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A standard analysis of the pion-nucleon o. term uses partial conservation of the axial-vector current,
current algebra, and a seemingly benign quark-model assumption and disagrees with experiment by a factor
of 2. Here I calculate the cr term in a hybrid chiral bag model and find that the discrepancy disappears.
Excepting the o. term the (successful) pattern of SU(3)- and SU(3) &( SU(3)-symmetry violation in the model
is essentially identical to the more standard analysis.

I. INTRODUCTION

The pion-nucleon o term is a direct measure
of chirsl-SU(2) && SU(2)-symmetry violation in the
baryon sector. In models where chiral symmetry
is broken only by explicit quark mass terms, Z „N
is the amount by which the nucleon mass shifts
when the u- and d-quark masses are switched on.
2",~ can be extracted from low-energy pion-nu-
cleon scattering. It can also be calculated to
first order in the quark masses using PCAC
(partial conservation of axial-vector current),
current algebra, and a seemingly benign quark-
model assumption. The result of this "standard
analysis" differs from the measurement by a fac-
tor of 2. In this paper I calculate theo term in a
version of the quark bag model modified to in-
corporate approximate chiral symmetry. I find
that Z „„calculated in this model agrees much
better with experiment. Furthermore, the re-
maining pattern of SU(3) - and SU(3) x SU(3)-sym-
metry violation is essentially identical to more
standard analyses.

The hybrid chiral bag (HCB) model is a pheno-
menological description of static hadronic sources
in the chiral limit. Space is assumed to be di-
vided into two phases: The first is the interior
of hadrons, where quarks and gluons live and
flavor symmetries are broken only by explicit
mass terms in the quantum-chromodynamics
(QCD) Lagrangian; the second is the "true vac-
uum" outside hadrons which expels color flux
and the quarks and gluons which carry it. It is
assumed that chiral symmetry is broken spon-
taneously by the true vacuum with the consequent
appearance of massless Goldstone bosons. The
theoretical and phenomenological motivation for
the HCB model is discussed at length in Refs.
1 and 2. In the model, the Goldstone modes live
only outside of bags and are treated as funda-
mental particles. Whether they are in fact funda-
mental degrees of freedom or bound states of

quarks and gluons is not at issue. Regardless
of what they are, they will cluster around static
hadronic sources and couple to quarks at the bag
surface in such a way that the axial-vector cur-
rent is conserved (in the chiral. limit). The nu-
cleon is then a collection of quarks in a bag sur-
rounded by a pseudoscalar-meson cloud coupled
chirally. The model looks like a hybrid between
a conventional quark model and a nonlinear v
model for the chiral dynamics. Similar models
have been studied by Brown, Rho, and lento'
and by Barnhill, Cheng, and Halprin. '

When chiral symmetry is broken explicitly by
giving the quarks in the underlying QCD Lagran-
gian small masses, the Goldstone bosons also
become massive. The a term which violates
SU(2) x SU(2) and baryon-octet mass differences
which violate SU(3) receive contributions both
from the quarks inside and from the Goldstone
bosons outside. One can check that the interior
quark contribution to these effects is very nearly
linear in the quark mass up to several hundred
MeV. This is not true of the exterior Goldstone-
boson contribution. As the mass of some pseudo-
scalar boson increases, its contribution to the
nucleon mass should vanish. Thus, for example,
the cloud of DD pairs around a proton presumably
contributes negligibly to its mass. Since the only
scale in the problem is A~, the radius of the nu-
cleon bag, one expects the effects of a pseudo-
scalar boson of squared mass p' to vanish when
p'Bz' becomes large. The precise dependence
of a baryon's mass on p' (for fixed'„) in a HCB
model is shown in Fig. 3. The dependence is
highly nonlinear for masses of order p& and p, „.
This is where the HCB model departs from the
standard analysis: It is not sufficient to evaluate
the effects of exterior Goldstone bosons to lowest
order in O'Rz'. (Note p'~m, in the PCAC analy-
sis of meson masses. ) If, despite this, higher
orders in p'A„' were ignored, then the assump-
tions of the standard analysis would be satisfied
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by the HCB model and a factor-of-2 discrepancy
with Z„~ would remain. When the calculation is
carried out to all orders in p'A~', the effective
Hamiltonian which breaks SU(3)x SU(3) and SU(3)
in the HCB model is found to contain a large
SU(3)-singlet term, a small octet term, and a
negligibly small 27 term. This is exactly the
form necessary to obtain agreement with experi-
ment for the 0 term while preserving the suc-
cesses of the standard analysis of SU(3)-sym-
metry violation.

