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The structure of Killing horizons in the static vacuum C metric which represents the gravitational field of
a uniformly accelerating Schwarzschild-type particle is studied. It is shown that for A 'm '

& 1/27 there exist
two physically meaningful horizons. Dne horizon is analogous to the Schwarzschild surface and the other is
similar to a flat surface in Euclidean space traveling at the speed of light along the axis of symmetry. This
second surface is called the Rindler surface because of its analogy with the Rindler surface in the limit that
geometry becomes Euclidean. As the acceleration increases, the Schwarzschild surface distorts from its
original spherical shape. Its shape becomes teardroplike with the pointed end oriented in the direction of the
acceleration. In the forward direction the Schwarzschild surface moves outward from the origin as the
acceleration continues to increase in accordance with the principle of equivalence. In the backward direction
the surface shrinks from its original Schwarzschild surface as the acceleration increases for relatively small
values of the acceleration. This is also expected from the principle of equivalence. As the acceleration
reaches A = 1/+54m the Schwarzschild surface in the backward direction reaches a minimum distance
from the origin at r = +3m and as the acceleration further increases it reverses its direction of motion and
grows outward until it reaches the original Schwarzschild surface at r = 2m. This behavior is an apparent
violation of the principle of equivalence. As the acceleration increases, the Rindler surface moves inward
approaching the Schwarzschild surface, and finally when A = 1/+27m the two surfaces unite and produce
a naked singularity. Radial geodesic and nongeodesic motions are also investigated. It is shown that for
small accelerations the results are in agreement with the principle of equivalence and the effects of dragging
of the inertial frame due to the rectilinear acceleration.

I. INTRODUCTION

There are numerous exact solutions of the Ein-
stein field equations. Most of these solutions are
solvable because of assumptions of mathematical
simplicity and do not correspond to physically
interesting cases. Other solutions are so com-
plicated that their properties are of little use.
The two most important solutions of the vacuum
field equations. are the Schwarzschild and Kerr
solutions. The Schwarzschild solution has re-
vealed the surface of infinite red-shift and one-way
membrane that surrounds a spherically sym-
metric object. The Kerr solution has generalized
these results to allow for uniform rotation and
has revealed the existence of the ergosphere and
the dragging of the inertial frame. Possibly the
third most important vacuum solution is that of a
uniformly accelerating particle. This solution
will allow us to study the modification of the
Schwarzschild surface, the possible dragging of
the inertial frame, and the role of the principle
of equivalence for an exact solution with uniform
rectilinear acceleration.

The vacuum C metric, representing the gravi-
tational field of a uniformly accelerating Schwarz-
schild-type particle, is a degenerate Weyl
vacuum solution. The vacuum C metric was first
discovered in 1918 by I.evi-Civita. ' It was re-
discovered in 1961 by Newman and Tamburino, '

and its geometric properties were investigated
by Robinson and Trautman in 1962,' Ehlers and
Kundt in 1963,4 and Kinnersley and Walker in
1970.' Its physical interpretation was first
noticed by Kinnersley and Walker' and explored
further by Plebanski and Demianski' and by
Ernst. ' The radiative properties were first
studied by Kinnersley and Walker' and explored
further by Farhoosh and Zimmerman. ' The mathe-
matical properties of its horizons, Killing ten-
sors, and analytic extension have been investi-
gated by Godfrey, '"Carter, "and Hughston" and
by Kinnersley and Walker. ' In the present paper
we will extend these investigations of the Killing
surfaces. We will explore their shape as ex-
pressed in a uniformly accelerating coordinate
system as well as a nonaccelerating coordinate
system. We will also explore the role of the
principle of equivalence and the effect of the drag-
ging of the inertial frame by the rectilinear ac-

celerationn.

In Sec. II we will present the various different
forms of the metric and a physical interpretation
of the accelerating and nonaccelerating coordinate
systems. In Sec. III the structure of Killing ho-
rizons is studied. It is shown in this section that
for A'm'& ~», where nz is the mass andA is the
acceleration of the particle, there are two dis-
tinct and physically meaningful Killing horizons.
One horizon is similar to the Schmarzschild sur-
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face, being caused mainly by the mass of the
particle and distorted by the acceleration. The
acceleration causes this surface to become elon-
gated in the forward direction, which is the di-
rection towards which the particle is accelerating,
and to shrink in the backward direction. The
second horizon is governed mainly by the accelera-
tion of the particle and is similar to the Rindler
horizon that appears in accelerating coordinate
systems. " This surface is distorted by the pres-
ence of the mass.

