are additional gauge invariances one can start
from this point and take limits that certain pa-
rameters vanish. If one then takes smaller non-
singular submatrices and adds the extra new
source constraints, then one can analyze these
cases as well. For example, if one takes the
limit that all parameters except ~ tend to zero,
one clearly regains Einstein's theory with propa-
gator [P2)~"(2') ——,'P f2"(0')]k '. In that limit
several new gauge invariances appear, corres-
ponding to the fact that (d„" has disappeared from
the action.

The result in (25) is equivalent to a similar re-
sult by Neville, except that he uses the tetrad-
contortion basis. Also, he chooses the gauge

e„,—e,&= 0 whereas we did not work in a specific
gauge (which forced us to find more spin pro-
jection operators).

IV. CONSTRAINTS ON THE PARAMETERS FOR
GHOST- AND TACH YON-FREE GRAVITY LAGRANGIANS

We start our search for Lagrangians without
ghosts and tachyons by considering the most gen-

I

eral case wherein there are no extra gauge in-
variances in addition to general coordinate and
local Lorentz invariances with all mass pa-
rameters nonzero (except the graviton, of course).
The saturated propagator 11 (J~) which was calcu-
lated in Sec. III can be written in the form [for
J = (I), 2', 0')]

I'&0,
(-1)'trA. ~„)=„)&0.

(27a)

(27b)

Before applying formulas (27) we decompose the
J~= 2' and 0' sectors into partial fractions and
extract the part with I/A, which corresponds to
the graviton

11(J ) = g A)~(J )S P)g(J ) S (-k'+m') '
$(y ) 48) & )~

(26)

where')~(J ) is a 2X2 matrix which is degenerate
at the pole. The constraints for not having ghosts
and tachyons follow from the requirement of hav-
ing real mass and positive-definite residue matrix
at the pole. Since A has one nonzero eigenvalue
at the pole which is equal to the trace of A, and
since there are 3 (2) 9's in the odd- (even-) parity
operators, while q„= (1, —1, -1, -1), we have

l

2u' O

'"")=-'''(,(2k)~ 1 )"''I,0 0

b, ,@~(0')= --2z 'k '
(.(,),g,

2(a yg)k) ia(2k)))))
+ (a~) '[k'+ —,'aa(a+ X) '(2P —2r+ s) ']

2u' -i 2I''~' u' 0

1 ) (0 0)
(-2(c —A.)k' ic(2k')' ' )

+(cA) '[-2k'+ca(c —A) '(p —r+2s) '] ( . „, ,t. . .)

(28a)

(28b)

We now apply the formulas (27) to all the massive sectors and obtain the following conditions on the
parameters of .the Lagrangian for not having ghosts and tachyons at the massive poles (assuming
that these are not degenerate):.

(2 ): p&0, a&0, (1 ): (p+s+t) &0, ac(a+c) &0,

(0 ): q&0, b &0, (2'): (2p —2r+s) &0, aX(a+A) &0,

(1'); (2r + t) & 0, ab (a +b) & 0,
(0'): (P r+2s) &0, cA, (c-—A) &0,

(29)
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where for. the J =2' and 0' sectors we have
written

p„(2')=p,", (2') ', , etc.

and integrated partially. It is immediately clear
that for general values of the parameters the
Jr = (2, 1', 0 ) sector has a tachyon (assuming
that it does not have a ghost) and.J = (2', 1') sec-
tor has a ghost (assuming that it does not have
a tachyon).

We now investigate the massless sectors which
require somewhat more care. Since the building
blocks for the spin projection operators are

6},„=q, ~
—k, k~k

+,b= k, k~k

P. = k. (k')- ~~',

(30a)

(30b)

(30c)

one now finds k '" singularities coming from all
projection operators. One must show that the k'"
singularities cancel for n & 1 and that the residue
for n= 1 is positive. First of all, k ' singularities
obviously vanish since expressions with three
derviatives acting. on 7„,automatically vanish.
As for the k ' singularities, several J sectors
contribute, however, by using the source con-
straints it is straightforward to show that their
sum vanishes. On the other hand, the k ' singu-
larities from all the J sectors except the con-
tribution from the part which is originated by the
—AR(&u) term in the Lagrangian [the first 2 x 2
matrices in (28a) and (28b)] sum up to zero. The
total result for the massless sector, then, can
be written as