This whole discussion assumes wider signifi-
cance because quark-mass ratios are predicted
by grand unified theories of strong, weak, and
electromagnetic interactions. The "standard
analysis" of the 0 term takes the ratio of strange-
to nonstrange-quark masses

m, /m= 35

from the Gell-Mann-Oakes-Renner' (GMOR) and
Glashow-Weinberg' (GW) PCAC analysis of meson
masses. The factor-of-2 disagreement with ex-
periment could immediately be resolved by taking
m, /m = 12 at the price of an inconsistency be-
tween estimates of m, /m from meson and nucleon
chiral-symmetry violation. In a recent paper' I
argued that this discrepancy could be accounted
for by remembering that quark masses are scale
dependent and that the analyses of the o term and
of meson masses take place at different mass
scales. That paper contains errors which in-
validate -that conclusion. ' A brief analysis of the
possible effects of scale on the quark-mass ratios
I am using is given in the Appendix. The result
is that the masses which appear in my analysis
should be understood as "current" or "Lagrangian"
quark masses (as distinct from "constituent" or
"effective" quark masses) and that the ratios of
these masses are nearly independent of scale in
the region of interest. With this in mind I will
drop any reference to scale in denoting the quark
masses. The result of the HCB analysis is that
the quark-mass ratio extracted from the 0 term
and baryon mass differences is compatible with
the quark-mass ratio of Eq. (1.1) so long as ex-
ternal-boson effects are correctly included in
the calculation.

The "standard" analysis of isospin-violating
mass differences will also be modified in HCB
models. Any isospin-violating effect can be
separated into an electromagnetic contribution and
a "tadpole" contribution arising from a nonelec-
tromagnetic mass difference between the u and d
quarks. ' The electromagnetic contribution to
baryon mass differences can be estimated from
the Cottingham formula' and subtracted from
measured mass differences leaving "tadpole mass

II. THE STANDARD 0-TERM ANALYSIS

The pion-nucleon a term is defined by"
3

&pr 3 N s~

where Q', is the weak axial charge with isospin
index a and H is the Hamiltonian of the strong
interactions. The (isospin-averaged) nucleon
state is normalized to unity. In QCD, the sym-
metry-breaking term in H which fails to commute
with flavor-SU(3) axial charges is

HsB m dx ux ux +dx dx

+my dxsx sx

ignoring isospin violation. Performing the com-
mutator s,

g,~=m d'x Nuxux +dx dx (2.3)

valid up to second order in isospin violation [i.e.,
a term proportional to (m, m„)(N~dd —uu~A—}has
been dropped]. Z,„is the amount the nucleon
mass changes when the u and d quarks are given
a small mass m.

differences" proportional to m„-m„. In HCB
models, tadpole mass differences remain linear
in m& -m„. In the standard analysis, the coef-
ficient of (m~ -m„) in the symmetry-breaking
Hamiltonian is ~(dd -uu). In HCB models there
is another term arising from external bosons.
External pions do not contribute because the m'

and m' are degenerate in the absence of electro-
magnetism. As explained above, external kaon
effects are suppressed in the HCB model so their
contribution to isospin-violating mass differences
is not likely to be large. In the remainder of this
paper I will consider only isospin-averaged masses
and cr terms. Isospin violation in HCB models is
another subject, interesting in its own right but
independent of the present analysis.

The rest of this paper is organized as follows.
In Sec. II I define the v term, comment on its ex-
perimental determination, and review the "stan-
dard" calculation of Z,„which disagrees with the
data. In Sec. III I briefly introduce the hybrid
chiral bag model and construct the effective
SU(3)- and SU(3) x SU(3)-symmetry-violating
Hamiltonian in the HCB model. In Sec. IV I com-
pute Z „„and baryon mass differences and com-
bine this work with other bag calculations to esti-
mate the actual magnitude of m and m at typical
hadronic mass scales. The result of that analy-
sis is m = 15 MeV and m, =—325 MeV.
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where (P' —P)'=q' and 2'„«(0) =—2,«. In recent
years several determinations of 2,«(2 p, ') (which
agree reasonably well with one another) have
settled down to a value of"

",«(2p, ) =65*5 MeV. (2.5)

Pagels and Pardee" have argued that Z, «(2P, ')
differs from 2 „„(0)by terms calculable in chiral
perturbation theory. They find

Z, „(0)=r, .„(2p, ')—
Bv 2

+0(p'loge, '). (2.6)

The correction is -14 MeV. So the best present
knowledge of 2. ,„is

(2.7)Z;,„-=Z„(0)=51+ 5 Mev.
/

The "standard" QCD+ quark-model calculation
of 2'„~ requires the following ingredients":

(a) The GMOR-GW (Refs. 5 and 6) calculation
of m, /m from PCAC and current algebra in the
meson sector.

(b) An analysis of octet baryon mass differ-
ences to lowest order in the symmetry-breaking
parameters m, and m.