The Rindler-type surface surrounds the
Schwarzschild-type surface and is open in the
forward direction. By increasing the acceleration
Schwarzschild-type surface becomes more de-
formed, expanding iri the forward direction and
shrinking in the backward direction in accordance
with the principle of equivalence. As the accelera-
tion reaches A = 1/M54m the Schwarzschild-type
surface in the backward direction reaches a mini-
mum distance from the origin at r = v 3m, and as
the acceleration increases further the surface
reverses its direction of motion and grows out-
ward until it reaches the original Schwarzschild
surface at r = 2m. This behavior is an apparent
violation of the principle of equivalence. On the
other hand, the Rindler-type surface moves in-
ward as the acceleration increases approaching
the Schwarzschild-type surface and at A = 1/M27m

the two surfaces unite and form a naked singu-
larity at the origin.

In Secs. IV and V radial geodesic and nongeo-
desic motions are investigated. The behavior of
geodesic motion for small accelerations is shown
to be a consequence of the principle of equivalence
and the dragging of the inertial frame. These
results are summarized in Sec. VI.

II. COORDINATE SYSTEMS

G = G(P) = 1 -P' —2AmP',

F= E(q) = —1+q' —2Am q',

(2.2a)

(2.2b)

1 ~ 2~
p 2cos —+ +1

6Am 3 3

1 A, 4m'lj

p, = — 2cos —+ —i+1
6Am 3 3)

1P„= — 2 cos —+ 1),

where

(2.3a)

(2.3b)

(2.3c)

cos~ = 1 —54A'm'. (2.4)

Likewise, the three real roots of the function
E(q) are at

2 cos —+—
i
—1

6Am 3 3 )

1 6 4m

6Am 3 3
2 cos —+ ——1

(2.5a)

(2.5b)

where

1 ( cos——1 ~,6A.m ( 3
(2.5c)

cos& = —(1 —54A'm') . (2.6)

The functions G(P) and E(q) are plotted in Fig.

m is the mass, andA is the acceleration of the
particle. The range of the timelike coordinate
t is from -~ to +~, while the range of the co-
ordinate u is from 0 to 2w. The range of the co-
ordinates P and q are determined from the fact
that both G(P) and F(q) must remain positive in
order to keep the signature of the metric un-
changed. We are interested in the case where
the values of A are such that A'm' ~ ~». For this
range of A the function G(P) has three real roots
given by"

The lack of understanding coordinates often
hides the physical interpretation and the proper-
ties of many solutions in general relativity. The
vacuum C metric is no exception. While some
coordinates are more useful for understanding
the geometrical properties of the space, others
are more convenient for understanding the physi-
cal properties of the source and gravitational
field. The form of the metric where the mathe-
matical properties of the vacuum C metric are the
simplest is'

ds'=
» (Edt' —F 'dq'-G 'dP' —Gde'),1

A'(p+ q)'

(2 1)

where

G(P)
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FIG. 1. Cubic functions G(p) and I'(q) are plotted for
(a) A&1/~27m, (b) A=1//27m, and (c) A &1/~27m.
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1 for different values of A. We see that several
different ranges of q andP can be chosen so that
J'(q) and G(P) are positive. Each one of these
choices corresponds to different vacuum solu-
tions. We are interested in the case where the
range of P and q are given by

qg +~ q +~ qg )

P7f P PP'

(2.7a)

(2.7b)

and

A(p+ q)
(2.8a)

We would now like to express Eq. (2.1) in a
more physically meaningful coordinate system.
Equation (2.1) can be transformed to a uniformly
accelerating, null, spherical-like coordinate sys-
tem by letting

$I'2) = (1, 0, 0, 0),

$( )= (0, 0, 0, 1),
whose norms are

&(2)&(2). =& =A'r'F

g( ) $( ))2
= r—'G(p) .

(2.13a)

(2.13b)

(2.14a)

(2.14b)

p runs from 0 to 3 denoting u, ~,P, cu, respec-
tively. $(2) is the timelike Killing vector repre-
senting the time symmetry and the static struc-
ture of the metric. $(" ) being spacelike denotes
the axial symmetry of the solution.

In order to interpret the meaning of these co-
ordinates we notice that in the limit A —0 the line
element (2.9) reduces to Schwarzschild line ele-
ment written in the null coordinates provided that

(2.15)

and
~Au + F'( )

(2.8b)
G(P, A = 0) = 1 —P' = sin'() . (2.16)

A2r2G(P A-(r-&)

= 1 —2ArP -A'r'(1 —P') — (1 ArP)'-

1 ——+ 6AmP +ArG ~ -A'r'G(P) (2.10)

and the comma represents the ordinary deriva-
tive. The range of the coordinate u is from -~
to +~ and the range of the coordinate r is re-
stricted to the region between the points where H
is positive.