We now turn to the question of eliminating these
ghosts and tachyons from the theory by choosing
the parameters appropriately. It turns out that
there are five solutions if we consider the case
of no extra gauge invariances and nondegenerate
mass parameters. We present and examine in
some detail those solutions in the following:

(i) A, =(BING), a= —5= —c= —&, p=q=r=s=t =0.
The Lagrangian corresponding to this choice of
parameters is in the Einstein-CBrtan Lagrangian

2= —&R((u) . (34)

Using (25) and the relevant projection operator
given in the Appendix for the complete saturated
propagator of this theory we find in addition to
(31) only two nonzero nonpropagating terms

11(2-)= 2~-' 7 P""(2-,q) ~ 7,
11(0-)= —z-'7 p "(0 , q)-~. ~

(35a)

(35b)

There is only one propagating mode in this theory
since the 2x 2 matrix in (31) is degenerate. Act-
ually, this theory has been studied extensively in
the literature, and it has been shown to be equiva-
lent to Einstein's theory if one does not couple to
fermionic matter.

(ii} A. =(8aG), a= —6= —c= —A. , p=r=s=t =0,
q& 0. The corresponding Lagrangian is the one
found by Neville, '

g yR + 1 R (Rabcd +Rcdab 4Racbd) (38)Ã 6 9' a~ca

This is indeed the only possibility if the torsion-
squared terms are not included in the theory. The
particle content of this theory is the graviton
[Eq. (31)] and a massive spin-0 excitation (tor-
sion):

II (2', 0'), = —A. -'k '(r,.g„)
2 1

II(0-) = —(qk't A.)-'7' P" (0-, m') ~ 7,
where

(37)

~C 6

x [Ptb (2', q) - -,'P&~(0, q)]:."'

(31)

where we have defined 7„=—8,7„„and
Pbg(~, n).,= PV(~ ).,I,-. (32)

A. &0. (33)

For general parameters, this contradicts the re-
sults of (29) for the 2' and 2 sectors, since if
a and A. are positive, so should aA. (a+ A) be posi-
tive.

The expression in the square brackets in (31) is
the familiar combination which arises in ordinary
gravity. Therefore, it follows that the no-ghost
condition for the massless sector is just

P~)~(J, m') = P~~(J )(ba 2 . (38)

+tR. (R"-R") . (39)

The remaining part of the complete saturated
propagator is (35a). [This theory reduces to Ein-
stein's as the torsion is set equal to zero, but this
has no dynamical meaning since &u„"= e~" (e) is
not a field equation. ]

(iii) X= (8mG) ', a=-&& a ~0 c(a+c) &0, P =r,
s= q=0, P& 0, P+t & 0. This is one of our new
Lagrangians without ghosts and tachyons. To ver-
ify that these parameters satisfy (29), one must
look at (25) to see when certain modes are non-
propagating. The Lagrangian is given by

2, = —XR+ —,'(a+ A.)R (Ra~ 2Rbca )

+-', (2c -a —3X)(R.bb)'

+ &rR (Rabcd 2Rcdab+ 2Racbd )COCO
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II (2 ) = —(r k'+ -,'a) ' 7' g~"(2, m') ~ 7,
11(0-)= b—'~ I (0 , q)

-~ ~,
II (1") = 2a '(2r + t )Z ~ px (1' q) ~ Z

Il(1 ) = [
—'(a c)(r +t ) b + —'ac]

(40a)

(40b)

(a+ c)
3

2c -a
(2c -a)
3V2
(2c —a)'
6(a+ c)

The graviton propagator is, again, as given in
(31). The rest of the complete saturated propaga
tor is

spin-1 tordions. It has five parameters and re-
duces to Einstein's theory as torsion vanishes.
An interesting special case of , is for 2c —a = 3A,
t =0, x=- 3p & 0, and g+X=4ot & 0:

Z=-~R+uR (R'"-2R" )

+ P R (Rabcd 2Rcdab + 2Racbd ) (41)

This action reduces to the Einstein action if one
sets the (propagating) torsion equal to zero.