(c) The quark-model assumption that the
strange-quark sea in the nucleon is negligible.

Together these imply Z, «-=26 MeV for m, /m
=—25. To obtain this result one first rewrites
Hs~ as

IISB d x cpupx +c8us (2.8)

where

and

u, =—qh.,q (2.9)

co= (2m+m, ),1

1c,= ~(m -m, ).
(2.10)

(The A., are the usual 3&&3 matrices of Gell-Mann
normalized to TrA.,'=2.) If one ignores further
dependence of up and u, on m and m „ then they

Z„„is not measured directly. Instead, a com-
bination of isospin even mN-scattering amplitudes
is analytically continued to an unphysical point
(the Cheng-Dashen point)" where it canbe shown
to be proportional to Z, «(2p„') (Refs. 12, 13,
and 14). Here

3

~.«(e') =3+ &&(p')1[05, [~;,~IL I&(p)&, (2.4)

M„+M-. = ~(MA+3M~). (2.12)

This is well satisfied experimentally and has al-
ways been taken as evidence for ingredient (b)
listed above, for if the octet matrix elements of

H,„are tak.en linearly inm and m, , then Eq. (2.12)
is automatic. A more precise statement would be
that any nonlinear effects must not produce sig-
nificant terms transforming as other than flavor
octet or singlet.

The o term involves both u, and u, . From Eqs.
(2.3), (2.8), and (2.11) one obtains

~7rN 1+X&2
M-. -M«+2(M~™A) 2(m, ™-1)' (2.13)

where

fd'XQviu, (x)i&
fd'-&~l. .'(-) Ix (2.14)

A. is unknown. To proceed further, one must now
invoke a quark-model assumption, namely"

d3x N sx sx =0. (2.15)

The operator» counts strange-quark pairs
(particle and antiparticle add in ss as opposed
to s's). Everyone knows that inelastic electron-
scattering experiments have demonstrated the
existence of a sea of quark pairs in the nucleon
and that QCD analyses indicate that the sea be-
comes progressively more important at asymp-
totically large Q'. However, the scale for baryon
matrix elements is some small p, (see Appendix
A) where the strange sea in the nucleon. is known
not to be large. " Accepting Eq. (2.15) for the mo-
ment, then X=@2, and taking m, /m from Eq.
(1.1), one finds Z, «=26 MeV as quoted above
To obtain agreement with experiment, one would
require A. —= 3.4 for m, /m =25. This is an aston-
ishing result. It requires a very large sea com-
ponent in the nucleon. If I assume a flavor-SU(3)-
symmetric sea (if anything, the sea is expected
to be depleted in s quarks) and write

transform as flavor-SU(3) singlet and octet, re-
spectively. Octet baryon mass differences are
proportional to c„

M-. —M~ = —243 Ic8,
(2.11)

Mg MA 3Dc, ,

where & and D are the invariant matrix elements
of the octet operator u, in the octet representa-
tion. The form of Eq. (2.8) and the assumption
that u, and the spin- —,

' baryons transform as octets
also implies the Gell-Mann-Okubo relation
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dxNuxux = d'x Ndx dx III. THE HYBRID CHIRAL BAG MODEL

= ~V+ 3C, (2.16)

d'xNsx sx =3C, (2.17)

where V and C are the total valence and sea con-
tributions, respectively, then C/V=1. 4 for
m, /m = 25. The sea contribution to the nucleon
matrix element of qq must be greater than the
valence contributi on.

Faced with this discrepancy one might con-
sider a number of ways out:

(1) Give up kaon PCAC and the GMOR-GW value
of m, /m.

(2) Find a failure of assumption (b), that bar-
yon mass differences can be analyzed to lowest
order in m and (in particular) m, .

(3) Find some anomalous contribution to u, (x).
(4) Invoke a large admixture of qq pairs in the

proton at typical hadronic mass scales.

As I will describe below, a hybrid chiral quark
model leads one naturally to the second alterna-
tive and to a value of m, /m in agreement with
GMOR-GW. So although kaon PCAC and the
GMOR-GW analysis may be suspicious, there is
no reason to give them up to save the o term.
Before passing on to the HCB calculation, al-
ternatives 3 and 4 deserve serious consideration.
As for 3, one might think that u, (x) could receive
an anomalous contribution from mixing with gluon
operators. This is not so. The standard analysis
requires uo(x) only in the limit m =m~ = 0. Inside
the bag, chiral symmetry is unbroken in this
limit and the chirally odd operator u, (x) cannot
mix with gluon operators, all of which are even.
As for 4, it is very difficult to get a substantial
contribution to (N~ fd'xu, (x) ~Iq) from quark pairs
in a quark model. The reason is an interesting
interplay of confinement and chiral symmetry
and is independent of the details of the model.
Free, massless quarks have (qq) =0. Quarks in
hadrons have (qq) 0 0 because they are bound.
Imagine building a model for the nucleon with
three valence quarks in the lowest state of some
Hamiltonian and a sea of qq pairs distributed over
more energetic states. Quarks in higher-lying
modes are less sensitive to the confining "po-
tential" (or boundary conditions in the case of the
bag model) and behave more like free quarks.
In particular, their contribution to (qq) vanishes
rapidly with excitation energy. This can be veri-
fied by explicit calculation in the bag model. It
is not possible to generate a sufficient enhance-
ment in fd'x u, (x) without having a huge amount
of energy in quark pairs.