For the metric in (2.9) the null tetrads are"
LP = (0, 1, 0, 0),
n~ = (1, --,'a, o, o), (2.11)

The line element (2.1) then transforms to

ds' = Hdu'+ 2dudr + 2Ar'dudP r'(G 'd-P2+ Gd(d2),

(2.9)

where

0 and p are the usual spherical polar and azi-
muthal angles having the usual range of 0 to m

and 0 to 2m, respectively. u is the retarded time
and x is the radial coordinate ranging from 2m

to ~. In this limit the norm of the spacelike
Killing vector $(" ) in (2.14b) becomes

$(»$(„» = rsin (-) .2 ' 2 (2.17)

To identify the angular coordinate for the case
where A e 0 we retain the relation in (2.15) be-
tween the ~ and the p coordinates. To identify
the polar angle 0 with the P coordinate we require
the norm of the axial Killing vector be given by
Eq. (2.17). Comparing Eqs. (2.14b) and (2.17) we
obtain

G(P) = 1 —P' —2AmP' = sin2() . (2.18)

Since Eq. (2.18) has three roots, we must identi-
fy which root we choose in order to make the
mapping from the P to the 0 variable unique. The
three roots of Equation (2.18) for A'm' ~ ~» are
given by

m
2 y3' (2.12)

1
A ~

1v'G(P) i 1
W2

' 2 r '
W2 rdG(2)) '

and the only nonvanishing tetrad component of the
curvature tensor is

1 8(()) 27(
P~= — 2cos + —+

6Am

1 8(()) 47(
pg= — 2cos + +

p, = — 2cos + 1 i,e(())

(2.19a)

(2.19b)

(2.19c)
The real singularity r = 0 in (2.12) is a manifesta-
tion of the presence of the Schwarzschild-type
particle centered at r = 0. The line element (2.9)
is a degenerate vacuum Weyl solution and has
two hypersurface orthogonal Killing vectors given
by

where

cose(8) = 1 —54A'm' cos'8 . (2.20)

At 8=0 and v, P, in Eq. (2.19a) becomes equal
to P, given by Eq. (2.3a) and at 8 =((/2, P, and P,
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both become equal to zero, while at 0 =0 and m,

P, in Eq. (2.19b) becomes equal to P, given by Eq.
(2.3b). Therefore, comparing with Fig. 1(a), as
one increases 0 from 0 to m/2 the value of P as
given by Eq. (2, 19b) varies from P, to 0, and as 6

increases from ((/2 to 7( the value of P as given
by Eq. (2.19a) varies from 0 toP, . Therefore
the correct mapping from the P to the 0 variable
is given by

e(s) 47(2cos + —+1 for 0&0&((/2
6Am 3 3

p( -
)

(2 21)

6Am 3 3
2cos +—+1 for ((/2&~ &((.

t-At, (2.22)

in which case we will have

The null coordinates in Eq. (2.9) can be replaced
by Schwarzschild-type coordinates by using (2.8)
and (2.15) along with

1 1+A(t+ &)

2A 1-A(t —5) '

ys2 p2 +~2

cot0 =z/p,

where

Z = 8 ——,'At '+—2A(s'+ p'),

the line element (2.24) reduces to

g~2 dt 2 ~p2 d~2 p2d y2

(2.27a)

(2.27b)

(2.27c)

(2.27d)

(2.28)

(2.29)

The metric in Eq. (2.29) is the usual flat-space
line element written in the familiar nonaccelerat-
ing cylindrical coordinate system.

The origin of the coordinates in a coordinate
system defined by the line element in Eq. (2.24)
is mapped by Eqs. (2.26) onto a timelike tra-
jectory as expressed by the inertial coordinates
given by Eq. (2.29). This timelike trajectory of
the point r = 0 is given by

2
2AX2

Qydp
H H

y2 + gp ~2@ p (2.23)

where H is given by (2.10). The spherical polar
angle 0 is related to the p coordinate by Eq.
(2.21). In the limit thatA-O, the line element
in Eq. (2.23) reduces to the usual Schwarzschild
line element with spherical coordinates (r, 9, y).

In the limit that m - 0 the space becomes
Euclidean and (2.23) and (2.10) reduce to

2Ax2 '
0

0 0

1+2Am cos0-r' d8' —r'sin'Bdp', (2.24)
H0

Q0 1 + 2A& cos0 -A ~2 sin 0 (2.25)

H x/2

t = ' sinhAt, (2.26a)

This is a special form of the flat-space line ele-
ment written in a uniformly accelerating frame.
Performing the coordinate transformation

(2.30)

and represents a uniformly accelerating motion
along the +8 axis of the inertial cylindrical co-
ordinate system.