(iv) A. = (8zG) ', a= —c= —A., b& A. & 0, P=O,
s= —t, q& 0, (2r+t) &0. This is our second ghost-
and tachyon-free Lagrangian

Z„= m+-,', (b--~)R.„(R b +2R" )

»,;(I-, m') I

T /
(40d) + 1 qR (Rabcd+Rcdab 4Racbd ) rR Rcdab

abed abed

where we have used (25), the source constraints,
and the explicit forms of the projection operators
which are given in the Appendix. As is apparent
from (40), this Lagrangian propagates, in addition
to the graviton, a massive spin-2 and massive

—2tA, qA' .
From (25), by using the explicit form of the pro-
jection operators, the source constraints, and
summing the kinematical singularities one obtains
the following complete saturated propagator:

II(2 )= —2a '7'P (2, q) ~ v,

II(0-) = —(qk'+ b)-'T I "~(0 , &) ~ ~,
-

(42a)

(42b)

11(1')=[-,'(b -X)(2r+t)b' ,'bZ] -'g-(~-7) ~

(b -X)-
3

—(2b+ A.)
3~

—(2b+ ~)

~

t' lp-(i' ')
I—(2b+ A.)'

8(b-~) f
(42c)

11(2',0').„„.„=—& 'b '(») l, ~
[I;;(2',q) ,'P,";(-0-',q)] I

+Z [—2(2r+t)A. 'P,","(2', q) —(r+'2t)A 'P (0a+cq)] (42d)

where we have suppressed the indices of ~«» ~,» and T„—= ~, ~«, . Note that if we eliminate the massive
spin-0 excitation by setting q equal to zero and also choose r =0, we obtain a particularly simple special
case of ~sr.

Z = m+ uR — (R"+ 2Rb-)+ pR.„R" (43)

where we have relabeled the original parameters so that u & 0 and p & 0. This theory propagates a, massive
spin-1 with mass m = —&(&+12u)/4up in addition to the graviton. It is also interesting to note that if we
set the torsion equal to zero by hand, g, z or 2 given in (43) reduce to Lagrangians (uR+ pR„, ) which con-
tain ghosts. Of course, as we will see later, the opposite of this is possible, namely, of one replaces
~(e) by e in a ghost-free gravity Lagrangian, the resulting Lagrangian usually contains ghosts.

(v) A. =(8wG) ', ae0, b&0, c& A, p=0, s= —t =2r, q& 0, r& 0. This is the third new ghost- and tachyon-
free Lagrangian that we find. From (2) it is

&«, = —~+,—', (4a+ b —&)(R,~ )'+ —,'. (- 2a+ b —3A)R,~R""

+ ~( a+ 2c 3/)(R b)a+ 1 qR (Rabcd+Rcdab 4Racbd)+r( R Rcdab 4R Rba) (44)

The terms with & and q constitute the solution under (ii).
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This theory, in addition to the graviton [see (31)],
propagates a massive spin-0' and a massive spin-
0 excitation given by

Il(0') = ——,'(p —r+2s) '0 '(v Z) ~

~1 2

11(0 ) = —(qk'+ b) ' T P" (0,m') 7,

Il(0')= [-0'+ ', c-Xr '(e —X) 'j ' (45a)

xPfg'(0', q) ~

--,'c 'k '& P~»~(0', q) Z

(2(c —A.)
~ cA.

c

c

c'(c —Z) 'f

(45b)

For the nonpropagating part of the complete satur-
ated propagator one finds

II (1 ) = ——,
' (ac ) '(a+ c ) v P„(1,q) .~ . (46)

2= —AD+ n(R,~ )'+ p( R,~,„R'~-' +4R,~R"), (47)

where a&0, p & 0. The [(R,~)' —2(R,~~)'] combi-
nation alone for the torsion-squared part of the
Lagrangian, which has been used by Hehl et al. '
in their Lagrangian, is not allowed here as a
special case since it requires c = ~, which dis-
obeys the constraint c» we have imposed on c.