SzzR„'f,' (3.1)

which is a dimensionless measure of the boson
field strength at the bag's surface. Reference 2

deals exclusively with the chiral limit in which
both the quark and meson masses vanish. It is
straightforward to extend that work, keeping all
orders in quark and meson masses but staying at
lowest order in the meson field strengths. The
equations of motion and boundary conditions for a
spherical bag ignoring gluons are

(-zn ' &+ Pm)q, = &u, „qr &R„ (3.2a)
~ A-ir '

y0o = &o x=Rg
(&/&r-)q, q, = 2B

(3.2b)

(3.2c)

for the zeroth-order quark wave function q„and

(-zn v+ pm)q, = e, qatar+, q„r&R„ (3.3a)

( + p, ')$, =0, r&R„ (3.3b)

~ m ~
&

Z(-zr ~ y —1')q, =-X Q,r,qo, r=R„ (3.3c)

(3.3d)

for the first-order meson field P„zz generated by
the quarks and for the shift q„ in the quark wave
function. Color indices are suppressed through-
out. q, and q, are flavor-SU(3) triplets, Q (and A. )
are flavor octets, and m and p,

' are diagonal ma-
trices in flavor space. Equations (3.2) comprise
the original cavity approximation to the bag
model. " In particular, Eq. (3.2c) fixes the bag
radius, R„ to balance the vacuum pressure B f.
is the meson decay constant. " Gluon corrections
can be computed perturbatively in n, . Since both
gluon and external meson corrections are in some
sense small, it is consistent to ignore each while

The first formulation of a bag model with funda-
mental Goldstone bosons was given by Chodos and
Thorn" and by Inoue and Maskawa. " Recently,
Callan, Dashen, and Gross' have emphasized that
a two-phase model with quarks and gluons inside
bags and Goldstone bosons outside may provide an
accurate phenomenological realization of chirally
invariant QCD. The motivation and formulation of
such a model is reviewed in Ref. 2. There it is
shown that the full hybrid chiral model (QCD,
Goldstone bosons, bag, and all) is very compli-.
cated, but that for large hadronic sources (such
as nucleons) the model simplifies. The effects of
the external Goldstone modes can be calculated
perturbatively in a small parameter
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estimating the other. Lowest-order gluon correc-
tions were estimated in the original bag model
some time ago" and can be added to the external
meson effects calculated here.

The strategy for constructing solutions to the
HCB model is first to find baryon solutions to
Eqs. (3.2) As usual, only the lowest cavity mode
of q0 will be considered. This limits me to baryons
from the nucleon (—,'+) octet and & (2+) decuplet.
Then the first-order meson field Q, and quark
wave function shift q, can be calculated from Eq.
(3.3), keeping all orders in quark and meson
masses. 'The energy is

E= d'x(-2q, io.'&q, + H. c.+q,mq, +B)
V

+ d x(—pqoz& ' 7qg —2q~zQ ' +qo+ H. c.
V

+ q,mq, + q,mq, )

(3.4)

where V (V) is the interior (exterior) of the bag.
Equation (3.4) simplifies considerably when the
equations of motion are used to relate q] to (f)y.

I'-' = E,(m) + -,
'

d's(f& i ' —
(f&, ,

av 8$— (3.5)

where the integral is now over the bag's surface
(&V). The first term in Eq. (3.5) is the energy of
the static quark bag ignoring pions but including
gluon corrections. Equation (3.5) is accurate to
lowest order in the meson field strengths but
given that, to all orders in meson and quark
masses. It will soon be evident that the interior
QCD energy E,(m) is very nearly linear in the

quark masses over the range of interest here.
This allows me to write

+EH C B E —EHC B
0

d'xIm[u, (x)u, (x)+ d, (x)d, (x)]
V

+ m, s( )xs, ( )x}
I

(3.6)

av

Here @', is defined to be the exterior meson field
in the chiral limit, so tha. t ~E" vanishes that
limit.

