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We discuss the ambiguity in the determination of phase shifts, allowed by knowledge of the modulus in

the three physical channels, for an amplitude which satisfies Mandelstam analyticity and has normal

thresholds. We show that, under certain (weak) conditions, the ambiguity is of a discrete type, rather than

continuous, as one would expect from the situation in one complex variable. The study is independent of
the requirement of elastic unitarity and rests mostly on the analyticity properties of the amplitude.

I. INTRODUCTION

The problem of the ambiguity appearing in the
determination of the phase of a scattering ampli-
tude from its modulus has attracted considerable
attention over the last ten years. There are clear
practical reasons for this, since one would like
to under stand to what extent the baryon and meson
spectra are reallyknownatpresent from the avail-
able phase-shift analyses. Very interesting stud-
ies of mathematical physics have simultaneously
grown out of this research, as one has tried to
describe in precise terms the extent of the ambi-
guities for idealized, error-free data. These
studies have intrinsic mathematical beauty, and
some of them are a necessary prerequisite for a
meaningful discussion of any phase-shift analysis.

In practice, it has become customary to classify
solutions of phase-shift analyses according to the
distribution of their zeros in the complex cosine
plane at fixed energy. This has followed the
work of Refs. 1 and 2. The complex position of a
zero of the amplitude lying on the physical sheet
of the cosine plane can be determined directly
from the measured differential cross section (and
polarization for mN scattering ) up to the sign of
the imaginary part (or up to a reflection across
the unit circle in mN scattering ). This discrete
ambiguity is clearly seen in the analytic extension
to complex values of z = cos8 (e =c.m. scattering
angle) of the measured differential cross section

(s, z) =A(s, z)A*(s, z")=-~,(z) .
dQ

The function M, (z) is real analytic in z and has
complex-conjugate zeros; we do not know a priori
how to distribute them among the two factors of
Eq. (1.1), one of which is the true amplitude.

Unitarity requirements on A can remove part of
this ambiguity, although it has been shown that
even elastic unitarity cannot in general resolve it
completely.

It is also well known that even if the discrete
ambiguity of the zeros in the cut cosine plane is

resolved, a continuum ambiguity is still left in
the determination of the phase, at energies where
inelasticity occurs. The amplitude can indeed be
written at fixed energy as

A(s, z) =, , [z —z, (s)]O(z),

where z, (s) are N zeros on the physical sheet,
and O(z) is a function having the cuts, no zeros
in the cut cosine plane, and a known modulus in
the physical region. It is easy to construct func-
tions which are free of zeros on the physical sheet
at fixed energy and have modulus equal to one on
the real axis between the cuts. These functions
make up the possible infinite ambiguity which is
left in the determination of the phase, after the
discrete ambiguity has been disposed of. In prac-
tice, ' O(z) is assumed to produce a slow variation
of the phase and one sometimes' believes that a
good approximation of its effect is obtained by
very simple functional forms. The unitarity in-
equalities restrict the choices for O(z), but al-
most never completely. It was shown in detail, '

by using refined mathematical techniques, how
one can generate a continuum of different solu-
tions, keeping consistency with unitarity and the
given data, at fixed energy.

In these studies, the amplitude is regarded as a
function solely of the c.m. scattering angle and
one can wonder whether additional constraints on
the phase appear if its dependence on the energy
is also taken into account. In this connection, it
has been argued in practical (and nonrigorous)
terms in Refs. 8-10 that a partial reduction of the
discrete ambiguity can be achieved by applying
Weierstrass's preparation theorem to the ampli-
tude A(s, t) at points where two zero trajectories
[these are complex functions t(s) which are such
that A(s, t(s))=—0] come close to each other ("in-
tersect" ). The main point is that two zero tra-
jectories tq, 2(s) of a function A(s, t), holomorphic
in s and t in a certain domain, are allowed (but
not obliged) to develop individually singularities
at the point s, where they cross [t,(s,) = t, (s,)],
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but only in a correlated manner; namely, so that
their singularities cancel each other out when the
symmetric combinations tq(s) + tq(s) and tq(s)t2(s)
are built. If it is allowed to regard the amplitude
as holomorphic in two variables in the neighbor-
hood of points lying in the physical region (which
is not strictly correct), one can check that such
a cancellation of singularities does not occur for
any resolution of the discrete ambiguity (see Sec.
III C); this way one can reduce the number of ac-
ceptable solutions.

The reasons for starting the investigations of
the present paper were twofold. First, the author
wished to understand the procedure of resolving
ambiguities by means of zero trajectories in more
rigorous terms; does it follow from more general
principles that independent reflections of zeros
lead to a violation of two-variable analyticity?
Secondly, he wished to see whether a resolution
of the discrete ambiguity on larger intervals of
energy affects the extent of the continuum ambi-
guity. Let us notice that, on general grounds,
this is not an unexpected occurrence. Indeed,
knowledge of a zero trajectory t(s) of the ampli-
tude A(s, t) on a certain interval of energies al-
lows its analytic extrapolation to fixed real t, i.e. ,
the determination of those complex points s, for
which t=t(s) is a real number, and A(s, I) =0. If
we know the position of the zeros of the function
A(s, t) in the complex s plane at fixed real t, t & 0,
and its modulus on the cuts, A(s, t) is completely
determined, and no continuum ambiguity exists.
The difficulty is, however, to show that we obtain
all zeros of A(s, t) lying on the physical sheet of
the complex s plane at fixed t, t & 0, by such an
extrapolation.

In the present paper, neither of these questions
will be answered in the simple form stated above,
which would be interesting for practical purposes.
However, the present author thinks that the re-
sults which can be proved are sufficient to make it
plausible that two-variable analyticity is a rather
important restriction on the amplitude, which can
limit, in principle drastically, the class of solu-
tions allowed by fixed-energy phase-shift analysis.

To formulate a coherent problem, we shall as-
sume in this paper that the modulus is given in
the three physical channels of a reaction which
has normal thresholds in all of them, and that the
amplitude has Mandeistam analyticity (which does
not mean that it satisfies the Mandelstam repre-
sentation). We then ask whether one can obtain
information on the phase if one resolves the dis-
crete ambiguity of the zeros at all energies in all
channels, not just at a single value. The conclu- .

sion appears to be rather simple and does not
seem to have been stated so far, it says essential-

II. ON THE CONTINUUM AMBIGUITY

A. Notation and statement of a theorem

Before stating the theorem which is the object
of this section, we introduce part of the notation.
For the description of the Mandelstam domain,
we use the variables

0 = (4m' —s)', e = (4m —t)', q= (4m2 —u)'+,

where s, t, and u are the usual Mandelstam vari-
ables and m is the mass of the pion. The roots in
(2.1) have cuts along (4m, ~) and are such that
they map the s, t, and u planes minus these cuts
onto

Ref & 0-, Ree & 0, Reg & 0, (2.2)

ly that, under some weak conditions to be speci-
fied, there is then no continuum ambiguity left,
only as an effect of the two-variable structure in
the Mandelstam domain. The hypothesis of Man-
delstam analyticity plays a crucial role and the
result is not true for the axiomatic domain. We
discuss this in Sec. II. In these investigations
we make essential use of a result of Burkhardt
and Martin concerning a general expression for
the ratio of two amplitudes which have the same
modulus in the three physical channels. The
question of the extent to which two-variable ana-
lyticity fixes the phase was actually first raised
in Ref. 11.

In Sec. III we try to describe, at least in prin-
ciple, how one can construct the possible dis-
crete ambiguities of the amplitude, if one knows
the function giving the modulus in all three chan-
nels (Sec. IIIA). If an upper bound is available
for the number of zeros at complex s values in
some interval of real t values ( t

~

& 4m, '), then
even the extent of the discrete ambiguity is limited
with respect to the estimate at fixed t ~ 4n, ' again
by considerations based on two-variable analyti-
city. We shall actually see that, in general, only
part of the zeros present in the cosine plane at
fixed t& 4m, ' can be reflected without violating
two-variable analyticity. Further, those reflec-
tions of zeros that are allowed cannot be perfor-
med independently of each other. This is discus-
sed in Sec. III B. In Sec. III C, we recall the way
Weierstrass's preparation theorem can be plausi-
bly used to remove discrete ambiguities.

The author points out that of all the properties
of the scattering amplitude, this paper uses only
two-variable analyticity, and ignores the con-
straint of unitarity (except for positivity, in Sec.
III B).
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respectively. The Mandelstam domain 3R consists
of all points Pc CP with coordinates (r, 8, q) which
fulfill the inequalities (2.2) and lie on the manifold,
which we call 8:

)2+ g2+ ~2 8~2 (2.3)

The physical region of the s channel 6, consists of
those points (f, 8, q) of the closure g' of the Man-
delstam domain, for which f is positive imaginary
and 8 and q are real and less than -2':

Im8 = 0, Re8 &-2m, Imp = 0, Rebel &-2m).

(2.4)

Similar definitions hold obviously for the t and u
channels and thephysical region is (P = 6', U p, U (P„.
For the amplitude, we write either A(s, t, u) or
A(0, 8, 'g). We wish to consider sometimes the
properties of A(s, t, u) (or of any other function
defined in the Mandelstam domain or on 3) as a
function of one variable, when s, t, or u is held
fixed. We write then, e. g. , A, (f)=—A(sp t Q) if

0
we regard A as a function of t at fixed s =sp.

We say that an amplitude A(s, t, u} has Mandel-
stam analyticity if (i) it is a holomorphic function
of two variables in the Mandelstam domain %, (ii)
for s=sp+pE sp~ 4m (Ref=0, Imp~ 0), the
limiting function A,(t) exists and is holomorphic in
the t plane cut along -~ & t &- sp, 4m & t & ~, (iii)
property (ii) holds when the s channel is replaced
by the t and u channels, and A, (t) by the corre-
sponding limiting functions.

The statement which we wish to prove is the
following: If Aq and Ap are two amplitudes which
(a) have Mandelstam analyticity and are of the
real type, and (b) have the same modulus in the
physical region of the three channels; and are
such that (c) for s=sp+ie, sp real, sp&4m, the
functions of I, A;,(I), i = 1, 2 are continuous in
the corresponding cut t plane including the cuts
and have a phase which is piecewise Holder con-
tinuous along the cuts; (d) there exists an interval
I, ofrealvaluesof t, I, & (-4m', 4m') so that, for t
&I„ the real analytic functions of s, A«(s), i = 1, 2

are continuous in the cut s plane, including the cuts,
and their phases are piecewise Holder continuous and

uniformly bounded with respect to s, when s lies on

the cuts; (e) for t &I„ the functions A«(s), i= 1, 2

are bounded by a polynomial in s, in the whole cut
s plane, including the cuts; (f) there exists an in-
terval I, of real s values, I,c (-4m, 4m ), with
the same properties (d) and (e) as I„with respect
to the functions A«(t), i = 1, 2; and (g) the dis-
crete ambiguity of the zeros has been resolved
for both amplitudes in the same way in each chan-
nel, including the cuts in the s channel, then the

ratio of the two amplitudes is +1. The meaning
of the phrase "including the cuts in the s channel"
in condition (g) of the theorem requires some dis-
cussion and is explained under point 5 of the next
paragraph.

B. Comments

M „(t)= A„(t)Af,(t*), i = 1, 2 . (2.5)

The functions M„(t) represent the moduli (squared)
of the amplitudes as long as t = t~ in (2.5), that is,
on the segment of the real axis lying between the
cuts. So, if the moduli of A„(t), i=1, 2 are equal
[condition (b)] in the physical region e„ they
must be equal in the whole t interval —s & t & 4m .
Further, since for real t, the functions A, (s, t)
are real analytic ins, it follows thatA, ,p (t) =A,*.,(t)
=A,*,(t*), and we see from (2.5) that Mq, ~(t)
=M„~(t). We conclude that, with the notation of
(2.1), the equality of the moduli of the two ampli-

We next give some comments concerning this
statement.

(1) The s channel of condition (c) can be replaced
by any other channel. Similarly, any pair of chan-
nels can be used in the formulation of conditions
(d), (e), and (f), independently of the one appear-
ing in condition (c).

(2) Condition (c) concerning the continuity of the
amplitude in the cut t plane, including the cuts,
does not imply any restriction on the behavior of
the amplitude at infinity in the cut t plane. One
needs only the following: Consider a finite point
tp+ie lying on the cut and the intersection U, (p')

of an open disk around t p+ i& of radius r with the

open cut t plane (this is an open half disk); we

require the amplitudes to be continuous in the
closed U, for all tp&~. A similar comment ap-

0
plies to condition (d) concerning the continuity of
A„(s).

(3) The phases to which conditions (c) and (d)
refer are defined by continuity from thresholds
along the cuts, supplemented by small excursions
in the complex plane if one meets a zero. This
procedure gives a unique result if there is no ac-
cumulation of zeros to some point of the cut. We
assume this is true. Condition (d) concerning
the boundedness of the phase requires in addition
that there be only a finite number of zeros on the
two cuts. In condition (c), we do not require the
phase to stay bounded, as we move to infinity
along the cut.