From the above arguments one can conclude
that the line element in Eq. (2.23) represents a
uniformly accelerating Schwarzschild-type parti-
cle accelerating along the positive 8 axis. The
coordinates (t, r, p, g) defined by Eq. (2.23) is a
coordinate system-"rigidly" fixed on the ac-
celerating particle. The center of the particle
manifests its presence by a real singularity in
the curvature scalar at r = 0. The accelerating
coordinate system (t, r, p, p) is particularly useful
because the line element given by (2.23) is static
and r represents the radial coordinate which is
centered on the center of the particle.

The radial coordinate r in Eq. (2.23) is related
toP and q coordinates by Eq. (2.8a). Therefore,
the range of r is governed by the ranges of p and
q given by Eqs. (2.3) and (2.21) where in (2.21)
the polar angle 0 is confined to the range 0 to m.

Substituting (2.5) and (2.21) in (2.8a) we see that
the radial coordinate r is confined to the region

&x~ where

7i=
A (H, '~'coshAt —1),

p=r sin0,

whose inverse transformation is

(2.26b)

(2.26c)

(2.26d)

3m

e(e) 4w 5 27(& 2
COS + —+ COS —+—

3 3 3 3j.
(2.31a,)

3m

cos +—+ COS —+—
3 3 3 3 )
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sm 7t

!
for 0&0&-

i - (" -")--(-'.-")
(2.31b)

3m jr
for —~ ~ ~m,

g(8) 27() 5 4v& 2
cos +—+ cos —+—

3 3j 3 3/

}

H, = j.+2A~ cos0 -A'x'sin'8 = 0, (2.32)

whose solutions are

e(8) and 5 are given by (2.20) and (2.6), respec-
tively.

Equations (2.26) are the transformation equa-
tions to the nonaccelerating cylindrical coordi-
nates (t, p, h, (()) which will be referred to as the
nonaccelerating background coordinate system.
This definition is in no way unique and for the
vacuum C metric one cannot give an invariant
definition for a nonaccelerating observer or co-
ordinate system. In the Schwarzschild case a
nonaccelerating observer is constructed by de-
fining its four-velocity to be proportional to its
timelike Killing vector. This corresponds to an
invariant observer being at rest relative to the
particle which is not accelerating. In the case
of the vacuum C metric the timelike Killing vector
does not, represent the four-velocity of a non-
accelerating observer, although it uniquely de-
fines the four-velocity of an observer being at
rest with respect to the origin of the particle
which is undergoing uniform acceleration. There-
fore in the vacuum C metric a uniformly ac-
celerating observer being at rest relative to the
center of the accelerating particle can be given
an invariant meaning, whereas an invariant in-
ertial observer or coordinate system does not
exist. The reverse case is true for the Schwarzs-
child metric in which an invariant meaning can
be attached to the inertial coordinates while an
invariant accelerating coordinate system cannot
be defined. As an example of other nonaccele-
rating coordinate systems different from the co-
ordinates (t, p;)), P) defined above, one can men-
tion the coordinate system employed by Kinnersley
and Walker' and Farhoosh and Zimmerman' in
which the radiative behavior is explicitly mani-
fested.

In order to understand the physical meaning of
the Killing horizons in the m0 case, we will
first consider the limiting case of m =0. The
line element in this case is given by (2.24) which
has a timelike Killing vector given by (2.13a),
whose norm is given by (2.14a), with H being re-
placed by 8, given by (2.25). The norm of the
Killing vector in (2.13a) vanishes at the position
determined from the condition

1
~R A(1 —cos8)

1r'=—
A(1+ cos8)

'

(2.33a)

(2.33b)

(2.34)

Equation (2.34) represents a b = const plane
traveling in the positive h axis at the velocity of
light. We see that the Rindler surface is just a
manifestation of the light cone bound for points
in the b = const plane moving at the speed of light.

Equation (2.34) can also be derived in another
way. The timelike Killing vector (2.13a) as ex-
pressed in the nonaccelerating background co-
ordinate systems takes the following form:

$(",)
= (1+Ah, O, A f, 0), (2.3 5)

p running from 0 to 3 denoting t, p, h, 7f", re-
spectively. The Killing vector in (2.35) corres-
ponds to an acceleration boost in the positive 8

direction. The norm of this Killing vector in the
flat space is

((",)](,)„=( +IaA)' At'- (2.36)

The vanishing of Eq. (2.36) gives the same sur-
face as the one expressed in (2.34).