I propose to interpret Eq. (3.6) as a Hamiltonian
for symmetry violation in the space of eigenstates
of the cavity bag model, and then to identify its
eigenvalues with hadron masses. 'The first term
on the right-hand side of Eq. (3.6} can be expanded
in a series in the QCD coupling o, The first

b

b — ' — - &le&ku
.. gjj Ij

b

hajj

0 jI

(b)

FIG. 1. Quark-line diagrams for the coupling of a
meson of flavor b.

(~ +"& ~

f(p, , &M):— (3.7)

where g= (~' —p, ')'~' and ~ is the effective mo-
mentum cutoff. [To reproduce the results of the
coordinate-space calculation with M' =M, one
finds z= (3v)'~'/R„=2/R„. ] The suppression is
measured by the ratio of the mass shift with &M

=M~ -M„versus the shift when ~M = 0:

term in the series (independent of n, ) is simply
the bag integral of the unperturbed quark field
scalar density and is a two-quark operator. The
term of order n, is the derivative with respect to
quark mass of the first-order gluon-exchange
diagrams evaluated at zero quark mass. This is
a four-quark operator. Terms higher order in n,
involve more complicated multiquark operators
and will be ignored here. The matrix elements of

q, (x)q, (x) can be evaluated including order cL, be-
cause the relevant gluon-exchange diagrams were
computed in Ref. 24. The second term in Eq. (3.6}
is a four-quark operator since the source of (It),

is a quark bilinear. 'The corresponding quark-line
diagrams are shown in Fig. 1. 'The matrix ele-
ments of Eq. (3.6) between nucleon octet states
receives contributions from both octet and de-
cuplet intermediate states. " The 300-MeV mass
difference between the octet and decuplet which
exists already in the chiral limit has so far been
ignored. I have studied the effect of this splitting
on chiral-symmetry violation by making an effec-
tive Yukawa model after the fashion of Brown and
his collaborators. ' Consider, for example, the
nucleon. The HCB is interpreted as a model for
the h/N g and N &m vertices and the mass shifts
induced by the mesons are calculated in second-
order perturbation theory. Because the effective
momentum cutoff in this model is small (-1/R„),
the contribution of the ~ intermediate state is
suppressed. The contribution of an intermediate
baryon of mass M'=M+ 4M to the nucleon mass
shift is proportional to
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I(iz, &M) —I(0, hM)
I(iz, 0) -I(0, 0)

(3.8)
2000

Numerical calculation gives S of the order of —,
' for

v=400 MeV. Similar results are obtained for
other octet nucleons. So to a first-approximation
decuplet intermediate states should be ignored in
calculating octet matrix elements of Eq. (3.6).
'The effective Hamiltonian for octet symmetry
breaking is then

HHc B —Hquark Hmeson
SB SB + SB

Qp X Qp X + dp X dp X + msSp X Sp X

+ d's, x 6', &, x

C'
0
n)
O

z

Iooo

(3.9)

where (P, is a projection operator onto the octet.
The next step is to evaluate the nucleon matrix
elements of HsB~."

I

l00
I I I

200 300 400
Quark Mass t Me V j

l

500

IV. SYMMETRY VIOLATION IN THE BARYON SECTOR

where x, is a cavity eigenvalue (x, —= 2.043) and the
angular brackets denote the matrix element in a
hypothetical baryon made of three equal-mass
quarks. The second term in Eq. (4.1) is borrowed
from the analysis of Ref. 24. (The factor of 0.05
comes from an integral over cavity wave func-
tions. ) Numerically, the coefficient of 3m in Eq.
(4.1) is roughly 0.55. As m - ~(Eo(m)) grows li-
nearly with m

lim(d, (m))=3m J d*qqt(q)q, (q)=3m,
m~ go

(4.2)

The symmetry violation arising from quark
masses inside hadrons is familiar. Here it is
contained in the operator E,(m). In the bag model,
E,(m) is nearly linear in the quark masses for
masses up to several hundred MeV. To illustrate
this, the matrix element of E,(m) (through order
n, ) in a baryon state made of three quarks of
equal mass is plotted versus m in Fig. 2 for fixed
AH=5 GeV '. As m-0 the matrix elements of
Eo(m) —Eo(0) vanish linearly:

Iim (E,(m)& = (E,(0))
m-+0

+ 3m~,
)

+ 3o., (0.05) ~, (4.1)

FIG. 2. A: Internal quark contribution to the mass of
a nucleon composed of three quarks of mass m includ-
ing first-order gluon interactions; B: linear approxi-
mation to this curve. .