(4) At fixed s=sp+ pe, sp&4m, the modulus

squared of the functions can be analytically con-
tinued to the whole cut t plane by formula (1.1},
which we rewrite as
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tudes holds in the enlarged region

8', =f(g, 8, q) ~(g, 8, ri)c5}I, Reg=O,

Imp WO, Im8=0, Imq=Oj. (2.5}

C. Outline of the proof

The proof of the statement uses in an essential
manner a result of Ref. 11, according to which
the ratio of two amplitudes which are holomorphic
in the axiomatic analyticity domain and have the

The same is obviously true for the t and u chari-
nels. For the purposes of this paper, (2.6) will
be referred to as "the physical region of the s
channel. "

(5) Under condition (c), it is meaningful to talk
about a "zero of A„(t) lying on the cut" of order p,
at a point t~+ is, to E(4m, ~) U (-~, —so) for s =s,
+is, so) 4m if lim. ..A„(to+i&)/(t —t,) is finite,
but lim. ..A„(t, +is)/(t —t, )~" is infinite as t aP-
proaches to from above or along the real axis
(p~ 0). It is indeed possible to show that if A„(to
+ ie) =0 and condition (c) holds, then an integer P
exists, having the properties stated above (i. e. ,
to any zero we can associate uniquely its order).
The proof of this assertion is done in Appendix A.
If A„(t) has, e.g. , a simple zero on the cut, then
the analytic extension M„(t) of the modulus func-
tion according to (2.5) has also at least a simple
zero at t, + ic [if condition (c} holds]. The same
happens if A„(f*) has a simple zero at f, +it, to on
the cut. One is tempted to think that the situation
is similar to the one in which to is an interior
point of the analyticity domain, and that a simple
zero of the function M~, (t) lying on the cut leads to
a twofold ambiguity when the amplitude is recon-
structed. This is, however, not obvious. In-
deed, it is possible a priori, for any o., 0& ~ &1
to part a simple zero lying on the cut of M&,(t)
into two factors (f —t,)', (t —f,)' ', and assign
them to A„(t),A,*,(t ), respectively. This can be
done without affecting the analyticity properties
of Aq, (t) or A~, '(f ) at fixed energy and would cor-
respond to a continuum ambiguity.

We shall show explicitly in Sec. II M that if two
amplitudes obey conditions (a), (b), and (c) of the
theorem, then a simple zero of M„(t) lying on the
cut can lead to at most a twofold ambiguity in the
reconstruction of A„(t) at fixed energy. [The
ambiguity concerns the behavior of Aq, (t) at the
zero of Mq, (t).] This will justify the formulation
of condition (g). For the time being, we shall
take condition (g) to mean that the two amplitudes
have zeros of the same order at those points of
the complex t plane, including the cuts, where
M„(t) [=M„(t)] in Eq. (2.5) vanishes (for s=so
+ i&, s, )4m') .

same modulus in the physical region of the three
channels can be represented in the form

A, (s, t, u) y(s, t, u) g8—q
A, (s, t, u) f(s, t, u)+f 8q ' (2.7)

Bye={(f,8, q) c Z
~
Ref &0, Re8=0, Remi&0],

and (iii) the function of f, R„(f), has neither zeros
nor poles in the set

B,5g=((K, 8, '0) & &
~
Ret & 0, Re8 & 0, Re7i=O],

then 8=+1. We denote B~SP:=B~SKU BgSRU8„3R and
notice the slight asymmetry of 8& with respect
to the other two. The sets B &5|I, By5}t', and BPg
represent the physical sheets of the cut cosine
planes for all energies in the s, t, and u channels,
respectively; the cuts themselves are included in
B,3g, but not in BPQ and B„K. We prove state-
ment (A) in Sec. IIG-IIL. To make use of state-
ment (A), we need two preparatory steps (B) and
(c):

(B) If A~ and A2 obey conditions (a), (b), (d),
(e), and (f) of Sec. II A, then fq(s, f) =f(s, f, u) in—
(2.7) is a rational function of s and t.

(C) If A, and A, obey conditions (a), (b), (c), and

(g), then the ratio R has neither zeros nor poles
in B&5g (as a function of the variable corresponding
to each subset).

The three statements (B), (C), and (A) yield
together the announced theorem. We now turn to
their explicit proof. We prove statement (B) in
Sec. IID and Sec. IIE, then statement (C) in Sec.
II F, and we turn after this to (A).

where f(s, t, u) is the ratio of two real analytic en-
tire functions of s, t, u. Clearly, f(s, t, u) can be
regarded as the ratio of two entire functions of
s, f only, because of the linear relation (2.3) be-
tween s, t, and u. We denote f,(s, t) =f(s, t-, u). The
remarkable quality of Eq. (2.7) is that it contains
none of the possible complicated singularities of
the amplitude, but has instead just two sheets in
each of the variables. Consequently, it is defined
at every point of the manifold 8, Eq. (2.3), with-
out the restrictions (2.2).

The theorem of Sec. IIA rests upon the following
property of the ratio R of Eq. (2.7):

(A) If f&(s, t) is a rational function of s, t and R
is such that (i) the function of 8, R~(8), assumes
only finite nonzero values in the set

8 qK =((f, 8, q) c S
( Ref = 0, Re 8 & 0, Re7i & 0),

(2.8)

(ii) the function of q, Ra(q) has neither zeros nor
poles in the set
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D. A preliminary step

To prove statement (B), we need a preliminary
step:

(Bl) If the amplitude A&(s, t) obeys conditions
(a), (d), and (e), then the function A&, (s) has at
most a finite number of zeros in the cut complex
s plane, corresponding to t c I, .

To show this, we use the variable v =s —u and
define, for t ~ I,

yI ( t)

V (V —V)

V 1g 'V

7T p V V V
(2.9)

where lt&f, and lt&",, are the phases of A&&(v) on the
upper sides of the u and s cuts, and v1 ——4m + t.
By condition (d) of Sec. IIA, the integrals con-
verge for all v in the cut v plane and have well
defined limits at all points on the lips of the cuts
(Ref. 13, p. 38). The function Q&&(v) has clearly
no zeros in the open cut v plane and has the phase
of the amplitude A&, (v) when v lies on the cuts.
Using the fact that lt&&„ lt& f, (v) are bounded for
! v'! & v„one can even find a lower bound for the
magnitude of 0&, (&/) at points lying on a circle of
sufficiently large radius ! v! in the complex plane'

( )! & S-s &«lnl/n&ln&n'l& (2.io}

where we have denoted v=!v! cos8+i!v! sin8, and
K is a constant depending on the bound on lt&. The
derivation of inequality (2.10) is straightforward,
but we give for completeness its details in Ap-
pendix B, including the meaning of "sufficiently
large ! v ." We define further

A&, (v) -=A«(v)/fl«(v), (2.1i)

whichis afunction havingthe same zeros as A„(v)
(except possibly for a finite number of zeros lying
on the cut), but is holomorphic (cf. Appendix A}
in the whole complex v plane. We can estimate
its magnitude on a circle of radius ! v!, by using
condition (e), according to which A&, (v) is poly-
nomially bounded in the cut v plane, for t (= I, :
!A„(v)!&K,e"'"" "&' forsome n, &,&0. We con-
clude

( )! !A ( )/fl ( )!( /&2&n(lnl /v&ln&n~l&

(2.i2)

for, e. g, K2 &2(K+n) and ! v! appropriately large.
But the principle of the maximum modulus tells
us that A„(v)! is actually a polynomial. Indeed,
we write that !A&,(v)! is less than a function hav-
ing no zeros in a circle of radius 2!v! and modu-
lus (2!v! /v, ! sin8! ) 2 on this circle:

1 f' 3 I 2V I rc
~+ exp —

!l ln . 2dy
»J0 4 —4cos(8 —4&)+1 &/&I sinyI

Dl I v ! (2.i3)

where D1 and D2 are constants, independent of
!v! . (We have applied Poisson's formula. ) Since
the bound (2.13) is true for all v, A„(v) must be
a polynomial, and so, have a finite number of
zeros. This proves statement (B1).

where z, (s) is the mapping from the cut s plane
onto the unit disk, so that +i corresponds to the
points at infinity above and below the cuts:

(
(4m' —u)'" —(4m' —s)'"
(4m' —u)'" + (4m' —s)'" ' (2.»)

[Formula (2.14) is not the Poisson formula, but
its complexified form (Schwartz-Villat) written
for real analytic functions of z, .] The subscripts
1 and 2 were dro ped in (2.14) from !A«(p)!, be-
cause !A«(y)! = A2, (p)!, t cI,. The function
E,(s) has no zeros in the cut s plane (open) and is
well defined in !z, ! & 1, since on the cuts !A, (s)!
is polynomially bounded, so that the integrand di-
verges only logarithmically at y=+&&'/2. Further,
it is known (Ref. 15, Theorems 1.2 and 1.3}that, be-
cause !A,(y)! is continuous, one can conclude
that, except for those points where !A,(p)!
=0 or is not finite, !E,(s)! —!A,(s, +is)!, as s

so+ iE, so & 4m, so &-t. If we now define
6«(z&, (s))=A«(z, (s))/E, (s) we see that, for t& I, ,

R(s, t, u) =$„4,(s)}/d&2, (s, (s)}. (2.16)

The functions l2«(z, (s) }, i = 1, 2 have modulus one
at all points on the cut, except possibly for a
finite number. We have further seen (Sec. IID)

E. Proof of statement (B)

We can now prove statement (B) of Sec. IIC,
namely thatf&(s, t) =f(s, t, u) —of Eq. (2.7) is ra-
tional, under conditions (a), (b), (d), (e), and (f)
of Sec. IIA. To this end, we choose t LI, and
compute explicitly the ratio R =A&(s, t, u)/A2(s, t, u).
We notice that the points lying on the u and s cuts,
s &- t and s & 4m, for teI, also lie in the ("exten-
ded, " see Sec. IIB) physical regions (P„(P„[see
Eq. (2.6)], where the moduli of the two amplitudes
are equal, by condition (b) (and Sec. IIB). It is
then convenient to define, for t c.I„ the function

1 ' 1 —z (s)E,(s) = exp—
2&/

l&
1 —2z, (s}cosy+ z, '(s)

x in! A, (q)!'dq, (2.14)
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that A«(zt(s)), i =1,2 have a finite number of
zeros'» inthe opencutsplane. If &~», s2», .. ., ~N, »

are the positions of the zeros of A«(Zt(s)), we
can define

N;
zt(s) —za t

1 —zy»zg (s)
(2.17)

Clearly, &«(zt(s) }have modulus one on the cuts.
We define now

Stt(zt) = tt(zt)~litt(zt) (2.13)

which are functions real holomorphic and without
zeros in the unit disk

~ z, ~

( 1, and with modulus
one almost everywhere on ~z, ~

=1. We show in
Appendix C that, as a consequence of conditions
(d) and (e) of Sec. IIA, S«(z, ) =+1.

We conclude that for tcI„

(2.19)

where the b», , 's are algebraic combinations of the
zaq, zx2 of (2.17), and N =Nt+N2 They a.re real
numbers since B„and 82, are real analytic func-
tions of z, . The validity of (2.19) is checked by
noticing that the right-hand side is rational, with
correct degree, and so constructed that it.has
modulus one on the unit circle. Using now in
(2.19) the expression (2.15) of the mapping z, (s)
we arrive at

7
Z ~ (t)t"s'+ n& Z P, (t)s' ' '

R(sit~u)= g g g

g u, (t)s ' —t}r.g p, (t)s
»=0 »~0

(2.20)

where F=[a(N+ I)] and we have eliminated terms
in tp by means of condition (2.3); ctt(t) and p, (t)
are real algebraic combinations of bt, t in (2.19)
and of possible terms containing t, coming from
(2.3). If N =Nq+N2 is odd, one needs to multiply
both numerator and denominator by a factor f (or
tl) in order to come to (2.20).

Clearly, the numbers Wq, N2 of zeros depend on
t. However, there exists a set I,' of values of t,
dense in some interval contained in I„such that,
for all t cI,', the number of zeros in the complex
s plane belonging to A~„A2, is bounded from above
by a certain number N (see Appendix D). We
conclude that Eq. (2.20) with F replaced by R
=N is valid for all tcft' (with some of the
&t(t), Pt(t) possibly equal to zero). We now com-
pare (2.20) with the general formula for R(s, t, u)

R(s, t, u) =+
2t ~t

b0,, +b, ,,z, +b2, ,z, +.. .+bN, ,z,2 N

N NZ N 2b0,,Z, +bf, ,s, +b2,~Z, +...+oN, ,

given by (2.7) and obtain this way, at fixed t c I,'
an expression for ft(s, t) -=f(s, t, u):

N Sl 8X

ut(t)S max '
t=o

p'. (t)Pm ax' ~

»=0

(2.21)

&km
y (s)tSmax t

A(, t)=
&mm-'

5'(s)@max t ~

»=0

(2.22)

with P,'(t) =Pt(t)/8. Let us now fix (2.21) at 2Z
+ 1 points s~, s2, . . .s2g, ~ of the complex s plane
and obtain this way, at all t cI,', 2N + 1 homo-
geneous equations which must be satisfied by the
coefficients &0, o.'q, .. . o's ~ Po, . . .Pg q W. e
show now that we can choose the solutions of this
set at each tc I,' in such a way that, when regarded
as a function of t, they are analytic in t in some
domain. To see this, we notice first that the rank
of the matrix of the set of equations is at least

+ 1. Indeed, the Vandermonde determinant
constructed from 1, s~, . . . , s& ~~, k = 1, 2, . . ., R
+ 1 does not vanish. Also, the rank is certainly less
than 2Z + 1, since there exists a nontrivial solu-
tion to the equations. Let then p be the rank of
the matrix, as far as identical vanishing in I, is
concerned (notice that all minors of the matrix are
ratios of entire functions of t) and let (u„
Pt'}t.t t, ', t t. . .t be the unknowns corre-
sponding to the nonvanishing minor. A particular
solution faao, Pttja qg~, q of the set of equations is
obtained' by setting the unknowns outside the set
Ii„...i, t equal to zero, except for one of them,
which we set, e. g. , equal to one. The solutions
obtained in this way are rational combinations of
a certain subset of the Jtt'(sa, t)ja P ", i. e. , are
ratios of entire functions of t. Further, the ra-
tional function of s constructed with ca(t), P,'(t) co-
incides, at each t&I,', with the right-hand side of
(2.21) at 2N + 1 values of s, and so in the whole
complex s plane. We conclude that we can re-
place &t(t), pt(t) by &t(t), pt(t) in (2.21) and obtain
for any complex s and for t (=- I,' an identity in t.
Since both sides are ratios of entire functions of
t, this can be extended to the whole complex t
plane and so becomes an identity for all s and t.
By multiplying all coefficients ctt(t), Pt(t) by an
appropriate entire function of t, we preserve the
identity (2.21) and find new coefficients, denoted
again by txt(t), Pt'(t), which are now entire func-
tions of t themselves.