III. KILLING HORIZONS: GENERAL DISCUSSION

In this section we will discuss the structure of
the Killing horizons, their shape, and their
physical meaning in the general case where both
A and m are different from zero. A Killing hori-
zon is a null hypersurface, invariant under all
isometrics of the space-time, whose null gen-
erator is also a Killing vector. In particular if
$(",) is a hypersurface-orthogonal Killing vector
which commutes with all others, then the sur-
faces where $«)g(, )„=0are Killing horizons. InP

our case, we have just two independent com-

In this limit the range of radial coordinate r be-
comes O=r~&r &r~. The surface r„given by
(2.33b), being negative, is out of the range of
the coordinate system. The other surface, being
the outer limit of the radial coordinate r given
by (2.33a), is a parabola of revolution with r = 0
at its focus. In analogy with the similar surface
arising in the two-dimensional case of a uniformly
accelerating coordinate system analyzed by Rind-
ler, " this surface will be referred to as the
Rindler surface.

Applying the transformation (2.27) to the Rindler
surface given by (2.33a) we will obtain the Rindler
surface expressed in the nonaccelerating coordi-
nate system which is
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&3m
Ys

sin—
3 for 8=0 (forward direction),

!
i

(3.2)

muting Killing vectors with components in the
coordinates of Eq. (2.10) given by Eqs. (2.13a) and
(2.13b). This makes the search for Killing hori-
zons trivial, since we merely need to find the
zeros of H =

$~,i)«i& as expressed by Eq. (2.14a).
Setting this norm equal to zero we get the trivial
solution at r = 0 which is not relevant and will
not be considered any further. The other solu-
tions are determined from the condition E(q) = 0
whose solutions for A'm'& —,', are given by (2.5).
Written in the accelerating spherical polar co-
ordinates (t, r, 8, Q), two of these surfaces take
the form given by (2.31). The third solution can
be obtained in the same way by substitution (2.21)
and (2.5c) in (2.8a) to giver, jm m

!
for 0&8&-

ie (8) 4s 5 2
cos + —+ cos-

3m 7
e(8) 2s 5

'"
2

cos +—+ cos—
3 3 3

The surface defined by (3.1) has x„&0 and lies
outside of the physical range of the radial coordi-
nate r and is unphysical and will not be considered
any further.

The two remaining surfaces given by (2.31}de-
fine the only physically meaningful horizons. We
will now give a description of these surfaces as
seen in the accelerating and nonaccelerating coordi-
nate systems. Equations (2.31}simplify in the
forward (8 = 0) and backward (8 = w) directions as
well as the equatorial plane (8 =m j2) where they
take the following forms:

TABLE I. Various numerical values for rz/m are
tabulated as a function of 0 and for different numerical
values of A2m2.

0.2r 0.4m 0.5m' 0.671 0.87'

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
1.90
1.99
2.00

2.00
2.40
2.69
3.03
3.46
4.07
5.06
7.26

11.56
36.73

2.00 2.00
2.32 2.13
2.54 2.23
2.77 2.32
3.05 2.43
3.40 2.56
3.89 2.72
4.66 2.96
5.53 3.20
6.85 3.53
7.59 3.71

2.00
2.04
2.08
2.14
2.20
2o2 i

2.37
2.52
2.67
2.88
3.00

2.00 2.00 2.00
1.96 1.84 1.80
1.96 1.81 1.76
1.99 1.80 1.74
2.02 1.80 1.73
2.06 1.81 1.74
2.12 1.84 1.76
2.22 1.90 1.80
2.33 1.96 1.86
2.48 2.06 1.95
2.57 2.12 2.00

2m

Cos + ~ Sln
3 v'3 3

2m
B

cos3 —~ sin—

}for 8=a (backward direction) .

(3.4)

In Tables I and II v'arious numerical values for r&
and x~ are given as a function of 0 for various

Gm

1+cos —+&3 sin—
3 3 -m

~

for 8 = —(equatorial plane),

6m
R

1+cos ——&3 sin—
3 3

(3.3)

TABLE II. Parlous numerical values of rz/m are tabulated as a function of 8 and for dif-
ferent numerical values of A @pe .