We now briefly. discuss two special cases which
we have avoided so far. One of these cases is
~= 0, but without extra gauge invariances. This
is an 'interesting case to look at because this La-
grangian is very much Yang-Mills type. In that
case, the J =(2, 1', 0 ) sectors do not change
but the JP = (2', 0') sectors take the form

2 i
Il(2')= —(2p —2r+s) 'k '(v Z) ~

l

In obtaining these results we have used (25) and

(28), the explicit forms of the projection operators
together with the source constraints and we have
summed all the kinematical singularities. The
torsion-free limit of this theory turns out to be
Z = —AR(~(e))+r R'(&u(e)) with r&0 which is known
to be ghost-free. Elimination of the spin-0 state,
together with a suitable choice of parameters, as
before, leads to a very simple Lagrangian:

(48b)

where 7„=-8,~„, as before and 7, =—8, 8, ~,~. In
obtaining this result, we have again summed all
the massless pole contributions from all the sec-
tors and we have used the source constraints to-
gether with the explicit form of the spin projection
operators provided in the Appendix. We observe
that no extra gauge invariance exists which leads
to a source constraint such that T„and Z„be-
come related. Therefore, the only way to elimi-
nate the k 4 singularities is to choose P =& and
s=0. The Lagrangian, then, has a new gauge in-
variance and that implies a new source constraint,
as it is manifest from (19). This is an example
to the second special case, namely, when the
Lagrangian has extra gauge invariances. Unfor-
tunately, explicit calculation shows that the
J = (2', 0') sector is completely eliminated by
this extra gauge invariance, when (as usual) we
sum up all the massless pole contributions to the
saturated propagator. The absence of the graviton
in this model makes it uninteresting. One can of
course design gauge invariances in several ways
by just inspecting (25), and hope to eliminate some
of the troublesome constraints on the Lagrangian
parameters [see (29)] by using the new source
constraints. However, due to the proliferation of
the massless states, the analysis of the residue
matrices and the spurious spin-projection-opera-
tor singularities becomes very complicated. We
will be content, at the present, with the results
obtained here, but needless to mention, a complete
analysis of all possible gauge invariances and/or
massless states (in addition to the graviton) is of
considerable interest. It is not unmanageable if the
present machinery is used.

V. CONCLUSIONS

x P~»~(2+, q) ~

J

-a 'k 'Z ~ P~22~(2', q) ~ &

+2a '0 'v P""(2' q)" ~ i ~

—4a 'k '(2p —2r+s)(r~) (48a)

In this article we have considered the most gen-
eral action depending on the vierbein fiel.d e„and
the spin connection ao„", with the following pro-
perties:

(I) It is invariant under spacetime symmetries
(general coordinate and local Lorentz invariance).

(II) It contains at most two derivatives. Requir-
ing unitarity, i.e., first-order poles with positive
residues at real masses of the propagators sand-
wiched between sources which satisfy only those
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source constraints which follow from the field
equations, we completely solved the case that

(A) there are no other gauge invariances besides
those in I,

(B) all masses are nondegenerate, i.e., no two
masses become accidentally equal by a particular
choice of parameters. In particular, the only
massless mode is the graviton.

We did not require power-counting renormaliz-
ability as done in Refs. 5 and 6 since this leads in
our opinion to ghosts and techyons. Under these
conditions the following actions were found:

(i) Einstein-Cartan theory with action R(&u, e) and
Einstein theory with action R(e);

(ii) a solution previously found by Neville, '

= —AA(e e)+ o.R (R"' +R' "—4R )N abed

states.
These results were obtained by noting that at

the massive poles the traces of the separate spin-
block coefficients always factorize into squares
with positive coefficients, so that the conditions of
absence of tachyons and ghosts could be obtained
easily and in simple form. For the singularities
at k'=0, partially due to the singularities in the
spin projection Operators, a remarkable and
probably general result was found: The sum of all
singularities at @2=0 cancels except for a term
proportional to the graviton propagator of Einstein
theory divided by the coefficient of R(&u(e))

d4

(reeidue at k'=0) = ~'-(S &
cb a&cab) .2 1

~~aa Ibb' +~ah Ibd 'lab ~a' b )'
(49)

where»0 and o, & 0 are free parameters and all
R' terms here and below depend on (e, e) but not
on (e, u&(e)), as required by II;