Clearly, we can repeat the reasoning of this
paragraph for sc I„of condition (f), Sec. IIA,
and obtain another form for the function ft(s, t),
namely,
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wherey~(s), &f(s) can be chosen, as before, to be
entire functions of s, and ¹ is analogous to
F in (2.21).

To sum up, we have shown that the function fj(s, t}
has the property that, on one hand, it is a ration-
al function of s, with coefficients that are entire
(and real analytic) in t, and on the other hand, it
is a rational function of t with coefficients that are
entire (and real analytic) in s. We now show that
this implies it is a rational function of s and t.

To this end, we choose again 2N' + 1 points
t» t» ... , t,~,, and compute fq(s, t,), . . . ,f,(s, t2„"~ )
according to formula (2.21). These are all ration-
al functions of s. We obtain thus a set of equations
for yp(s), .. . , ys", &p(s), . . . , && q(s) which, by
the same reasoning as before, admits of a solution
in terms of rational functions of s. We conclude
then that fq(s, t) is actually a rational function of s.
This has completed the proof of statement (B).

We see we can now write

f,(s, t) =@(s,t)/g(s, t), (2.23)

edith h, g polynomials in s, t with real coefficients
and

I (s, t) —g8qg(s, t) R„(g, 8, q)
t(s, t)+g8qg(s, t) R, (g, 8, q)

' (2.24)

where R„and R~ are obviously the numerator and
denominator of R. Reasonings similar to those of
this paragraph can be found in Ref. 12, p. 275.

F. Proof of statement (C)

We now prove statement (C) of Sec. II C.
According to condition (g) the amplitudes Ai and

A2 are such that, e.g. , at fixed u =uo+ i &, uo & 4m
the zeros of the functions of t, Aq„(t) and A2„(t)
lying in the open cut t (cosine) plane coincide with
each other and have the same order. Since the
amplitudes are real analytic, A, (u, t) =A,*(u*, t*),
j = 1, 2 their zeros in the complex t plane must
coincide and have the same order also for g
=up —jE'. We conclude that their ratio R„(t)
=A,„(t)/A, „(t) has no zeros and poles in the
complex cut t plane, for u=up+i6 up&4m'.
For up=4m', we see in (2.19) that R(-t, t, 4m')
=+I (z, =-1 at u, =4m'), t cI„and so for all
t. So, the set of points at which zeros and
poles are excluded in this way, for all up
~ 4m, makes up the set 8„3I& of Sec. II C. Clearly,
R(s, t, u) has by the same argument no zeros and
poles in Bg9g, and in that part of B~gg which is ob-
tained by removing the equal sign in the two in-
equalities in (2.8).

We now show that condition (c) concerning the
continuity of the amplitude on the cuts prevents
zeros of Rp(8) -=R,(t) from appearing in the whole

&pK of (2.8), provided the zeros on the cut of A.,
and A2 are of the same order (Sec. IIB). To this
end, let us notice, also for further purposes, that
at fixed f, f 4+2m/2, the function Rp(8) has two
sheets, which can be uniformized by means of the
variable

pe=8+i@=—8+i(8m —r —8 ) (2.26)

G. Comment on the proof of (A)

We are now in a position to prove statement (A)
of Sec. II B, namely that R(s, t, u) =+1 if it is of
the form (2.24), and has no zeros and poles in
BpSlf, Re%, and BPR as a function of the correspon-
ding variable. The main part of the argument will
be to show that R(s, t, u) has under these condi-
tions neither zeros nor poles in the interior of
the Mandelstam analyticity domain [Eqs. (2.2)
and (2,3)].

To render this result plausible, we recall Har-

The only singularities of the function R&(&o) are
then a finite number of poles in co. Indeed, one
has 8=[&@+(8m —g )/iu]/2, q=[u& —(8m —r )/&o]/
2t which, when introduced in (2.24) yield a ration-
al function of &u (at fixed f) L.et us then consider
a zero of order P in both Aqp(8) and A2p(8), lying
at &up ——m(8p), on the image of the cuts through the
mapping (2.25), and compute

Rr((u) . A gp (t) ((u —(up)e
lim ~ —= lim p+]

au "s&p &d —(dp ~ gp (QJ —Q)p) A2p(t)

We can assume lime, [(&u —~p)/(t —tp)] is finite
and nonzero. Indeed, the only points where this
does not happen are 8=0 and g=0. But R=+1
there, by (2.19) and so, the fact that R is finite
and nonzero is trivially true. Then, according
to condition (g) and Sec. IIB, lim „Azt(t)/(&u
—cup)

' is infinite, whereas lim„„A2p(t)/(&e —&up)td «td 0
is finite (or zero). Consequently, a constant I.
& 0 exists, with the property ~((u —&up) /App(t)

~

&I.
for &u close to &up. We see that the limit in (2.26)
is infinite. Since R&(&u) is rational, we conclude
that it cannot have a zero at (do, but rather must
be finite there or have a pole.

We compute then

lim I/((u —(up)R p((u)
td «Cdp

= lim [A2p(t)/(~ —~p) '][((u —~p) /A„(t),
0 ep

which is again infinite, and so conclude that R&(&u)

is finite at u&p. We have shown this way that Rp(8)
is finite and nonzero in the whole BpSR [Eq. (2.8)].
We shall state that R&(8)" has neither zeros nor
poles in BPII", meaning that this is true at all
points of 8pII, except for the branch point pl =0,
where R =+1.
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togs's theorem (Ref. 12, p. 206), according to
which a function that is holomorphic in two vari-
ables in the two complex dimensional neighbor-
hood of any point of the boundary of a bounded do-
main (in C ) is holomorphic everywhere inside the
domain. Since the complex cosine planes at fixed
s =sp+s& sp ~ 4tP2 / =tp+i&, tp & 4&l Q=Qp+s&,
Qp ~ 4m (so to Mo real) make up the boundary BK
of the Mandelstam domain, we expect that the
absence of zeros or poles of R(s, t, u) on the bound-
ary somehow propagates to the interior of the
analyticity domain.

The main difficulty one faces in using this theo-
rem is to prove that the absence of zeros and poles
of R as a function of one variable in B&Sg& BOW, and
BPR implies the absence of zeros and poles in a
two (complex) dimensional neighborhood of a point
on the boundary of 3R. This can be done, but it is
complicated to study the analyticity and absence
of zeros of R(s, t, u) in the neighborhood of the
points at infinity. The author believes he can
circumvent this with an argument which exploits
directly the polynomial character of h, g [in Eq.
(2.24)].

We are then rewarded with the (esoteric} finding
that, under conditions (d), (e), and (f) of Sec. IIA,
it is not even necessary to exclude zeros and poles
in all of B3g, which includes the closure of Bg3I&,

BPp (equality signs in their definitions), as would
be required by Hartogs's theorem, but only on B&%

UBg9RU8„%, where

B,'8)f=&(&, 8, q}c sla&
l

imp l
&B,

fixed real e, f~p lies on the same sheet as fp, if
the cuts of q(f, 8) go from +(8m —8 )' to infinity].
But for HcI, R~(fo, 8, q) =R„(g,8, q*), by the
real analyticity of R„. Therefore, the holomor-
phic function of 8, R„($0, 8, q(f~q, 8)}vanishes on I
and so everywhere. So, R„(f~p 8 p) —= 0 for all
(H, q) so that (g, 8, 1) & 8.

Consider now an interval I' of values 8 along
Re8 =0. We can solve for q = q($0, 8) in the neigh-
borhood of I'. We write 8=i l8l for 8+I'; for
-(8~'+

l
8

l

')'I' & e & (8I'+ l
8 I')'", « I', n(K, 8) is

real, and so rl(g, 8) =q"(fo, 8). From the defini-
tion of R„, Eq. (2.24), we see that

R&&(&0& 8, 'q) =h(so, t)

+i+ l8 lq*g(s*„ t) =0, 8 ~I'. (2.27)

We have denoted sp —4m' —gp . We combine
this with

R„(&*„8,q}= I (s,*, t)

—i l*,
l
8

l q*(&„8)g(s*„t) = 0, 8 cI'.
(2.28)

We conclude that h(so, t) —= 0 for an interval of t
values, lmt=0, t&4m . Also, since &0&0, g(so& t)
—= 0 there. Since k and g are polynomials, the
only possibility is that both h and g contain a cer-
tain number of factors of (s —so). Let Po be the
number of common factors of this type of k, g.
They contain the same number of common factors
of (s —so) by real analyticity. We define then
new polynomials

Re)=0, Re8& 0, Re@ &0] c-B~II

for some a, b&0.

h(s, t)
(s —so)'o(s —sf)'0 'kg s

( t)
g(s t)

(s —so)'0(s —s*, )'0 '

(2.29)

We study first the zeros of R(s, t, u). They are
given by those zeros of R„(f,8, q), Eq. (2.24)
which are not canceled by zeros of the denominator
R~(f, 8, q). To simplify the discussion, we note
the following statement:

(Al) The function R does not vanish identically
on 8 along any complex "line" P=fp ~=~p ol
xJ ='Qp for any value of (l'p Hp po) ~

We first recall that R(s, t, M) =+1 along f =0,
~ =0, or q =0 so that we can assume f'p&0 'Qp&0,

~p ~ 0. Let us suppose then that, for a certain
complex fo, we had R~($0 8 p):0 for all (8 p) so
that (fo 8 p) c 8. We choose then an interval
I& (-am& 2, am& 2+ of real values of 8 and con-
sider p(fo, 8) = (8m —fo —8') (any determina-
tion of the root) which is holomorphic in 8 in a
complex neighborhood of I The functio. n q(l, 8)
is real for f real and 8 c I, -(8m' —8')' ' & f & (8m'
—8 ) + and so q(/~0& 8) =@*(fo&8), for HcI. [At

and with them new RA'„RD, according to (2.24), by
replacing h, g with h»g, . Clearly, R„'/RI&=R
At least one of h& and g& no longer vanishes identi-
cally for s = sp. We can repeat now the reasoning
of this paragraph, with h, g replaced by h&, g&,
and reach a contradiction if we assume that the
set of zeros of R (included in that of R„) contains
the line (=fp on ~ This concludes the proof.
[lf $0&0 and real, we combine Eq. (2.28) with its
complex conjugate and reach the same conclusion. ]

From now on, we shall assume replacements
like that of (2.29) have been performed, so that,
for no &0w0 is R„($„8,q) -=0 (similarly, for Hp Yjp).

I. Description of the zeros of R(s, t,u)

To proceed, we need some definitions. A poly-
nomial m(f, 8) is said to be irreducible ( over the
complex numbers) if there are no two other poly-
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nomials mz(l, 8) and &2(l, 8} so that m=mq&2. It is
easy to show the following statements concerning
ir reducible polynomials:

(i) Two irreducible polynomials coincide up to
a constant factor if they have a common root 8
= 8(f) [or g = g(8)] on no matter how small a con-
tinuum in g (or 8).

(ii) Any polynomial P(g, 8) has a unique decom-
position (up to order and constants) in irreducible
polynomials. These statements are proved in
Appendix E.

Given a polynomial P(l', 8), we call Z(P} the set
of points (&„80)E C' which are such that P(ro 80)
=0 and refer to it as the set of zeros of P(l, 8).
We call further Z„ the set of points of ~, Eq.
(2.3), where R„($,8, q), Eq. (2.24), vanishes. It
is convenient to consider the projections Z„",Z„,Z„
on the planes p=0, (=0, 8=0. Obviously, the
coordinates in C of any point of Z~ are completely
known if we know two of its projections.

We can now show the following:
(A2) The set Zg is a finite union of sets Z(P' ),

where P (f, 8), i =1, 2, . . . are irreducible poly-
nomials of f and 0.

To prove this, we notice that the set Z„" is iden-
tical to the set of points (r., 8) where the function

P(&i 8) =Rg(l, 8, ng)R g(K, 8, n») (2.30)

vanishes. In (2.30) the indices I and II denote the
two possible values of q, at fixed (, 0, according
to (2.3}. The function P(f, 8) is a polynomial in

f, 8; in our special case it is even a polynomial
in s, t, as one verifies from the definition (2.24)
(notice q» ——-q,}.

This polynomial admits in general of a decomposi-
tion in irreducible factors, when it is expressed as
a function of f, 8. We call the sets of zeros of
these polynomials Z(P' ') k=1, 2, . . . . So, we see
that Z„"=U„Z(P' ), and the result is proved.