54A' 8 0 0.2x 0.4x 0.5m' 0.6m 0.8x

0
0.25
0.50
0.75
1.00
1.25
1.50
1.75
1.90
1.99
2.00

66.22
42.95
32.26
25.57
20.68
16.69
13.03
10.61
8.42
7.59

19.16
12.81
9.93
8.15
6.89
5.88
4.99
4.42
3.91
3.71

13.57
9.19
7.21
6.00
5.14
4.45
3.85
3.47
3.13
3.00

10.61
7.26
5.75
4.83
4.17
3.65
3.20
2.91
2.66
2.57

7.93
5.51
4.41
3.74
3.27
2.89
2.57
2.36
2.19
2.12

7.26
5.06
4.07
3.46
3.03
2.69
2.40
2.22
2.06
2.00
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e=o
forward direction

to the approximate equation (3.5a) the larger the
acceleration the more significant the deformation.
The qualitative behavior of this surface is what
is expected based on the principle of equivalence.
The qualitative behavior of the surface can be
predicted by noting that for no acceleration the
Schwarzschild surface is defined as that surface
where the gravitational potential of a test particle
of mais p is, the rest energy or

PmpP= (3.6)

values of A'm', respectively. In Fig. 2 we have
plotted the typical shape of these surfaces. The
surface denoted by ~ in Fig. 2 is the Schwarzschild-
type surface and from now on will be called the
Schwarzschild surface. The surface denoted by
8 is the Rindler-type surface and will be referred
to as the Rindler surface. It can be seen that the
Rindler surface surrounds the Schwarzschild sur-
face and is open in the forward direction.

The shape and the behavior of these Killing
horizons will become much more apparent if the
two extreme limits of very small and relatively
large A.m are considered. In the limit of small
Am Eqs. (2.31) reduce to

rz ——2m (1+2Am cos &),

1
A(1 —cos&+Am sin'8)

(3.5a,)

(3.5b)

The surface r~ given by (3.5a) is shown in Fig. 3.
This surface is basically the Schwarzschild sur-
face which is contracted in the backward direction
and elongated in the forward direction. According

forward direction
6=o

8 = '8

backward direction

FIG. 3. This figure shows the SchwarzschQd surface
for a uniformly accelerating particle (the solid line) in
comparison to the spherically symmetric surface for
the case where A = 0 (the dashed line).

g —Tl'

backward direction

FIG. 2. The Killing horizons around a uniformly ac-
celerating particle are plotted. The surface denoted by
S is the SchwarzschQd surface and the surface denoted
by R is the Rindler surface which is produced by the ac-
celeration and distorted by the mass of the particle.

For a particle in an accelerating frame having
the acceleration A, the Newtonian force is modi-
fied by the principle of equivalence giving

F V4
p,

(3.7)

In the forward and backward directions this modi-
fies the Newtonian potential to give

(3.S)

Equating this with —,
' of the rest energy we will

get an equation for the Schwarzschild surface
of the form

(3.9)

where the + and —signs refer to the forward and
backward directions, respectively. In the limit
of small acceleration (3.9) reduces to

x~ = 2m (1+4Am) . (3.10)

The qualitative behavior of Eq. (3.10) is the same
as (3.5a). As the acceleration increases the
Schwarzschild surface in the backward direction
shrinks and in the forward direction it expands.
The factor of 2 difference in these two equations
often occurs when constructing the Newtonian
analogy with general relativity and is not im-
portant.

'

The Schwarzschild surface in the form given
in Eq. (3.9) has a maximum in the backward di-
rection at A. = 0 with no minimum. On the other
hand, the Schwarzschild surface in the form given
in Eq. (3.4) has a minimum atA = 1/M54m, i.e.,
according to Eq. (3.4) the Schwarzschild surface
reaches its minimum distance of x =a Sm from the
origin in the backward direction when the ac-
celeration is increased to A = 1/M54m. As the ac-
celeration increases beyond A = 1/v54m this sur-
face reverses its direction of motion in the back-
ward direction and it expands outward. This be-
havior, which can also be seen in Table I, ap-
pears to violate the qualitative behavior of the
principle of equivalence discussed above. The
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8 =0
forward dhrecfhon

forward dhrecthon
e=o',

.A&=i//p / m&A~
A

'

e= Tt/2

back ward direc fion

FIG. 4. In this figure we have shown the behavior of
the Schwarzschild surface under the change of the ac-
celeration. In the backward direction the surface first
moves inward as the acceleration increases. At
A =1/~54m it reaches its minimum distance from the
origin at r ~3m As t.he acceleration further increases
the surface in the backward direction moves back out-
ward again. In the forward direction the surface con-
tinuously expands outward as the acceleration increases.
The dashed line shows the spherically symmetric
Schwarzschild surface in the case of A = 0 and the
dotted line shows the extreme limit of this surface for
A=i/ m.

where

cos6„(8)= 1 —2 cos'6. (3.12)

8= Ti

backward directi on

FIG. 5. The behavior of the Rindler surface under
the change of the acceleration is illustrated. As the
acceleration increases this surface moves inward and
when A is increased to its maximum value of A= 1/~27 m
this surface coincides with the Schwarzschild surface.
The dotted line shows the extreme limit of -this surface.
For the sake of comparison a Schwarzschild surface for
A & 1/~27 m is also illustrated which is denoted by S.