(iii) a new five-parameter ghost- and tachyon-
free action given by

g, = Xa(e, ~)+nR„,(R" 2R"')+-P(R.,b)'

+yR (Rabcd 2Rcdab+2Racbd)
abed

+ 5 R,b(R'b —Rb'), (50)

where X&0, o.'&X/4, (P+4o) (2X+3P+4o') & 0,
y&0, and 3y+5&0;

(iv) a new five-parameter ghost- and tachyon-
free action given by

Z„=-~(e, ~)+ nR. (R "'+2R" )

pR (Rabcd+Rcdab '4Racbd) + y R Rcdab
abed abed

+SR,P ',
where A. &0, cd&0, p&0, 4y+5&0;

(v) a new six-parameter ghost- and tachyon-
free action given by

g, ~~
= -AR (e, (u) + Cd(R, b,)'y PR„,Rbca+ y(R,b')'

+ gR (gabcd+Rcdab 4Racbd)
abed

(52)

where 2o. —POX, 4(o!+P)+X&0, 2o. —P+3y &0,
6&0, e&0.

The particle content is, in addition to a mass-
less spin-2' state (the graviton),

(a) no other state,
(b) a massive spin-0 state,
(c) a massive spin-2 and massive spin-1 states,
(d) a massive spin-1' and massive spin-0 states,

and
(e) a massive spin-0' and massive spin-0 g = o.[(R„,)' 2(R„')']+P(R„„)', (54)

I I bd I

+ad bd

The absence of ghosts for X&0 was already dis-
cussed in Ref. 4. Hence, the whole 0'=0 sector
is acceptable provided A. &0.

It is interesting in itself that these solutions
given above exist at all, but future work should
proceed in three ways:

(i) The cases not covered under (A) and (B)
should be investigated. This will need our spin
projection operators. Quite possibly, new so-
lutions with extra gauge invariances (and hence
new source constraints) might lead to surprises.
These new gauge invariances can be easily found,
since they arise each time a spin block has a new
zero eigenvalue. Note that criterion I on the (e, u&)

basis is not satisfied on another basis such as
vierbein field plus contortion.

(ii) One should analyze whether our new solu-
tions have better ultraviolet properties than Ein-
stein's theory. At first sight the only hopeful
direction is that of finiteness of the S matrix,
since our unitary solutions are not in general
power-counting renormalizable.

(iii) An even wider class of gravitational the-
ories is possible if one relaxes the constraint
D,g„=0 and examines the physics of propagating
torsion.

Various models of (R +R)'-type theories have
been proposed in the past based on various ge-
ometrical and other points of view. With our set
of projection operators we were able to analyze
them to decide whether they have ghosts andlor
tachyons. We now give this list:

(a) Hehl, Ne'eman, Nitsch, and von der Heyde's'
action
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where n &0 and p &0, has a 1' ghost and double
poles.

(b) Yang's" action

Z = o.(R, , )

has dipole ghosts at 4 =O.
(c) Fairchild's" action

at higher-loop levels. Recently Grisaru and 2', ak'
showed that in Einstein gravity, helicity is not
conserved. It is not excluded that our new so-
lutions conserve helicity and have better loop
behavior.
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where X&0 and o.'&0, has a 2 tachyon.
(d) Mansouri and Chang's'2 action

g = -XR(e, &u(e))+ o[R,~,~(e, e(e))]'
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is a higher-derivative theory (see II).
(e) Carmeli's" action has the same field equa-

tions as Einstein theory and is thus nonrenor-
maliz able.

(f) Nieh's' recent action

2 = —XB+n(R, ~,) +P(R,~,~)

where 2o. =k&0 and p&0, has a 0' ghost. (In
addition, there are massless poles which might
lead to dipole or new ghosts. These were not
considered in this paper but. cannot eliminate the
massive ghost. )

%e would like to hope that our new unitary the-
ories have interesting ultraviolet properties.
Grisaru, van Nieuwenhuizen, and Wu" pointed out
several years ago that if Einstein gravity does
conserve helicity, it would have a finite 8 matrix

APPENDIX

(eee)...=8„.8„.8„, ,

(8(de)~ = et, , (d, e

(~94m =~au euv ~

(ee)., =e...e„, , etc.