Clearly, statements similar to (A2) are true also
for Z„and Z~. The families of irreducible poly-
nomials whose sets of zeros exhaust Z~, Z„, and
Z~ are denoted by F~, F„, and FN, respectively.
We count each distinct irreducible polynomial only
once, and we omit from these families the pos-
sible polynomials: g, 8, q, 8'+q' —Sm', g'+q'
—8ypg, and g'+ p' —8~', since they do not cor-
respond to zeros of R, according to (Al). Poly-
nomials of F„", F~, and F~~ are denoted by P",
P, and P, respectively.

P(&, 8) -=I'(s, t) =I'(s, f)

—(4m —s)(4m —t)(4m —u)g (s, t) .
(2.31)

J. Comments on statements (A1) and |'A2)

Now follow some comments concerning state-
ments (Al) and (A2).

(a) It follows from (Al) that all polynomials of
the families F„", F~, and F„depend effectively
on both their variables. Indeed, if it were not so,
their zeros would be lines ( = const, 8 = const,
and q=const, where R„would vanish, contrary
to our assumption, following (Al). As a conse-
quence, except for a finite number of points of the
(f, 8) plane, we can always solve the equation
P"(g, 8) =0, both with respect to l and 8 (see Ap-
pendix E). We shall make use of this observation
in the next paragraph.

(b) Consider a polynomial. P",(r„, 8). Since P,"
+ 8 -8m', we can find points (f, 8) of Z(P&)

which are such that the functions 7l(g, 8) =+(8m
—f —8 ) are holomorphic in the neighborhood
Upx Ug of (5, IJ) We fu.rther assume (g, If) is such
that we can solve in its neighborhood the equation
P",(g, 8) =0 and get in Ue the holomorphic func-
tions of 8: q, ,2(8) =+[8m —K'(8) —8 ] . Clearly,
the points [8, q, (8)] (i = 1 or 2 or both) belong to
Z„(for 8 E Uy). They must be contained in the set
of zeros Z(P[) of some irreducible polynomial
P', (8, q), according to (A2). We associate this way
to each polynomial P~& at least one polynomial
P~(8, q) with the following property: to any branch
K =/(8) of P",($, 8) =0, there exists a branch q
= g(8) of P[(8, rl) =0 so that

g'(8) + 8'+ q'(8) -=am'. (2.32)

Since all polynomials in F„"are by construction
distinct, we can find at most two such polynomials
in F„(corresponding to q& and q2) and we are sure
to find at least one. Since F~~ and F„"are finite,
we can list the set of all "compatible" pairs of
polynomials (P", P~). The coordinates of the sets
of zeros of these polynomials completely describe
Z„ in C' [if the branches are appropriately paired,
to satisfy (2.32)]. We refer to the set of points
(L, 8, q) of Z„, obtained by equating to zero the
members of the pair (P', P ) and matching the
branches correctly, according to (2.32), as the
"zero trajectory described by (P",P~)."

The projection of the zero trajectory on the plane
8 =0 is described by an irreducible polynomial
P, which we can add, for symmetry, to the de-c

scription of the trajectory. It is known up to a
constant, if P" and P are known.

(c) Consider a point (g, 8, rl) c 8, so that
R„(g, 8, q}=0 and so that we can solve Eq. (2.3)
with respect to q, say. Consider then the func-
tion R„(f, 8) =R„(f,8, q(f, 8)). According to (A2)
we can find in F~~ irreducible polynomials P",(g, 8)
so that R„(f,8)/DP, (P,"(l, 8) g& is holomorphic and
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nonvanishing in a neighborhood U& x Uo of (r, 8).
This is intuitively obvious; one can justify this
completely by means of Weierstrass's preparation
theorem applied to R~ and P," (see Appendix F).
The index Io; is called the multiplicity of P&((, 8).

It is easy to convince oneself that (a) the notion
of multiplicity is independent of the point (f, 8),
and (b) that the polynomial Pq (f, q) which describes,
together with P";(f, 8), a zero trajectory, has the
same multiplicity as P&(t, 8). This latter state-
ment allows one to talk about the multiplicity of
a trajectory. For completeness, we prove this
in Appendix F.

K. Statement (A3) and proof

In this paragraph, we wish to prove the follow-
ing statement:

(A3) If R is of the form (2.24) and has no zeros
in the set B,K = 8oII U 8oII U BpR as a function of
the corresponding variable, then R has no zeros
in the whole Mandelstam domain [Eq. (2.2) and
(2.3)].

We call Z~Nthe set of trajectories of 2& which
contains points of 3R. If ZN~is void, the proof is
finished. If it is not void, we prove the following
state ment:

(A3.1) Let (Po, Po) be a zero trajectory of Z~.
If R, Eq. (2.24), has no zeros in BPR, as a func-
tion of the variable corresponding to each subset,
then (Po, Po) is also a zero trajectory of the deno-
minator R~ of R. Moreover, the trajectories have
the same multiplicity in R& and RD,

Proof; Since (P"„P',) c Z"„, there exists a Point

(go~ Ho~ qo) c3)I so that Po(foi Ho} =0~ Po(go~ qo) =0.
Recall Regp&. 0, Re8p&0, Regp&0. It follows
Po &F"„, P, &F„. We assume for simplicity that
the multiplicity of the trajectory is one. It is very
easy to allow for higher multiplicities and we show
this at the end of the proof. Because 5g is open,
and the zero trajectory does not consist of isolated
points, we can even choose (fo Ho 7]o) so that we
can solve in its neighborhood, in a regular way,
the equations Poo(f, 8) = 0, Po(f, q) = 0 with respect
to all variables [cf. Sec. II J, comment (a)]. Let
8(f), q(f) be the two solutions of these equations,
holomorphic in a neighborhood V~ of gp.

p

We join fp by a curve 6 to a point P lying on the
boundary Ref =0, such that (a) Imp e 0, and (b) the
sign of Imp is the same as that of Iml'o (if Imro
=0, the sign of Imp is irrelevant). The curve e
is subjected to the conditions that (i) it lie com-
pletely in Ref & 0; (ii) Imp does not change sign
along it; (iii) it avoids the finite number of branch-
ing points of the functions 8(f), q(g) and the images
of the branching points of their inverses; (iv) it
avoids those points f corresponding by (2.3) to
points (8, o)) for which Po(8, q) =0 cannot be solved

with respect to 8 or rl (Poo is uniquely determined
by Po and Po); (v) it avoids those points of the 0
plane where the coefficient of the highest power of
8 and q in Poo and P„respectively, vanishes;
these coefficients are polynomials in P and at
those points the functions 8(g) and q(f) become
infinite. There are only a finite number of points
which we must avoid, and so e can be constructed.

We follow 8(f) analytically along this curve, as
well as g(f). In this process, we come to a point
fq where f, 8, or 7l (or pairs of them) reaches the
line Re&=0, Ree=0, or Req=0.

(a) We discuss first the case when, e.g. , we
reach the line Re8=0 at ~=6)~ and at that point
Rel'q & 0, Re@,-=Req(fq) & 0. We conclude that we
have generated, by analytic continuation, a zero
of R„(f, 8, p) on the physical sheet of the cosine
plane, for a value 8, lying on Re8 =0 (i.e. , at a
point of Bo3)I). It is here that Mandelstam analyti-
city plays a crucial role. This is not true for the
axiomatic domain, since we are not sure that we
can choose the curve 8 in such a way that the
analytic continuation of 8(f}and q(f) starting from
an interior zero leads to zeros lying in the Leh-
mann ellipse, as we reach the lines Re0 =0, Re&
=0, or Re)=0.

Now, a zero of R(s, t, u) on the physical sheet of
the cosine plane (in Bo3II) is forbidden by assump-
tion, and the only way to accommodatethe zero of
R„(f, 8, rl) which we have obtained is to assume
that R~(f, 8, g) has a zero at the same position.
Because the zero trajectory is of multiplicity one,
the zero of R& on BgÃ must be simple and so must
be the zero of R~(t, 8, q).

Let then Po(r. , 8} and To(8, 7l) be the irreducible
polynomials which are responsible for the zero of
R~(t, 8, 7)). By changing the curve 6 slightly, we
see there is a whole neighborhood of values of 8

around Hq for which a zero of Too(f, 8) is the same
as a zero of 7 o(f, 8). The same is true for Zoo.

Because P~p, P," P, , P, are irreducible, we conclude,
by (i) that 7'o-=Pp and Po-=Zoo up to constants. So,
statement (A3.1) is proven for case (a).

(b) We now assume that a pair of (r, 8(f)) or
(K, P(f)) values reach simultaneously the lines
Red =0 and ReH = 0 at r q and Hq (or the lines Ref
=0, Req=0). Let us notice that it is impossible
to have Ref &0, Bee=0, and Req=0 along 6; the
latter two equalities and (2.3) imply Imp =0, which
is outside C.

We can now modify the curve ~, so that it joins
fo with points f( in an interval (i&, ip)with &, p.

real around fq, and perform the same continuation
process as before, starting from (fo Ho '7/o), It
could happen that in this way we come across situ-
ations similar to case (a), that is, we generate
zeros in the interior of the cut cosine plane, cor-
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responding to Re) = 0, Reg = 0, or Re8 = 0. Then
(A3.1) is again proved.

It can happen, however, that Re8(f) =0 as long
as Re/ =0. Then we recall that R has no zeros
even on Ref =0 and Re8 =0 [cf. the definition of
B&K, Eq. (2.8)]. We can then repeat the reasoning
of case (a), concerning the necessary coincidence
of zeros of R~ and RD, and reach the same conclu-
sion.

Let us notice that it is impossible to have simul-
taneously Ref=0, Bee=0, and Rep=0, by Eq.
(2.3), so that case (b) exhausts all possibilities.

If (2 p, 0,) had a multiplicity m higher than one,
we would have obtained, by continuing along ~, a
zero of order m for R„(r„,8, q(f, 8)) at 8=8' on
Re8 =0. We conclude that R~ must have a zero
of the same order in an interval (i&, i p)ar.ound

This is possible only if the trajectory of R~
has the same multiplicity m. This concludes th6
proof of (A3.1).

The following statement is now obvious, using
the definition of multiplicity of a trajectory, of
Sec. IIJ:

(A3.2) If the sets Z„, Z~ of zeros of R„,RD, lying
inside the Mandelstam domain, contain the same

- zero trajectories, with the same multiplicities,
then R =R„/RD has no zeros in the Mandelstam
domain.
If we repeat the reasonings of (A3) for the func-

tion 1/R we conclude:
(A4) If R is of the form (2.24) and has no poles

in the set BpORu BpKU BPR (as a function of one
variable) then it has no poles in K.

The proof of the theorem of Sec. IIA is finished.

M. Comments on the theorem of Sec. II A

In this subsection, we comment on the theorem
that has been proved. We define, also for the next
chapter, the class C: of amplitudes as those com-
plex functions of two variables which obey conditions
(a), (c), (d), (e), and (f) of the theoremof Sec. IIA.
The statement of Sec. IIA says then that, within
&, the determination of the phase from the modu-
lus is equivalent to the resolution of the discrete
ambiguity at all energies in all channels.

It might not yet be clear why we talk about dis-
crete ambiguities for zeros lying on the cut. The
following statement, which is a simple conse-
quence of (2.24), answers this question.

If the modulus Mq, (t) in Eq. (2.5) has a simple
zero on the cut (see Sec. II B) at a point tp+ ie, and
A&, A2 are two amplitudes of class C having the
same modulus in the physical region of the three
channels, then only the following situations can
occur at fixed energy: (o') lim, „,p, «Aq, (t)/A2, (t)
=const&0; (P) fp+~ His a fi'rst-order zero of A~„
A2,/Ag, ——const&&(t —fp) consta0 and fp —ie is a
first-order zero of Aq„Aq, /A2, ——const&& (t - fp),
const&0; (y) situation (P) with A&, A2, interchanged
(f real).

To prove this, we notice first that Aq, (t) cannot
have a second-order zero at to+is. Indeed,

lim g, /(t —tp)' = lim A~, (t)Af, (t*)/(t —tp)

L. Conclusion of proof of (A)

R(s, t, u) =-+1. (2.33)

We can now bring the proof of (A) to an end and
so prove the theorem of Sec. IIA completely. It
is true that:

(A5) If R(s, t, u) is of the form (2.24) and has
neither zeros nor poles in W, then 8=+1.

Proof: Consider a real value of t&I, . The
function R, (s) has neither zeros nor poles in the
corresponding open cut s plane. Indeed, all the
points belonging to this set also belong to ~. On
the other hand, we have seen in Sec. II E that, by
means of the mapping z, (s), Eq. (2.14), we can
write R,(s) =+B„(z,(s))/B@(z, (s)) [cf. Eq. (2.19)],
with B«(z,), i =1, 2 given by Eq. (2.17). All the
zeros and poles of R, (s) in the cut complex s plane
are given by the noncoincident zeros of B;,(z, ),
i = 1, 2. Since R, (s) has no such zeros and poles,
it follows that B„(z,) =B„(z,) So, R, (s) =.+I for
all t& I, . We conclude then, by analytic continua-
tion, that

by assumption, and lim, , „,A&*, (t*) is finite. So,f p+ee

lim, , ~ Ag (t)/(f fp) cannot be finite. The
same zs true for A2, . A&, cannot have a second-
order zero at to —iE, either, and the same holds
for A2, . We now define R=A~/A2 and recall that
R is given by (2.24). We show that R,(t) cannot
have a second-order pole at to+ i&. Indeed, as-
sume it had one, R,(t) =R,(t)j(f —tp)', with R,(t p

+i&) 40. But, on one hand,
\

lim A&, (f) = lim [A2,(t)R,(t)]

is finite, and on the other. hand,

lim A2, (t)R,(t) = lim A2, (t)R,(t)/(t-. tp) =~,

since A&,(t) cannot have a second-order zero at
to+i&. So, we have reached a contradiction, and
R,(t) cannot have a pole of order. higher than one
at to+i&. The same is true if we replace to+i&
by tp —ie Since w.e also know that R,(fp + E):f1/
R,*(t, + ie), for s = s, + ic, sp & 4m it follows that
R, cannot have a double zero at t 0+i&. So, let us
assume that R,(t) has a simple pole at tp+i&
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Then,

lim A&, (t) = lim A2, (t)R,(t) =finite
t tp+fe t t +$6

p

implies

lim A2, (t)/(f —f0) = finite
t t p+i6

so that A.2, has a simple zero at tp+ iE. Clearly,
A2, (t)/A „(t)= const x (f —to), const+ 0. Since R
has a zero at t, —ie, 1/R has a pole. Interchanging
Aq, (t) and A2, (t), we conclude that A„has a simple
zero at to-i&, and Aq, (t)/A2, (t) = constx(t —fp),
const & 0. So, situation (P) occurs. One verifies
that, if R,(t) has a zero at to+i@, situation (y)
occurs. Finally, if R,(t) is finite at to, and R,(to
+i&) 40, situation (o.') occurs, and this way the
statement is proved.