+s =~~ =~

6m 7

1 —2cos " + —
!3 3 h

6m

1 —2cos " + —
!

e„(e)
3 3 j

(3.11)

behavior of the Schwarzschild surface as pre-
dicted by Eq. (2.31a) and Table I is shown in Fig.
4.

As the acceleration increases the Rindler sur-
face moves inward and finally coincides with the
Schwarzschild surface that was moving outward
(cf. Fig. 5). These two surfaces coincide when
A = I/M27m. In this extreme limit (2.31) reduces to

The surface in Eq. (3.11) is the surface shown by
the dotted line in Figs. 4 and 5. It can be seen
that this surface is open in the forward direction
and its distance from the origin in the backward
direction is xs =x~ = 2m, while in the equatorial
plane it is rs =x~ =3m. As the acceleration in-
creases just beyond the extreme value A = 1/
v27m, both the Schwarzschild and Rindler sur-
faces become unphysical and we will have a naked
singularity at the origin.

Let us now. see what these surfaces appear like
in a nonaccelerating coordinate system. Per-
forming the coordinate transformation (2.27) on
(2.31a), the Schwarzschild surface in a nonac-
celerating frame assumes the following form:

/' 3m

cos + + cos —+-
[(p2 ~ s 2)1/2]

3m mfor —~ e ~sr .
cos(:+ —

) + cos(—+ —)
In a similar manner the Rindler surface in (2.31b) becomes

3m r
!

for 0&0&-
4m 1 & 4m 2

COS —+ —+ COS —+-
[(p2 +s 2) 1/2] —( h

3m mfor —~ 6 ~m,
COS + —+ COS —+—

(3.13)

(3.14)
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where

cos5 = —(1 —54A'm'),
2

cose = 1 —54A'm'
p2+~2

(3.15)

(3.16)

and Z is given by (2.28). In the limit of small ac-
celeration (3.13) and (3.14) become

ss =
C&s

—s Af + a A(&s +&s )]
4

= ps' —4m'(1+ 2AZs), (3.17)

ps'=, [I+2A(r)4 -m)] .
At time t = 0 Eqs. (3.1V) and (3.18) read as

ps'+ ps' = 4m'(1+Ah),

P, = —„[I+A(S-m)] .-=1

(3.18)

(3.19)

(3.20)

The surface S given by (3.19) is the deformed
Schwarzschild surface similar to the surface r&

in the accelerating frame, while the surface R

given by (3.20) is a plane which is slightly dis-
torted due to the mass of the particle m. The
time enters into the evolution of these surfaces
only through the term b ——,At ', which is the
familiar term representing the distance traveled
in the positive 8 axis due to the acceleration A

in the time t. Therefore as time increases the
surfaces are carried along with the particle which

is uniformly accelerating along the 5 axis.

IV. RADIAL GEODESICS; PRINCIPLE OF
EQUIVALENCE AND THE DRAGGING OF THE

INERTIAL FRAME

In this section we will investigate the behavior

of the radial geodesics as seen in the rest frame
of the particle. For small acceleration we will
show' that the behavior of the geodesics can be
explained in terms of the principle of equivalence

and the dragging of the inertial frame.
Let us consider the radial geodesics expressed

by the coordinates in Eq. (2.23). From the con-

stant of motion defined by the timelike Killing vec-
tor (2.13a) we can immediately obtain the four-
velocity of the radial geodesics. For timelike
geodesics, i.e., when the four-velocity vector v"

satisfies the condition

w'r

r
/ //

////// /// /
//
/

/

A~ &Ay--
~~=V/z~m&~~

(a)

where the dotdenotesd/ds. In this equationr'is basi-
cally the kinetic energy of the testparticle, E'is the

total energy, and H is the potential energy.
To obtain the qualitative behavior of this path

we will restrict ourselves to the simplest case
of motion along the axis of symmetry. In this
case the potential V(r) =—8 given by (2.10) becomes

2n
V, ( ) (r) = 1 ——+6AmP0(, )+Ax(G, P)0(,) . (4.4)

P, and P, are given by Eqs. (2.3) and the + and-
signs refer to the forward and the backward di-
rections, respectively.