since as m —~ the lower components in the quark
wave functions and gluon corrections become
negligible. 1/2(x, —1) is a significant parameter
in the bag model which measures the square of
the upper components of the quark's Dirac wave func-
tion minus the square of their lower components. It is
(to zeroth order in o.,) the parameter Weinberg"
calls Z . For free quarks as m-0 so does
fq(I. Z is nonzero in the chiral limit of the bag
model because quarks are confined. From Fig.
2 it is evident that Eo(m) is well approximated by
the linear term even up to quark masses of 500
MeV. This is the justification for replacing E,(m)

by the linearized form H~~e"" in Eqs. (3.6) and

(3.9).
The second term in Eq. (3.9) is new. It can, in

principle, contain an SU(3)-flavor 27 piece and
will be seen shortly not to be linear in meson
squared masses except for very small p. '. To
work with H»"" it is convenient to write it in
terms of z, K, and g contributions separately.
As shown in Fig. 1, the emission of meson b in-
volves a vertex with quarks i and j. By integrat-
ing Eqs. (3.3), the contribution of meson I) to
H»"" can be calculated
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where p,
' is the mass of meson b. (,. is a bag-

model number depending on the mass of quark j:
Meson Mass [MeVj

I40 200 300 400 500
I I I I I

[2n,.(n,. —1)+ $,.]'" ' (4.4).

where f,=.mR, x,.=x($,.) is a bag eigenvalue de-
termined by the transcendental equation

xtanx= (4.5)

and n=($'+x')'~'. g, is g evaluated at m =0,
where x=x, =2.043. The second term in Eq. (4.3)
is merely the subtraction of the meson energy
shift in the chiral limit.

H~~ saturates rapidly with increasing meson
mass. This is illustrated in Fig. 3. The contribu-
tion to a nucleon's mass from hypothetical kaons
of mass p, is plotted versus the mass of the
strange quark. p.

' and m, are assumed to be re-
lated by the GMOR-GW analysis

)2'~ (m+m, ) (4.5)

with m = 15 MeV and the constant of proportionality
chosen so that a quark of mass 350 MeV generates
a pseudoscalar meson of mass 490 MeV. (These
are roughly the numbers which are obtained at the
conclusion of this paper for m and m, .) If the ma-
trix elements of H~~"" were linear in p, 'o-m„as
is usually assumed, then the contribution of me-
sons of mass 500 MeV (= p, «) would be roughly 12
times the contribution of mesons of mass 140
MeV. Instead, the ratio is about 4. This is to be
expected. As explained in the Introduction, one
expects very heavy mesons (such as the D and B
families) to contribute negligibly to ordinary
baryon masses. The difference between the con-
tribution of the very massive meson (which is
zero) and its contribution in the chiral limit
(which is not) goes to a constant. The scale for
this saturation is set by R„which is O(1/p, ,). So
H ~~"" is highly nonlinear in p,

' in a region where
H s~"" is quite nicely linear in the corresponding
Pl%

The expectation values of H~~B for b = m, K, and

q can be evaluated within the nucleon octet. The
only new input required is the F/D ratio for the

I

100
I I I

200 300 400
Quark Mass [ MeV j

I

500

FIG. 3. The contribution to the mass of hypothetical
nucleon from external hypothetical "kaons" of mass p
composed of one quark of mass 15 MeV and another of
mass m. The quark and meson mass scales are nor-
malized so that when m = 350 MeU, p= 490 MeV.

operator Xo in the octet. For this we use F/D
= —', which obtains in all SU(6)-like quark models
(including the bag model) and agrees well with ex-
perimental deter minations of octet axial-vector
charges. Given F/D = —„the expectation values
of —48vf2R„'Hs'a are listed in Table I, where

P2= (1+ P.~R)/(I+ )22R+ 2 )2,2R2),

R„=5 GeV ' (the result of lowest-order bag cal-
culation'4), and ( and &z are g($) evaluated at
( =mR„and )=m, R„, respectively. The 2) con
tributions are more complicated than the m and
K because the 2) (assumed to be a pure octet) is
a linear superposition of quark pairs of different
masses.

The elements of Table I are functions of the
quark masses, as are the matrix elements of
H', B"". Given the experimental values of the octet
baryon masses and of X',„, it is possible to ex-
tract m and m, . Since the F/D ratio of octet
baryon masses is not predicted in this model,
the two parameters m and m, must be fit to two
octet mass differences (the third mass difference
simply fixes the F/D ratio of H'~2s'"") and Z,„. The
remaining constraint is the Gell- Mann-Okubo
relation. Below I will show (1) that the quark
masses extracted from octet mass difference and

TABLE I. Expectation values of -48&f RH3FP~~ for b = ~, K, and g.