The three possibilities enumerated in this state-
ment also occur if Mq, (t) has a zero lying in the
interior of the open cut t plane. This might justify
the formulation "discrete ambiguity of zeros lying
on the cut" of Sec. IIA.

the end of Sec. IIG. However, a device must
exist to forbid R to develop freely poles and zeros
on the cuts of the cosine planes. These belong to
the boundary of the Mandelstam domain, and we
expect zeros and poles that are present there to
propagate also inside the domain. The fact that
f in (2.7) is a rational function has allowed us to
reduce this interdiction to an interval of values
of s only.

A simple example which shows the effect of poles
and zeros that are freely allowed on the boundary
has been given to the author by Professor A. Mar-
tin:

~+ [(4m' —s)(4m' —t}(4m' —u)]' '
&- [(4m' —s) (4n1' —t) (4m' —u) ]'

(2.35)

with X a real number. These functions have modu-
lus one in the physical region and, for all physical
s, have a zero and a pole on each of the t and u
cuts. The poles of 8~ stay outside the Mandelstam
domain for ~&0.

N. Role of conditions (c), (d), and (e)

In this subsection, we discuss the role played by
conditions (c), (d), and (e) of Sec. IIA. We show,
namely, that they cannot be completely abandoned,
and the result be preserved.

If conditions (d) and (e) concerning the finiteness
of the phase on the cut and the polynomial bound-
edness of the amplitude, in some interval of real
s and f values [C (-4m, 4m )], are removed, a
simple example of an ambiguity which could ap-
pear is

a (s, f, u) =exp[[(4m' —s)(4m' —t)(4m' —u)]'"

x f(s, f, u)], (2.34)

where f(s, f, u) is a real entire function of s, f, u.
The function Q(s, f, u) has modulus one at all points
of the physical region, no zeros and poles in the
whole Mandelstam domain, and is not of the form
(2.24).

(b) The condition concerning the Holder contin-
uity of the phase in (d) can certainly be relaxed to
functions Pq, (v) [Eq, (2.9)] for which the limits of
the integrals in (2.9) exist almost everywhere as
we approach the cuts of the v plane. This is,
however, an uninteresting direction of refinement.

(c) It is possible to restrict the validity of condi-
tion (c) (concerning the continuity of the amplitude
and of its phase on the cuts of the complex f plane)
to an interval of values of s in the physical region
(s=s, +ic, so&4m ). Indeed, we can choose the
curve & in (A3.1) so that the point r„(its end on
Ref =0) lies in the interval of values of s we
choose. This remark justifies the statement at

III. ON THE DISCRETE AMBIGUITY

A. Irreducible ambiguities

We have seen in the previous section that two
amplitudes of class C (defined in Sec. IIM), having
the same modulus in the three physical channels
can be different only if the discrete ambiguity of
the zeros has been resolved in different ways in
some interval of energies, in some channel.
(Strictly speaking, we can state so far that, if
8 4+1, there must exist a value of s, t, or u in the
physical region of some channel, for which the
discrete ambiguity has been resolved in different
ways. The fact that there must be awhole i.nter-
val is shown at the end of this subsection, but is
intuitively obvious. ) We go from one possible
resolution of the discrete ambiguity in the ampli-
tude Aq to another resolution in A2, by means of
the ratio R(s, f, u) =A&/A2 given in Eq. (2.24). For
fixed, physical values of one variable (i. e. , Ref
= 0, Re8 = 0, or Reg = 0), the positions of the
zeros of the ratio R (regarded as a function of the
other variable) are complex conjugate to those of
its poles. The poles of the denominator of R can-
cel some complex zeros of the amplitude A2 in
some interval of energies, and the numerator of R
creates new zeros in the complex-conjugate posi-
tions, so that in Aq ——RA2, the discrete ambiguity
of the zeros is resolved in a different way from
A2.

Clearly, the complex positions of the zeros that
are "reflected" by R(s, t, u) are determined (up to
a reflection) by the modulus of the amplitude. We
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expect, therefore, that, given the modulus of the
amplitudes of class C in the physical region, we
should also be able to find those functions R which
constitute the possible ambiguities in the deter-
mination of the phase. The problem we would like
to solve now is then: Knowing the complex zeros
of R(s, t, u) which lie in the sets Bpmf, Bpmf, and

&„% (Sec. IIB), where R is regarded as a function
of one variable (appropriate to each set), how can
one determine R'? So far, we only know that, if
there are no such zeros and poles, R =+1 (theorem
of previous section).

In this subsection, we shall give a construction
which, in principle at least, solves this problem
explicitly. To this end, we introduce some defi-
nitions; we call functions like R(s, t, u), which can
be written in the form (2.24), "ambiguities. " An
ambiguity R is said to be irreducible if there are
no two other ambiguities R2, R2 so that R =R2R2.
We shall prove now the following statements:

(i) An irreducible ambiguity is determined (up
to a sign) by one of its zeros (or poles) as a func-
tion of one variable on an interval of "physical"
values of g, 8, or g, no matter how small.
(These are such that Ref =0, Re8 = 0, Rer/=0. )
(ii) Any ambiguity R can be uniquely written as a
product of irreducible ambiguities (up to a sign).

To prove (i), we take R irreducible, write as in
(2.24) R =R„/R~, and assume that there exists an
interval I = (iX, ip), &, p, real, of values of t;, where
we know functions 8p(0) and PIp(g) so that

R„(l, 8p(0), pip(K))-=0, tor 0 c & . (3.1)

We next construct families Zp, ~, Zp~ of zero tra-
jectories (see Sec. II J) which are necessarily con-
tained in the sets Z„,Z~ of zeros of R~, R~, re-
spectively, if (3.1) holds. We first construct the
irreducible polynomials Pp ~(l 8) Pp ~(f 'l7) whose
sets of zeros coincide with the analytic continu-
ation of 8p(l') Rp(K) (se'e Appendix E for this con-
struction). Since the lines l' =const, 8=const, or
&=const are not among the zeros of R [cf. (A1),
Sec. II H], we can solve arbitrarily the equations
P p,„——0, P p,& ——0 with respect to g, 8, or r/ (ex-
cept for a finite number of points). It is conven-
ient, for symmetry, to add to the description of
the trajectory the irreducible Polynomial Pp,„(8,g),
which is completely determined by the first two,
and whose set of zeros is the projection of the
trajectoryon 8= 0(cf. Sec. II 8). Since (R(K, 8, '0)

t

=1 for /&I, 8, g real, one concludes that the de-
nominator R~ must vanish along the zero trajec-
tory described by PPp, ~(g, 8) =Pp,"~( l'*, 8*),Pp-~
—= Pp, „(-f*,r/*) [to which we add the corresponding
P', ~(8, q)].

Since R is real analytic, if the trajectory
[Pp &(f 8) Pp,g(f& '0)) Pp,g(8& 7j)] cZp g& then the

trajectory [Pp*,"„(f*,8*),Pp*,„(l*,pI*), Pf P„(8*,q*)]
must also belong to Zp,„, if it is not identical to
the former. An analogous statement is true for
Zp pDO

Further, since ~R(f, 8, pI) ~~

——1 for Re8=0,
real, it follows that Zp, „must contain the zero
trajectories described by Pq~(g, 8) =Pp,~(K", —8"),
P, ,„(8, 8) =Pp,D (-8", f ) I.t could be that P", ,„
=—Pp,„and P2,„———Pp,„. If this is not the case, we
must add this new trajectory to Zp, ~. We continue
this process at physical values of q (Re&=0) and
add again new trajectories to Zp, „, if we find that
those already contained in it are not complex con-
jugate to those of the denominator. We must also
check the consistency of Zp, N, Z» with real ana-
lyticity and possibly add new trajectories to re-
store consistency. We then go back to the s chan-
nel, etc.

This inclusion of new trajectories in Zp, g Zp, D

must stop after a finite number of steps (i. e. , we
find consistency of the trajectories of Zp, g Zp~
with real analyticity and the unit modulus of R in
the physical region). Indeed, the set Z„of zeros
of R„contains only a finite number of zero tra-
jectories, by (2.24).

Clearly, the set of zeros described by Zp, ~ is
such that Zp, &(:ZN. We now construct the function

g [8,(~)+ n, (~) 8 — n—]
Rp(sp tp u) —

N

II [8", ( l*)+ n-", (-~*)- 8 n]-
i=2

(3.2)

where the product is taken over all zero trajec-
tories of Zp~ and their branches, which are paired
according to (2.32). We claim that (a) Rp is uni-
form and has no other singularities on 5 but zeros
and poles, (b) it has the reality property on 3,
(c) it has no other zeros on 3 but those of Zp, „,
(d) its zeros exhaust the trajectories of Zp, „, (e)
it has modulus one in the physical region of all
channels. These claims are justified in Appendix
G, The claims (c) and (d) are plausible if one
recalls from Sec. II F that the variable ~ = ]9+ ig
makes uniform the two sheets of the 8 plane at
fixed l', fW+2mv 2. The correctness of the claims
(a), (b), and (e) is, however, not obvious, at
least to the author. He was unable to find anything
but a rather lengthy justification, given in detail
in Appendix G.

Now, if Ap has the properties (a), (b), and (e)
claimed above, it can be written in the form (2.7).
This follows from Ref. 11. Since we show in
Appendix G that Rp is actually a rational function
of l', 8, pI (in C ), one concludes that it can even
assume the form (2.24). We then see that
R„(s, t, u)/Rp, N(s, t, u) has no poles on 3, so that
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Rp~ is actually a divisor of RN. The ratio R&

=R/Ro is again real analytic, has modulus one in
the physical region, and has no other singularities
on 5 but poles. Consequently, it is of the form
(2.24). We seem to contradict, this way, our as-
sumption that R is irreducible, since we have
shown that R =RpR&, where both Ap and R~ are
ambiguities. The only way out is that Rq ——+1,
so that R:Ro (up to a sign). This completes the
proof of (i), since Ro is determined starting from
8 p(f), $0(f) on some interval (i&, i p)of. values of g.

The proof of (ii) seems to be very simple. Nam-

ely, we exhaust gradually the sets of zeros ZN of
Rs(P, 8, q) by means of "minimal" families of zero
trajectories Zp, „,Z&,&, . . . , according to the pro-
cedure of the previous proof. We construct then
the corresponding Ro, Rq, R2, . . . by (3.2). Clearly,
R =RpRp. . .Rp up to a sign. The decomposition is
unique, since the partition Z„=U& Z;,& is unique.

To make use of these statements, let us notice
that, if R4+1, there must exist a whole interval
of physical values of l' (or 8, or q) so that R has
zeros in the corresponding cut cosine planes (in-
cluding the cuts for physical values of l') Thi.s
follows from the proof of the statement of Sec. IIA.
Indeed, if there had been only a finite number of
isolated values of f (or 8, or q) for which R had
zeros in the corresponding cosine planes, we
could have still carried the proof through by suit-
ably choosing the end f of the curve 8 in (A3.1)
to avoid them and get R =+1. So there must be an
infinite number of such values f. But we have only
a finite number of irreducible polynomials at our
disposal, to exhaust the zeros of R [cf. Eq. (2.31)],
and so there must exist one which vanishes on an
infinite set ($„8(f,)), with Re8(f, ) ~ 0. Then,
however, R vanishes on the whole set of zeros of
this polynomial. The latter cannot contain an
infinite set of points (f„(g8,)), with Re8(f;) - 0,
without the existence of an interval of values f
for which Re8(f) & 0 is true.

With this observation, the possible ambiguities
R are obtained by simply inspecting all the analytic
continuations of the zero trajectories determined
by the modulus in the cut cosine plane at fixed
energies, in all channels, Those which give rise
to ambiguities are such that their analytic contin-
uation is possible and the result consistent with
the zero trajectories of an irreducible ambiguity
[as described in the proof of statement (i)]. We
obtain this way, at least in principle, a set (may-
be void) of possible irreducible ambiguities of the
type (3.2).

The situation we face is analogous to what would

happen if we tried to determine a polynomial amp-
litude A,(z) at fixed energy, from data on its mod-
ulus. Then only the discrete ambiguity is present;

its extent is fixed by the measured modulus and,
given a solution, we can obtain another one by
multiplying with (z —zo)/(z —z, ), where zo is one
of the zeros.