(Al)

We also defind k, =k, /vk . The complete set of
projection operators satisfying the relations given
in (16) are

In this appendix we present the spin projection
operators P~~(J~)

8 which are used to decompose
the fields h„and ~„b into components with definite
spin-parity. Following Neville's notation we often
keep the primed indices in a fixed order and sup-
press them. For example,

p""(2-)= ', (eee)..-. +,'(eee).„e„e..e„.
p""(o ) =-', (eee)...+-', (889).„,

(A2a)

(A2b)

—,
'

k,. (ee). ,

(98&v)„,+(8&u9)„, -W2(&see), ~ W2k, (88)„
-u2 (cure)„, (u&98)„, —,

'
k, (88)„

&2k, (88), , 2(88)„

(A2c)

8 b8 go

V2 Q)q~e, 8

P',.;(1 ) = W2k, e,., e...
&2k'„8,, , 8...

~~ecseaa ~c ~

2' bg g CO

v2 k, , {ee).,„
v2 k„, (88)...,

v2 k~. e,~e„,

W2k~(88)„

2(e(u)„

2((08)„

v2 k, , e,„e~
W2k~(88)

2 (8(u)„

2(8(u).,

(A2d)

(88~)...+(88~).„28„~.,-8„&ak„[(8,8),. ', e,.e. ,]-tyP j-
Wzk, ,[(ee)..., --,' e,...e„] (ee)., —,'e.,e„.

(A2e)

s ~cbaa'~c'b'
v2

k,e„e,, y $2/2 k„e„+„

p~;(0 )= W2

3 kb'e""e'b

,v 2l2k, e,.~, ~g ~

13e.b~" b

1—~abaca bv'3
(A2f)
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I'"", P"", and P" are to be antisymmetrized in

(a, b) and (a', b'), P"' is to be symmetrized in
(a'b') and antisymmetrized in (a, b), P"" is to be
symmetrized in both (a, b) and (a'b').

Consider first the diagonal projection operators
P~;~(J ) z. Their derivation amounts to addition of
angular momenta. Since 8„projects out the J
=1 part and co~ projects out the J =0' part of a
Lorentz vector index b, the field h„decomposes
as follows":

2 0+ i+

(neO)e(aeo)=(m — m) + Za + g
I I 0+~+ g + (A2)

(ceo) s(H g) =(Ep — Lgl2)) + p +:
0+

where, for example,

where represents 6„, 0 represents ~„, and

double crosses denote the "trace, " in the sense
that, say, the trace of (89)„ is 39„6,, , Thus,
from Eq. (A3), after fixing the overall normali-
zation factor, one obtains the pp and yy operators.

On the other hand, the field ~,~ decomposes
as follows:

o ci
ib ((888)a~b + (888) ~gb ) —ia-b)

(ee~)cab (c a) (A5)

Rb
= [i"e~) «b .

Thus, from the diagrams given in Eq. (A5), by
first symmetrizing the row indices and then anti-
symmetrizing the column indices of the boxes, all
P,","(J )„;' can be constructed. From these the
transition operators were obtained, using (16a).
[It is understood that all the expressions are to be
symmetrized as mentioned below (A2f).j

In Ref. 5, Neville has constructed, in a some-
what different way, a set of projection operators
excluding the ones acting on y„, since he works
in the gauge e,„=e„.With our complete set of
projection operators one can work in any gauge.
Our P~~(l'), ~, i,j ~ 2 are not the same as those
of Neville, but rather they are related by an ortho-
gonal transformation as follows:

P"*'(1')
~ I N.,in. =&;.&sr'(I').

t I ....&'i, ,

where

(A6)

1 -W2 1

In general, spin projection operators are unique

up to orthogonal transformations, as we may easily
verify for the two-dimensional case.

A complete check of these spin projection op-
erators involves an examination of many relations.
Although many of these relations are trivial, there
are less trivial ones and for that matter we have

used the algebraic computer program
SCHOONSCHlp to check all of these relations.
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