Nucleon 25(r'P, —C,')
-"(C'P -C')
&2(& P~ &p )

(& P~-&p )

10(C f, P -0 )

'-,'(&'4'Px- &p')

20(e'e, 'P~- Cp')

26(0'K, 'Pg- &p )

K P„-K
4[(t 2+ 9/2)2p 9g 4]

4(C,9„-q')
-'[(SC '+ Z2)2p -»~4]
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Nucleon
Z

A
M

27
16
13
1

37
64
74
97

3
14
18
38

TABLE II. Expectation values of ~~& (in MeV) for b
= &, E, and g with m= 15 MeV, m~= 325 MeV, and A
=5GeV

The largest contribution is the singlet, and the
27 is entirely negligible. 'The effect of this is to
increase Z, N while leaving the usual analysis of
baryon mass differences intact. The small size
of the 27 piece in H~~"" is not an accidental con-
sequence of choices of parameters. From Table I
one can construct the 27 piece for unspecified f
and f„

h, = —,
' (2f)M„+ 2f)M~+ 5M~+ 35Mc) = 99 MeV,

h ~= 5M —5M = -67 MeV,

h, ~= ~ (3IiMc —5M~ —5M —5M„)= -12 MeV,
1

(4.7)

h„= — (3fbM~+ 5Mc —25M„—2f)M ) = -3 MeV.
9

I

Z,~ do yield a Gell-Mann —Okubo relation and (2)
are consistent with the Gell-Mann-Oakes-Renner
analysis of meson masses. The most straightfor-
ward way to approach this calculation is to as-
sume values of m and m, in the matrix elements
of Table I, then recalculate the values of m and
m, from the physical baryon masses and the quark-
model matrix elements of FP~~ . The process .con-
verges rapidly because the elements of Table I are
numerically small compared to the matrix ele-
ments of Hs~"". The resulting values are close to
m =15 MeV and m, =325 MeV. I shall take these
as input and verify that they emerge at the end.
Given m, m„and the physical masses of the z,
E, and g, the numerical values for the matrix
elements of HsB are given in Table II. From Ta-
ble II it is clear that the mass shifts induced by
ehiral-symmetry violation in the boson field out-
side the bag are small. Only 67 MeV of the N-=
mass difference (=380 MeV) comes from this ef-
fect. The rest, of course, comes directly from
the quark-mass shifts inside hadrons.

The first element of the first column of Table II
is the contribution of the external bosons to the o

term

LZ,„-=27 MeV,

since Z,~ is the shift in the nucleon mass when
chiral SU(2) is broken. This is of the right sign
and magnitude to make up the discrepancy noted
in Sec. II. Before going into this further it is
necessary to study the SU(3)-flavor transformation
properties of Hs~"'". In particular, it is necessary
to check that it does not generate a large 27 com-
ponent which would ruin the Gell-Mann-Okubo re-
lation. Denoting the mass shifts of Table II as
5M~, 5M~, 5M~, and 5M, the 1, 8, and 27 pieces
in H s"'" are given by"

—4[l (i +2): '')'(). —i:..')}, (4 8)

and see that the contributions of the m and K mes-
ons to h» are much smaller than their contribu-
tions to individual octet baryon masses. The q has
low statistical weight —one compared to 3 and 4
for the pion and kaon —so the fact that its contri-
bution to h„ is comparable to its contribution to
individual masses is of little consequence. There-
fore, the 27-piet piece of H~~"" is naturally very
small and the success of the Gell-Mann-Okubo
relation is not evidence for the validity of the
linear approximation. Note that in the linear limit,
in which all coefficients in Table 1 (including )u), ')
are expanded only to lowest order in quark mass-
es, h» is identically zero as required since in
this limit H» is an octet operator.

To complete the analysis, subtract the external-
meson-generated mass shifts from the experimen-
tal nucleon masses yielding effective baryon
masses (M*) which can then be used to determine
quark masses. The effective masses are

M~= 873 MeV,

M~ = 1098 MeV,

M~ = 1011 MeV,

M*= 1181 MeV,

and the effective 0 term is the experimental"
value of 51+ 5 MeV minus the pion contribution
from Table II:

Z*~ —= 24+ 5 MeV.

Since we have seen (from Fig. 2) that Hs~~" " is
quite linear, we may decompose it in a form an-
alogous to Eq. (2.8) and repeat the analysis of Sec.
II, incorporating the quark-model assumption
X= v 2 and find from the equation analogous to
Eq. (2.13) that m, /m= 24+4. Here the quoted er-
or reflects the uncertainty in the experimental de-
termination of Z,~ while the approximate equality
reflects the reliability of the theoretical analysis.
Since m, = 325 MeV and m= 15 MeV were assumed
as input, the calculation is consistent. The large
value of the experimentally measured o term is
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compatible with a large ratio of m, /m and the
standard quark-model assumption that the nucleon
contains few if any ss pairs. Indeed, the source
of the new found agreement is that the environs of
the nucleon are anomalously depleted in ss pairs
in the form of kaon and q-meson pairs due to a
natural failure of linearity in the hybrid chiral
model.