In our case, the role of the zeros is played by
the irreducible ambiguities, and the assumptions
concerning the amplitude are less artificial.
Knowing one amplitude of class C compatible with
the given modulus, we can obtain a whole set of
such amplitudes by multiplication (or division) with
products of irreducible ambiguities like (3.2).

Let us also notice that it is by no means clear
that a given modulus distribution, which is con-
sistent with an amplitude of class C, allows am-
biguities at all. Indeed, we expect in general a
zero trajectory t(s) of the amplitude [A(s, t(s))=0]
to have a branch point at an inelastic threshold.
Such trajectories cannot lead, in the limit of exact
data on the modulus, to discrete ambiguities.
This is so because the function R(s, t, u) of Eq.
(2.V) does not contain any inelastic branch points,
and so, cannot produce reflections of zero tra-
jectories which do contain one.

Consequently, a small number of zero trajec-
tories will in general be such that their continu-
ations generate irreducible factors like (3.2).
It is not obvious that there are any. If there are
none, the set of ambiguities is void and there is
just one amplitude, compatible with the given mod-
ulus.

B. Use of information on number of zeros

So far, we have used in this study only the ana-
lyticity in two variables of the amplitude and its
reality property. We now study briefly the effect
of the statements we have proved before, if we
include information on the number of zeros pp that
lie in the complex s plane, when t is in the inter-
val 0 & t & 4m . If the imaginary part is known to
be positive in the interval 0 & t & 4m, then one
knows that pp & 2.

By comparison with Eq. (2.20), it is easy to
see that, if R in Eq. (2.24) is the ratio of two am-
plitudes, each having at most pp zeros in 0 & t
& 4m, then the degree of h(s, t) with respect to s
must be at most po, whereas the degree of g(s, t)
with respect to s is at most pp —1. Now, an am-
biguity R(s, t, u) having this property cannot contain
more than 2Pp irreducible ambiguities. This is so
because any irreducible ambiguity must have at
least a zero or a pole on the physical sheet of the
complex s plane, at these values of t. Indeed,
if it had none, it would be +1 by the reasoning of
Sec. III. With this observation, it is convenient
to define the degree of an ambiguity with respect
to s as D =number of zeros plus number of poles
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of R on the physical sheet of the s plane, for tc
(-4m', 4m').

I et us now study the situation po —1. One can
easily show the following: If the amplitude admits
of an irreducible ambiguity of degree 2, then it
cannot admit of any other one (of any degree). In-
deed, assume the contrary, and let the two am-
biguities be R, R', where degree (R) =2. This
means that A, Aq ——AR, and A2 —AR' are all am-
plitudes of class C, with PO~ 1. Then RO=Aq/A2
=R/R' has, in general, degree greater than 2, if
R is irreducible. The only possibility is R'=+1,
and so, Aq-=A, (up to sign).

If the amplitude admits of no irreducible ambi-
guity of degree 2, it can nevertheless admit of
many irreducible ambiguities R& of degree 1 with
respect to s. Indeed, the ratio of any two mem-
bers of the family fAR, }is R, /R~ which has degree
2 with respect to s. However, for no other R'
can AR'R; again be an admissible amplitude, in
this case (R'WR; ). It is possible that ARjRO be
admissible for a whole class of ambiguities R& of
degree 1 and a fixed Ro of degree 1 too. Then
AR& is not admissible, but ARO is so.

If po
—2 and if the amplitude admits of an irre-

ducible ambiguity of degree 4, then this is the
only ambiguity, by a reasoning similar to that
for po ——1. If it admits of an irreducible ambi-
guity of degree 3, it can still admit of many ambi-
guities of degree 1, etc.

According to the usual point of view, if there
are q zeros at a fixed physical value of t, in the
corresponding cut cosine plane, there exists a
corresponding 2'-fold discrete ambiguity for the
phase. If the modulus is known in all three chan-
nels, the preceding discussion shows that this
number is much too large for low values of po,
many of the solutions obtained by reflecting the
zeros will violate two-variable analyticity, the
conditions defining the class C or the bound for
Poo

If po ——1, we have seen that we can reflect at
most those zeros whose analytic extrapolation
gives rise to ambiguities of degree one or two,
with respect to s. All the others are fixed. The
ambiguities of degree one in s have at most one
zero 'on the physical sheet of the cosine plane at
fixed t. So„at most, we are able to reflect either
one zero at a time, and keep the others in their
original positions, or reflect a pair and then keep
fixed one of its members. If the zeros of the pair
are correlated, then there is just one ambiguity.
The view of this process is more complicated in
the s channel. There may be many zeros lying in
the cosine plane, at physical values of s, which
are correlated to each other and can be reflected
only as a whole.

For p0=2 the situation is more complicated,
but the discrete ambiguity at fixed energy is again
less than 2', for q & 4.

C. Detecting "wrong" resolutions

-=W(s, t)n(s, t), (3.3)

where the functions aq(s), . . . , a„(s) are holomor-
phic in D„and Q(s, t) is nonvanishing in D, XD, .

We assume we can apply (3.3) even if D contains
part of the physical region of the s channel. This
means that we can continue the amplitude on the
second sheet in a certain neighborhood of the phy-
sical region. This is the same assumption as in
current searches for resonances.

The number of zero trajectories of the ampli-
tude that lie near the physical region and can be
detected from data increases with increasing ener-
gy, and so we take D, to contain a limited energy
interval of the order 1 GeV/c. It is of interest to
consider a domain D,&D, which contains two tra-
jectories of the amplitude lying in the neighbor-
hood of the physical region, approaching each
other and then moving apart in t, as the energy
increases ("intersect" ).

It has been argued in Ref. 8 in detail that the
behavior of the trajectories in such a region can
be understood if W(s, t) in Eq. (3.3) is near a re-
ducible case, i. e. , W(s, t) = (t —t', (s))(t —t2(s))
+ P(s, t) with t, (s) and t2(s) analytic functions of s
in D„and P(s, t) a "small" function. Each zero
trajectory has then two branching points in the
neighborhood of the physical region [the distance
between the two branching points is, roughly
speaking, proportional to the magnitude of the per-
turbation P(s, t)]. The effect of these singularities
is an "oscillation" of the real and imaginary parts
of the functions describing the zero trajectories,
at energies in the "intersection" region.

These oscillations are clearly seen in the "ex-
perimentally" determined zero trajectories. But,
according to (3.3), the singularities of tq(s) and

It follows from the preceding subsection that
we cannot arbitrarily reflect zero trajectories of
the amplitude without endangering two-variable
analyticity, among others of its properties. In
this subsection, we shall describe a simple and
nonrigorous way of detecting practically "wrong"
resolutions of the discrete ambiguity, which lead
to violations of two-variable analyticity.

It follows directly from Weierstrass's prepara-
tion theorem that, if a function A(s, t) is holomor-
phic in a complex domain D =D,XD, of C, and
for each s in D„A(s, t) has n zeros lying in D,
(D, finite), then A(s, t) can be represented in D as

A(s, t) = [t"+A, (s)t" '+ + a„(s)]n(s, t)
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t2(s) must cancel each other out when one builds
tq(s) +t, (s) =a, (s), t, (s)t, (s) =~(s). So, crudely
speaking, tq(s) and tq(s) must oscillate in opposite
directions in such an intersection region.

Now, such a cancellation will no longer occur
if we replace t2(s) by t,*(s), which would corre-
spond to another choice for the resolution of the
discrete ambiguity. This one can check by expli-
citly solving the second-order equation in t obtain-
ed by setting the (pseudo) polynomial W(s, t) in
(3.3) equal to zero. The oscillations of the zero
trajectories will reinforce each other in the neigh-
borhood of the singularity instead of destroying
themselves. The same happens if we let tz remain
unchanged but replace tz(s) by tz (s*). We shall
not be able, however, to eliminate the situation
when both fq(s) and t2(s) are reflected with respect
to their true position, since t*, (s) + t2 (s) and

t& (s) t2 (s) can be analytically extended to a domain
of the same size as that where tq(s) + t2(s) and

tq(s)t2(s) are analytic (but reflected with respect
to the real axis). Continuity arguments might
help in discarding this situation. In Refs. 9 and
10 applications to practical situations in mN and
mK scattering are described.

Clearly, to establish the presence of a singular-
ity of the a,. (s), i =1, 2, one uses analyticity tests
of the type described in Ref. 17. These produce
results which have only a limited amount of cer-
tainty, when the errors of the data are finite. The
coherence of smoothness in both t~(s) + t2(s), and

tq(s)t2(s) for the correct resolution of the discrete
ambiguity adds weight, however, to the analyticity
test.

IV. CONCLUSIONS

The main result of this paper is that, for a lax'ge

class of amplitudes, the ambiguity which appears
if one tries to construct the phase from the avail-
able modulus in all three physical channels is of a
discrete type. This means that, if we know an

amplitude (of class C, see Sec. IIM), we cannot
obtain another one from it, having the same modu-

lus in the three physical channels, by an "infinite-
simal displacement" [analogous to a small change
of the function O(z) in (1.2)j, but rather by the
reflection of a zero trajectory on some interval of
energies in some channel. This result came to
the author as a surprise, since it differs sensibly
from what one knows from the study of ambiguities
in one variable (fixed energy or fixed momentum
transfer).

We could also see that the pattern of zero tra-
jectories determined by the modulus of the ampli-
tude enjoys a certain rigidity, and does not allow
in general for reflections, as is commonly as-
sumed. Analyticity in two variables or positivity

is violated by most of these reflections.
There are a number of mathematical questions

which are still unsolved. The first one is the
complete description of ambiguities in the Mandel-
stam domain. One would, namely, like to know
the extent of the ambiguity appearing if one re-
laxes conditions (c), (d), (e), and (f) of Sec. IIA.
What is the general form of ambiguities having the
properties of (2.35)? Is it true that Eq. (2.34)
times such factors gives the whole ambiguity?

A rather strange feature of the theorem of Sec.
IIA is that it depends essentially on the supposed
analyticity of the amplitude in the Mandelstam do-
main, rather than in the axiomatic domain. We
could see in the proof (Sec. II K) where this dif-
ference actually comes in, but the present author
is unable to state a deeper reason why this is
the case.

From a practical point of view, it would be in-
teresting to understand the ambiguity allowed by
two-variable analyticity, knowledge of the modulus
in only two channels, and positivity. This question
has been studied in Ref. 11. However, at first
sight it seems that the answer given there —namely,
the dependence of the ratio of two amplitudes sat-
isfying these conditions on a certain number of
arbitrary functions —does not take into account the
fact that the modulus itself determines to some
extent the set of zeros lying in the complex s plane
at fixed real t. It is not clear to the present
author whether a refinement is possible; he hopes,
however, to return to some of these questions in
the future.
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APPENDIX A: THE ORDER OF A ZERO LYING
ON THE CUT

Consider a point to+ i&, to real, on the cut of
the complex t plane, for s=so+iE, so&4m . We
surround it by a disk of radius x and consider the
intersection U, (r) of this disk with the cut t plane.
We show that if &,(t) is holomorphic in U, (r),
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continuous in V, (r), has a piecewise Holder con-
0

tinuous phase p, (t) on (fp —r, fp+r) and A, (tp+ pe)
= 0, then there exists an integer p, p ~ 0 so that

lim A, (t)/(t —fp) =finite,
t ~t 0+is

Iim A,(t)/(t- fp)" =

To this end, we define

n;(f) =exp —J' p, (t')/(t' —t)dt'
7T

38). Since the phase of n, (t) is equal to the phase
of A, (t), it follows that the function A, (f) is holo-
morphic and continuous in Uy y" real on (t, + r", t,
+ r'), and so can be extended analytically to Imt
& 0. We can actually conclude that A, (t) is analytic
and uniform in a disk of radius y' & y' around t0,
except for an isolated singularity at tp. This sin-
gularity can be at most a pole, since the function

A,(t)(t —f,)"=-A,(f)(f- f,)"/n, (f)

A,(f) =A,(t)/n, (t) .
Assume tp is a point of discontinuity of P,(t ). (If
it is not, the proof is simpler and is a special
case of the following. ) Assume the magnitude of
the discontinuity P(t„)—P(tp ) is mP o 0. It is well
known that n, (t) ~ (f —tp)P in the neighborhood of f p

(Ref. 13, p. 73) (for all P). We can also find
r', r" &r, so that for all r'&r" &0, n, (t) is con-
tinuous on (tp+ r", fp+r'); it is actually continuous
(in two real variables) and nonvanishing in the
closed intersection U„„- of a disk ~f —tp- —,'(r'
+ r")

~

& —,'(r' —r") with the cut f plane (Ref. 13, p.

is real along Imt =0, is holomorphic and continu-
ous in U, (r"') [for definition, compare with
I «(r')], and so, can be extended by reflection to
all

~
t —t p ~

«"' where it is holomorphic. Let Pp
be the number of poles of A, (f); the variation of the
phase of A, (t) as we go from tp- 6 to fp+ f is -pp7r.
But if g,(t') is the phase of the amplitude, as de-
fined in Sec. IIB, the only possibility is P, =0.
So, A,(f) is holomorphic at tp. We can then choose
P =[P] and prove our statement. Further, it is
easy to check that p & 0 is inconsistent with the
continuity of A. on the cuts, and the definition of
the phase of Sec. HA. So, our assertion is com-
pletely proved.

APPENDIX 8: THE INEQUALITY (2.10)

"y,"( ')dv' v y,'( ')d '
v'(v'-v) p „, v'(v'+v)

l v I

&
dv' dv'

Here Cp is a common bound for the phases
~ P(, (v') ( and

~ g,",(v') ~, which exist according to condition (d),
Sec. HA. Consider first,

(BI)

Inequality (2.10) can be read off Eq. (6, Sec. 2) of Ref. 14 as a special case. The present author thinks
its derivation is straightforward, but somewhat lengthy and so he chose to give the main steps below.

The modulus of the two integrals in Eq. (2.9), which we together denote by I, can be estimated as fol-
lows:

(B3)

For I~', we notice that the function

I
v' l(l v' —Rev I + l Imvl) '

1

where we have used
~

v' —v~ ~ I/v 2 (~ v' —Rev~ +
~
Imv~). Assume first Rev & vq. We perform explicitly

the last integration and get

CpM2 cosa cos8+ I sine l
—cos6)~ 1 cos~t

ln + n . = y+cosa + ( sin& l cos8~ ) sin~ j cos8 -
I sinH I ~ sin8 l

where we have denoted v= ~v~ sco+8~vi~ sine and cose, =vi/~v~. Clearly, if Rev&v„cose&cose, . For
If we use cos8+

~
sin8

~

~ 1, and the fact that the argument of the logarithm is always greater than 1 and
less than2/(cose, ~sine~)-=2~v~/(v&~sine~). So

Cpv2 2

vg

f(8)-=)I cose- In~ sine~)((incose+In~ sine (]x(cose —
I
sine II)
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is continuous in 0 & cos8 & 1. Let its maximum there be A & 1. We conclude
4

If," I

~
(COALS 2 /tt)

I
ln cos8+ lnl sino II

~ (COAL 2/tt)
1
incosoi+»l»n911='(COAE2/tt} in[ I vl/(vt I

sine I)].

So we see

l&t I
- (COACHY/tt)»(21v I/(v, I

sine
I })~ (2coAv z/tt) ln(1 v I/(v, I

sin~ I)}for
I
v

I

~ 2v, . (B4)

If Rep & p&, then I~ is bounded by a constant B, so
that we can choose

I v I
so large that the majoriza-

tion (B4) holds for all
I v l. The same majorization

holds for I2 since (B4) is invariant at a change
v =v. So, we obtain (2.10), by noticing that

I
e

I) ~-III

I

the mapping (2.15) one obtains after some calcula-
tion,

zt 4t(zt'}(zt" 1)-
2tt z,'(z, —z,')(1 z,z,') "

APPENDIX C: PROOF THAT S,. (z,) = +1 (SEC. II E)
=Iq+I2. (C2)

We have seen that S«(z,} is such that it has mod-
ulus one on the unit circle of the z, plane [obtained
by (2.15) from the cut s plane] except possibly for
a finite number of points, and is real holomorphic
and without zeros in Iz, I

& 1. We can consequently
define unambiguously L„(z,) —= lnS«(z, ) in I z, & 1;
then ReL«(z, ) =0 for Iz, I

=1, except for a finite
number of points. To show that ReL«(z, ) —= 0 for

I z,
I

& 1, it is enough to show that, e. g. ,
L«(ye' ) I

d8 is bounded for 0 & y & l. If this is
the case, then, by Theorem 3.1 of Ref. 15, p. 34,
f IReL«(e") Id& exists, and ReL«(ye ) can be ob-
tained from ReL«(e ) by means of a Poisson inte-
gral. Since ReL«(e }vanishes except for a finite
number of points, it follows that ReL«(yett) —= 0 for
all 0 & 'y & 1. We conclude L«(ye") =an imaginary
constant. The real analyticity of S« fixes this
number to be 0 or mi, andso S« —+1.

To estimate IL«(ye ) I, we use the fact that, as
a consequence of conditions (d) and (e) of Sec. IIA,
the amplitude A«(s) can be written as a polynomial
A«(s) [Eq. (2.11)]times the function At(v), defined

by (2.9). This has been shown in Sec. - II D (in the
proof of statement B.1). But

IL,(y"}I

=-
I in[A; (s)0 (s)]/[B (s)E,(s)] I

I in[A, (s)/B„(s)] I

+ 1»II (s) I
+

I lnE, (s) I (C 1)

where B«(s) and E,(s) are defined in (2.17) and
(2.14), respectively. The function A«(s)/B«(s) has
no zeros in the cut s plane, is obviously polynom-
ially bounded, and so, its logarithm has only inte-
grable singularities. We conclude that the inte-
gral of the first term in (C1) is bounded. The
third term is the exponent of the function defined
in (2.14). Since f I

ln IA, (8)11 d0 exists, it follows
that the integral of the modulus squared of lnE, (s)
is also bounded (theorem 4.1, Ref. 15, p. 54). We
now consider the second term, which is the modu-
lus of the integral I in the exponent of (2.9). Using

In (C2) we have extended the notation pt(zt) to
mean Qt', pt' in (2.9), and —pt, —pt' on that part
of the circle corresponding to the lower lips of the
eut. Now, in (C2) the integral I, is a Cauchy inte-
gral of a function P = Pt(zt')/zt', which, among
others, belongs to L'(0, 2tt), since it is bounded.
This function has a decomposition P = P, + g in
positive and negative frequencies, so that both
@, and Q cL (0, 2tt). Consequently, It represents
a, function with a bounded squared modulus in

I z, I

The same can be argued about I2 if the change
of variables z,"= 1/z,' is performed.

The fact that the bounds for the integrals of
I lnE, (s)1 and 1$,(zz)1 are uniform in y is check-
ed by simply resorting to the Taylor expansions
of the functions InEt(z&) and P, (zq), and using the
fa.ct that the boundary values are in L (0, 2tt). This
completes the proof,

APPENDIX D: COMMENT ON SEC. II D

To show that there exists a set I,', dense in some
interval of I„such that for tcI,', the number of
zeros of At, (s), A2, (s) in the complex s plane is
bounded by a certain number X, we construct
first the sets M„of t values, contained in I„ for
which the numbers of zeros of A~„A2, in the com-
plex s plane are both less than n. We see that
M„(:M„+& and that U„"~M„=I,. The following lem-
ma (see Ref. 12, p. 230) proves the assertion of
Sec. GD:

Let S be an interval of the real axis and M& a
sequence of subsets of S with properties (a) M,
wM„& for all i, and (b) No set M, is dense in
some open subset of S. Then the set M=U) f~g
can contain no open subset of S.

The proof is done in Ref. 12, p. 230. This lem-
ma proves the statement of Sec. IID, since in our
case M—= I, is an interval, and so we must con-
clude that there exists an n =N, so that M&

max
is dense in some open subset of I,.
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APPENDIX E: IRREDUCIBLE POLYNOMIALS

In this Appendix, we prove statements (i) and

(ii) of Sec. II I concerning irreducible polynomials.
The reasonings that follow are similar to those
of Ref. 12 (see p. 108). The present author was
unable to find in Ref. 12 a statement with the pre-
cise content of (i} and (ii) so he proves them here
below.

(i} We first show that two irreducible polynom-
ials Pq(f, 8) and P2(f, 8) coincide up to a constant
if they have a common root 8 =8(f) [or f = g(8)]
on no matter how small a continuum in f (or 8).

Assume first that the common root is such that
on some one (real) dimensional continuum I in r,
8(f) =8, =constant. It follows that Pq, ,(f, 8,) =0
for f &I, and so everywhere. This means
Pq, 2(f, 8) =P, ,(f, 8)(8 —80}, with Pq, 2(f, 8) poly-
nomials in f, 8 and p & 0, integer. This contra-
dicts the irreducibility of Pq, 2 unless Pq, 2= con-
stant, and p = 1. This proves statement (i) in this
simple case [and also in the similar one, f(8) = fo
= const].

If 8(f) is not a constant, consider the set of all
its analytic continuations, along all possible ways
in the g plane. We obtain n values of 8(f} at f
:8,(f), . . . , 8„(f), where n is less than (or equal
to) the degree m of P,(f, 8)withrespect to 8. We con-
struct then the symmetric combinations 8,(p) + 8,(f)
+ ~ ~ + 8.(~), 8,(~)8,(~)+ +."8,(~) 8(~),
and 8&(f)82(g). . .8„(f) Let .ao(&) be the polynomial
which is the coefficient of the highest power in 8

of Pq(&, 8). The m roots of Pq(f, 8) are all finite
except at the points where ao(&) vanishes. There
are only a finite number of such points. Except
for them, we can check that the symmetric com-
binations above are uniform and holomorphic func-
tions at all points of the P plane. They are uni-
form because all branching points of 8&(f) fall out
when one builds the symmetric combinations; fur-
ther, they are bounded at those points where the
individual 8,(f) have branching points and they
are uniform and holomorphic in their neighbor-
hood; so they can be extended by holomorphy to
these points too.

To study those points where ap(P) vanishes, we
make the replacement 8'=1/8 and notice that the
set of zeros of Pq(f, 8) is transformed to that of
8'"Pq(f, 1/8'). Assume first that a„(g), the coef-
ficient of the free term in 8 of P&(f, 8), does not
vanish at the same point as ao(f) Then the. m
roots I/8, (f) stay finite in the neighborhood of the
points where ao(&) =0. We construct the symmet-
ric combinations of 1/8, (0) and conclude as before
that they are holomorphic and uniform functions
in the neighborhood of these points. It follows
that the symmetric combinations of 8, (0} are
meromorphic functions of g at these points them-

selves.
If, by chance, ao(f) and a„(P) vanish at once at

some point, we can find a constant C, so that,
with the change of variables 0q ——8+C, the free
coefficient a„'(f) of P, (f, 8&) no longer has this
property. This we can always do, unless P&(r„, 8)
=0. From the meromorphy with respect to P of
the symmetric combinations in 8&+ C we conclude
the meromorphy of the symmetric combinations
in 8;.

So, wehaveproven the meromorphy with respect
to P of the symmetric combinations of the 8&'s at
all finite points of the f plane. We make now the
change of variables f' = I/g and show similarly
that at f ' = 0, the symmetric combinations are
again meromorphic. It is essential at this point
that Pq(g, 8) is a polynomial in 0 A.function which
is meromorphic at all points of the complex plane,
including infinity, is rational.

We next construct a polynomial in ~ of degree
n, P,(f, 8), so that the coefficients of the powers
of 8 are the symmetric combinations of the n roots
8&(g); these coefficients are rational functions of

f, and P,(g, 8) vanishes only at the points (g, 8;(K)),
i=1, 2, . . .n, and nowhere else. By multiplying
Pp(f 8) with a polynomial a,(f) the c—ommon de-
nominator of the coefficients, we obtain a poly-
nomial in two variables Po(& 8), The degree of
this polynomial with respect to 8 is n & nz, and
the set of its zeros is contained in that of P,(f, 8).
Then the ratio P~(f, )/8P, (f, 8) has no singularities
in the whole f, 8 plane. This follows from Weier-
strass's preparation theorem [see Appendix F,
statement (iii)]. But, for all g, Pq/Po is bounded

by constx8 ", as 8-~. Therefore Pi/Po is a
polynomial in 8. We call it 3 q(f, 8). The coeffi-
cients of this polynomial are rational functions of

P, as one sees by direct computation from those
of Pq and Pp, But Py(f 8) is holomorphic in f, 8

in the whole g, 8 plane; it follows that it is a poly-
nomial in f. This way, we have decomposed the
irreducible polynomial P& in a product P~ ——PyPp
of two polynomials, one of which (Po) has degree
n bigger than zero, by construction. The only
possibility is therefore that n =m, and Pj ——con-
stant. We have proved this way that knowledge
of one zero trajectory 8, =8q(f) on a small continu-
um in g determines the polynomial P&(f, 8) up to
a constant, as stated in (i). Statement (ii) of Sec.
IIH is obtained by simply parting the set of zeros
of P(f, 8) into sets of zeros of irreducible poly-
nomials. Then P =CII&.q P,. where P, is irredu-
cible and determined by the zeros up to a con-
stant.

Let us notice that the equation P(f, 8) =0, where
P is irreducible, BP/Bro0, and BP/B8&0, can
always be solved with respect to P or 0, except
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APPENDIX F: WEIERSTRASS'S PREPARATION THEOREM

Weierstrass's preparation theorem is a funda-
mental statement of the theory of functions of
several complex variables. For two complex
variables (and not for more than two) it reads:
if A(f, 8) is holomorphic in two variables in a do-
main D of C, and A(&0 Hp) = 0, then there exists
a neighborhood Uq x Ue of (gp Ho) where A can be

~o o
represented as

a(g, 8}= (g —g,}'[(8—8,) + ~,(g}(8 8,)-'
+" + .(~)] (~, 8), (Fl)

where P and m are positive integers (possibly
zero), o'&(g) are m functions holomorphic in g in

U~, and such that &,($0) =0 and ~(f, 8) is a holo-
0

morphic nonvanishing function of (0, 8) in U& x Ue .
0

A proof of this theorem is found in Ref. Ik, p.
89. The expression in brackets is called a Weier-
strass pseudopolynomial (with peak at fo); we
denote it by W (8 —80, f —f,) Geom. etrically,
(Fl) means that, for a function of two variables,
holomorphic in U& ~ Ue, one can associate to its'o o'
set of zeros in U, , && Ug, a Riemann manifold with
finitely many sheets. The point fo is a branching
point of order .m for the functions 8(f}defined by
W„(8 —Hp, f —fo) =0.