It remains to estimate the quark masses them-
selves. This is easily done from Eqs. (2.3) and
(4.1}with Z,„replaced by Z,*„:

Z,*„=(E(m)) —(E (0}), (4.9)

whence m=—14+3 MeV, while m, =—336+ 70 MeV.
The reader will notice that when all the dust has
settled, these estimates of quark masses are
roughly twice as large as commonly quoted
estimates. " This is not some subtlety associ-
ated with the 0 term —indeed Z,„ is considered
an outstanding problem in Ref. 17—instead,
the factor of 2 arises from the integral of qq
in the bag model. For nonrelativistic quarks
qq=qtq and Jd'xqtq=n versus n/2(x, —1)=0.48n
[gluon. corrections modify 0.48 to 0.55, see Eq.
(4.1) et seq. j in the bag model, where n is the
quark number operator. The reduction from unity
measures the small components of the quark wave
functions and is, I believe, a necessary part of
any estimate of quark masses measured in the
baryon sector. The exact numerical values ob-
tained for m and m, should not be taken too ser-
iously, for the theoretical uncertainties in this
analysis are not small. The value of m, in the
bag mode12' (m, = 280 MeV) differs from the esti-
mate given here because I have ignored nonlin-
earities in Eo(m, ) (see Fig. 2) which were kept in
Ref. 23. The important point is the qualitative
one: The large value of Z,„can be understood in
a world where m, /m-"25 if the chiral-symmetry-
violating effects of exterior Goldstone bosons are
properly included in the quark-model analysis.
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APPENDIX: THE SCALE DEPENDENCE OF LIGHT-
QUARK MASSES

The connection between the quarks of quark mo-
dels and the quarks in the QCD Lagrangian is by
no means obvious. The notion of quark masses
which depend on the scale at which they are ob-

served is well defined in perturbation theory and
has been analyzed using several versions of the
renormalization group. "". any connection be-
tween these analyses and constituent quark models
such as the bag model is largely guesswork. The
idea that confinement and spontaneous symmetry
breakdown are properties of the vacuum outside
hadrons while QCD inside hadrons is largely per-
turbative leads one to attempt to extrapolate per-
turbative renormalization-group analysis down
to typical hadronic mass scales. Accepting
this, I will assume that there is a mass scale
(-p,') such that the proton (for example) is, to a
reasonable approximation, a state of three of the
quanta of the quark field renormalized at —p, o'.
A model of baryons such as the HCB model is to
be interpreted then as an effective Lagrangian for
QCD renormalized at this mass scale.

The scale dependence of quark masses has been
studied by many authors. The approach closest
in spirit to quark models is that of Georgi and
Politzer. 'O'" They define the quark mass m(q')
as the ratio of the components of 1 and of g in the
inverse quark propagator Sz '(q') and find to low-
est order

m)(q )= ',
~ m~(q ),&.(q') "

~s qo
(A1)

where j labels flavor, o.',(q') =g'(q')/4m is the QCD
running charge, n, (q') —= 4mboinq'/A', 5,=11—3N&,

—

and d—= 4/5, . If (contrary to my assumption) chiral
symmetry were spontaneously broken inside had-
rons, Eq. (Al) would acquire an additional term
proportional to (0

~
q&q&~ A)/q'.

As it stands, Eq. (Al) predicts quark-mass
ratios to be independent of q'. The quark-mass pa-
rameters fit from spectroscopy must stand in the
same ratios as the quark masses obtained from
meson masses via PCAC and current algebra. "
This picture is clearly inconsistent with the old
nonrelativistic quark model with its canonical val-
ues of m (300 MeV} and m, (500 MeV) since the
GMOR-WS analysis requires m, /m= 25. If chiral
symmetry is not spontaneously broken inside had-
rons and if the corrections to Eq. (Al) discussed
below are as small as expected, then it should
be possible to formulate a successful constituent
quark model with m, /m= 25. The conclusion of the
present paper is that the HCB is one such model.
In bag models, up, down, and strange quarks
carry energies of roughly 300 and 500 MeV, re-
spectively, but most of this energy persists in the
chiral limit.

Corrections of order m&'/q' as well as terms
higher order in g' have been omitted from Eq.
(Al). The order m~'/q' corrections could induce
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a scale dependence for quark-mass ratios. The
corrections can be calculated from the work of
Georgi and Politzer. " The ratio of the O(m&'/q')
correction to the leading term is less than

where m, is the strange-quark mass (m is neg-
ligible) and c& is =» for the s quark and ~0 for the
u and d quarks. The correction is small if it
makes sense to do perturbation theory in n, at
the scale p, ,' which is the assumption on which
the entire analysis is predicated.
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