We next quote from Ref. 12 a number of state-
ments and definitions related to Weierstrass pseu-
dopolynomials (WP}. They are intuitively obvious
and they serve making rigorous some statements
of the text (in Sec. IIJ and Appendix E). Their
proof is given in Ref. 12:

(i) A WP (fo):W(8 80' l fo) is said to be irre-
ducible if there are no two other WP (&p) W W"

so that W=W'W" in U~ xUg (p. 98andTheorem2,
o 0

p. 104}; (ii) A WP (g,) admits of a unique decom-
position (up to order) in irreducible factors (theo-
rems 1 and 2, p. 104); (iii) If a WP (f0), W' is ir-
reducible and vanishes at all points of a neighbor-
hood of ($0 8p) where another WP (fo), W" van-
ishes, then W"/W' is also a WP (f,) (Theorem 3,
p. 105).

Clearly, a proper Riemann surface can be at-
tached only to irreducible WP's. If W& is an ir-
reducible WP (f,) of degree m, then 8 W, /8 8 is also
a WP ($0} of degree m- 1. It is true that (iv} if
Wq is irreducible, there are only a finite number
of points in U~ x Ue, where Wq, HWq/HH simultane-

. 0 0

for a finite number of points (K, 8) in O'. Indeed,
if it were not so, one would conclude, for instance,
that Pq and HPq/88 vanish together on an infinite
set of points (f, 8), and that they are either identi-
cal, or that the degree with respect to 8 of HPq/
80 is bigger than that of P&. Both situations are
impossible, however.

ously vanish (theorems 1 and 2, p. 107, 103);
(v) an irreducible WP (Ko) is completely deter-
mined if one of its roots Hq(f) is known on any
open subset of U& (p. 108, Sec. 10).

0
We next prove for completeness some obvious

statements about the multiplicity of a zero trajec-
tory.

(a) The notion is independent of point: Indeed, as-
sume,

R(r, 8, n(~, 8)) ... .[P,(~, 8)]'«0

and is holomorphic in a neighborhood U~ & Ug of
&o o

$0 80 where R(&0 Hp 77(&0 Hp)) = 0. According to
(iv) above, there exists an open set U~ c: U( sothat
all the roots of P;(r, 8) in 8 are distinct. Consider
one of these roots 8,(g), pc U~ and a neighborhood
of it. Uq, so that, if f c Ut, 8, (f) c U~', and no other
root of another P& is in Ue. Then in U& x Ug,

R(g, 8, n(g, 8) }=[8— 8(g)]'~~(g, 8),

where tu(g, 8) is 40 and holomorphic. So,

(8'R/38')(g, 8.(g), q(C, H. (g)))-=0

in U& for P & k; —1. This is an identity which must
hold for all analytic continuations of 8,(f), and so,
proves the statement.

(b) Two polynomials P",P~ which describe the
same trajectory have the same multiplicity. It is
sufficient to establish this in the neighborhood of
some point (f, 8) where all roots in 8 of P"(g, 8)
are distinct, and we can solve (2.3) for 7l(f, 8) and

8(f, q). So, assume in the neighborhood U, x Ug

of the point (f, 8 = 8, (f)), one has

R(r, 8, n(r, 8))=[8- 8,(~)]'~(r, 8),

with u&(f, 8) holomorphic and 40. Let U„be the
image of U&x Ue through q=(8m —f —8 ) . Then
in U&x U„ the function 8(f, p) —8, (P) vanishes only
at the points (f, q, (f ),}where 7},(f) =[8m —f
—8, (f}] is the root of P (f, q) associated to
8, (f) by (2.32). By Weierstrass's preparation
theorem, we can write 8(k, 'II) —8, (f) =(g —R, (K))
x ~1(f& '0). So

R(~, 8(~, n), n}/(n n. (&))"*-
-=R(g, 8, q(g, 8)) N,

' (t, n)/(8(l, 9) —8.(f))'*
= (~, 8(~, n)), '~(~, n),

holomorph and free of zeros in U&x Ug. This
proves the statement.

APPENDIX 6: THE PROPERTIES OF Ro {s,t, u j

(i) We describe first in more detail the way
Ro(s, f, I) is constructed. We call F",„the family
of irreducible polynomials P",(f, 8) describing the
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zero trajectories of Zp „(and similarly Ep «, Ep «).
Let 8,(f) be a root of P",(f, 8)= 0, and let 2I,(j) be
one root of P1(g, 2I) associated to it by (2.32). In
principle there could be two such roots. We con-
s ider one of them and continue analytically the
pair of functions (8,(f), 2I, (f)) along all possible
ways in the g plane. It could be that, for each
point f, we obtain th'is way (a) n different values
8,(0) of 8 and n different values 2I,(f) of 1I, in one-
to-one correspondence to each other; (b) n differ-
ent values of 8 and 2n different values of 1I, or (c)
2n different values of 8 and n different values of g.
In the last two cases, to each root 81(f) [or sly(f)]
there correspond two roots g, (f) [or 8,(f)] satis-
fying (2.32). It is easy to see that there are no
other possibilities. In case (a), the pair (P,",P,)
contributes n different factors to the product (3.2),
whereas in cases (b) and (c), it brings 2n factors.

Situations (a), (b), or (c) occur at all points f
except for a finite number at which the equations
P1(f, 8) =0, P2(f, 11) = 0 do not have simple roots in
8 or 2). We call II«(0, 8) II„'(8, 2I), and If„(g, 2)) the
products of the irreducible polynomials contained
in Pp, » Pp,» and P,«, respectively, They are
real analytic functions of their arguments.

(ii) We now show that the numerator Rp, «(0, 8, 2I)

of Ro is a meromorphic function in the Mandelstam
domain. We shall actually show that it is mero-
morphic in all of C . Meromorphy in C with re-
spect to 8 and q is obvious. Further, Ro,& is
holomorphic in P at all points where the trajectory
functions stay finite and do not cross each other.
At points where they do cross, the symmetry of
(3.2) under permutation of the factors ensures the
existence of a neighborhood where Ap, « is uniform
and holomorphic. If the expressions 8,(f) +i2I,.(f)
stay finite in the neighborhood of such points, the
symmetric combinations Q &[8&(f) + 21I &(0)], and

Q, &[8,(f)+22I,(f)][8&(g)+22I&(f)), etc. , have a
unique extension by holomorphy to the points them-
selves.
If 8, (f) +i1),(f) becomes unbounded in the neigh-

borhood of a point f, one can check that there
exists an integer m, so that both 8,(f)(f —f)" and
2)1(f)(f —5" stay bounded in the neighborhood of

This follows from the fact that the coefficients
of the powers of 8, 2I in II"(0, 8) and 11 (l, ri) are
analytic functions of f. We conclude that the sym-
metric combinations of 8,(f) +22I, (g) behave mero-
morphically at all finite & points.

By performing the change of variable f' = I/I',
we see that the zeros of R&,0 around g =~ are also
described by polynomials f'&II"(Ijl', 8) and
f'~II (1/g', 2I) (m„, mp degrees of IP, II ). Applying
the same reasoning as above, we conclude that the
symmetric combinations behave meromorphically
also at f =~, and so we conclude that Ap «(and

Rp) is a rational function of l', 8, 2) in all of C .
(iii) We next show that the number of zero tra-

jectories &„„Eq.(3.2), must be even as a con-
sequence oftherealanalyticityof II"(f, 8), II (g, 1I),
and II (8, rl). This is clear if to each trajectory
8 = 8(f) of an irreducible factor PP1(f, 8) of II",

. there correspond two trajectories 2I, = 2I, (0) of

P1(f, 'g), or conversely. One can check that the
product of all irreducible polynomials Pj with
this property is real analytic. The same is true
for P1. We divide these products out of IP, If, and
obtain again real analytic polynomials II~~, II„so
that to each root 8(p) of IP1 there corresponds only
one root 11(k) of II,. We notice then that, at f
=2mv 2, the trajectories must fulfill one of the
two conditions 8(2m/2)+i2I(2m~2=0. If ri(2m'"2)
is real, then 8(2m/2) is imaginary. But then the
real analyticity of II1p(f, 8) enforces the existence
of a second root -8(2m~2, which corresponds to
a root of II1(2I, 2m~2 at -2I(2m&'2 ), or to a second
root at 2I(2m''2). In both cases, the polynomials
must have an even number of roots. A similar
reasoning holds if 1I and 8 are complex at /=2m/2.
So, N t, t ——2pN, pN an integer.

(iv) We now show that R is a real analytic func-
tion on 8 defined by Eq. (2.3). We shall prove
that the function Ap(f, 8, 2)(f, 8)) is real when 0 and
8 are real. More precisely, we shall see that the
phases of Ro,„, and Ao~ are the same for these
values of f and 0. Consider then (0 real, 0&$0
& 2m' 2; the zeros of the many-valued function
of 8i Rp, (f«pi 8i 'g(f &8p) ) are by construction either
real or build complex-conjugate pairs. Since we
have seen that there exists an even number of tra-
jectories, the real ones must also fall in pairs.
If the zeros are real, the corresponding 8(fp)
+i2I(fp) values lie on the circle of radius (Sm

fp ) in the v plane. Otherwise, the corres-
ponding ~&, v2 are reflected with respect to this
circle: v, = (8m —4)/&u2 . We consider first a
pair of real zeros, lying on the circle above at
angles 8~ and 82. We write

(8m' —g p2) (8"—e"1)(e" —e"2)

(8 2
g 2)1/2eg(81 82) 2

( cosf 2 (8 81 82) l cos[2 (81 82)]] i

for &u on the circle of radius (8m —fp ) . We see
that each pair of factors (~ —&u1)(~ —+2) divided
by (d gives rise to a function which has a constant
phase on the circle. The same is true for com-
p&ex-conjugate zeros. We conclude that the func-
tion R«p(f, 8, 2))/cu «has a constant Phase on the
circle of radius (8mp —Cpp)'~2 (modulo w), and
e'qual (modulo m) to half the phase of the product
of all the roots g, ,pp, (g).

We next show that this product has a phase which
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is independent of f. We have seen that this pro-
duct must be a rational function. Since the ~&'s
can be grouped in pairs of values, either both of
modulus (8m —go )', or reflected with respect
to the circle, one concludes that, for $0 real, the
product has a modulus equal to (8m —r„o )o& B. ut
the function II, (u, (r) can have zeros only at f
=+2m& 2. Indeed, it is only there that 8(f) +i@(f)
can vanish, according to (2.3). We conclude that
II; & (u, (f) =C„(Sm —l ) ", where C~ is a complex
phase C'~ = e' ~. With the previous reasoning,
R„o /(o & has for real ro, 0& go & 2m/2, and real
8 and q [u& on the circle of radius (8m —go )' ] a
constant phase g„ independent of go. The same
reasoning is true for R~,o/&o ". We now showthat
g„=gz&. To see this, note that the product of the
roots of the denominator is, for &0 real,

g 'N

.„.[8*( ro)-+ f&» ( &o)-] =.... [8~(-&o) +iq(( ro)]-
)=1 &=i

because of real analyticity. The right-hand side
of this equality is even in &o [=e"&(8m ' —0o')oN ], and

has just been computed. So, gN
——g~ and the phase

of R&,0 is equal to the phase of R~,o, modulo m.

We conclude RD, O
is real analytic on S.

(v) Clearly, for all Pw+2mv 2, the variable 8+i'
makes uniform the two sheets of the 8 plane, so
that Ro has the same zeros described by II",II,
for fw+2mv 2. It could have supplementary zeros
at f =+2m/2. At g =+2mf2, 8 falls into two fac-
tors 8=wig. For 8 =iq, we see directly from
(3.2) that Ao does not vanish identically; it van-
ishes only at isolated points corresponding to
those roots 8,(2m~2 and q, (2m~2 of the poly-
nomials II (2m' 2, 8) and II"(2m& 2, q), which are
such that 8, (2m~2 —iq;(2m~2=0. For 8= i@, -
both numerator and denominator vanish identi-

cally; indeed, we have seen in (iv) that H&u&(P)
=C(8m —g )~, so that g& co&(r) =0 at r„=+2mM2.
But we know that Ro is a real rational function on

Consequently, Ro (2m/2, 8, o8) =Ro(2m', 8*,
—i8*), so that if R, vanishes at a point (8, p) lying
on 8+i@= 0, it will also vanish at the point (8*,q*)
which lies on 8-ig =0. But we have seen that,
because of the reality of the polynomials II" and
II, if there exists a pair of roots satisfying
8(2m~2 —i7l(2m/+2 =0, there must also exist a
pair obeying 8(2m~2 + iq(2m~2 = 0. So, Ro
vanishes at r„=+2m' only at the roots of these
polynomials and nowhere else.

(vi) We can now show that Ro has modulus one in
all three channels. This is by construction guar-
anteed for the s channel. Since Ro has no other
zeros but those generated by II", II, and II~, it
follows that in the physical region of the t and u
channels, the zeros of the denominator RD are
complex conjugate to those of the numerator R&.
We conclude that the modulus of Ro(g, 8, q) for 8

imaginary, P, q real and negative on 8, is a func-
tion of 8 only. But,

~R, (C, 8, q) ~'=R, (g, 8, q)R, (g, 8*,q)

=Ro(~, 8, n)Ro(~, 8. n) —=/(8') (G2)

for p, q real, 8 imaginary, (f, 8, p) c S. This is
then an identity at all points of &. We evaluate
now the modulus of both sides of the last equality
of (G2) for r on Re( = 0, (f, 8, p) L S. By construc-
tion, ~Ro(l, 8, q(K, 8))~ =1 for 8, q real and nega-
tive. At fixed g, we can extend this last equality
also to positive values of 8 [q(8) is even, -(Sm
—k ) &8&(8m —g ) ], and so, ~Ro(r„, -8, q)~ =1
too. Consequently, f(8 ) =1, as announced. A

similar reasoning can be done in the u channel.
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