These two potentials are plotted in Fig. 6 for
different values of the acceleration A. In the for-
ward direction the plots cross the zero level of

energy once, and exactly at the position of the

Schwarzschild surface, and due to the fact that

our coordinate system is defined only outside the

Schwarzschild surface we are only interested in

the part of these plots which are drawn in solid
face in Fig. 6(a). We saw in the previous section
that as the acceleration increases the Schwarzs-
child surface in the forward -direction expands
outward. This behavior can also be seen in Fig.
6(a) where for larger accelerations the plot crosses
the zero level of energy at a farther distance from
the origin, until at the extreme limit of A = 1/
v27m the potential curve never crosses the zero
level of energy. Furthermore, the potential en-

ergy in the forward direction has no maximum

and all these radial geodesics are bounded by the

potential and will colbde with the particle. The
reason for this is obvious. An accelerating parti-
cle will always eventually overtake any free-fall-
ing object. This will not be the case for a test
particle in the backward direction. Another in-
teresting feature of this potential is shown in

v"vq =+1

this radial four-velocity vector is

(4.1)
A))4)

1
A2) 4/

r/m

i =E -B (4.3)

u" = —,—,0, 0) =
I —,+(0* 4/)' ', 0, 0) . (40)-

E is the constant of motion defined by the time-
like Killing vector and H is defined in (2.10).
From (4.2) we have

-2

(b3
FIG. 6. This is a plot of gravitational potential of a

uniformly accelerating particle for different values of
acceleration in (a) the forward direction and (bj) the
backward direction.
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r/m

of energy E,. The geodesic having energy E, lies
on an asymptotic orbit. A test particle with this
energy will either asymptotically approach or recede
from the position at r = r, . At r = r, the testparticle
is static with respect to the accelerating particle.

For small acceleration the forward and the
backward potentials given by (4.4) reduce to

V„(r)= 1 ———6Am + 2Ar(l —2Am), (4.6)
2m

V (2 ) = 1 ——+ 6Am —2A2 (1+2Am) . (4.7)
2m

FIG. 7. This figure shows the behavior of the radial
timelike geodesics in the forward direction.

1 —4 cos' —+—
i12m 3 3 ]

(4.5)

where A. is given in Eq. (2.4). Unlike the forward
direction in which all the radial geodesics are
bounded by the potential and will collide with the
particle, the geodesics in the backward direction
may or may not fall on the accelerating particle
depending on their energy. This situation is
shown in Fig. 8. In this figure the geodesics hav-
ing energy E, are not bound and they may escape.
The backward geodesics having energy E, are
trapped in a region r ~ r, or r ) r, by the effect
of the dragging of the inertial frame. Points r,
and r, are the turning points of a test particle

Fig. 7. It can be seen in this figure that a test
particle which has energy E, can be found further
away from the origin for larger accelerations.
The reverse is true for a test particle with sufficient-
ly lar ge ene rgy such as E, in which case the larger the
ac celeration the smaller the maximum distance the
testparticle canbe from the origin.

In the backward direction the potential energy
curves cross the zero-energy level twice at the
positions of the Schwarzschild and Hindler sur-
faces. In the backward direction the potential
V (r) has a maximum determined from

V. RADIAL TIMELIKE TRAJECTORIES

In this section we will discuss the motion along
an arbitrary radial timelike trajectory. The
four-velocity vector of any radial path expressed
in the accelerating coordinates (t, r, p, p) is givenby

v~= —,—,0, 0 =-y ~, v, O, O,dt dr (5.1)

where

(5.2a)

In Eqs. (4.6) and (4.7) one can identify the term
+22.r with the principle of equivalence and the
term A. mr canbe identified with the effect of the
dragging of the inertial frame. In order to see this
connection more clearly we notice that in the limit of
small acceleration Eq. (4.5) can be written as

—,=A(1+ 2Am) . (4.8)

Equation (4.8) gives the approximate position of
the static observer discussed in the previous
paragraph. The term m/r2 on the left-hand side
of this equation is the Newtonian gravitational ac-
celeration which to lowest order in A equals the
acceleration of the particle. This is just what
would have been expected from the principle of
equivalence discussed in Sec. III. The second
term on the right-hand side of Eq (4.8),. i.e.,
2A. 'm, has no classical analog and represents
the effect of the dragging of the inertial frame
produced by the rectilinear acceleration.

Eg
r r .. r/m
2 R

drv=-
dt

'

For a timelike path one must have
v" v =+ l.

(5.2b)

(5.3)

Using the line element (2.23), Eq. (5.3) gives us
an expression for y:

va
(II 2 2)1/2 / (5.4)

FIG. 8. The behavior of the radial timelike geodesics
in the backward direction is shown in this figure.

where H is given by (2.10). Substituting (5.4)
back in (5.1) one has
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Hv" =+, , l, v, 0, 0 . (5.5)

Radial timelike trajectories do not exist for all
values of ~. The denominator of equation (5.5)
is real only if

8 ~+ v ~+ II . (5.7)

In general the radial velocity can assume any val-
ue in the range ( Hto-+H). On the Killing hori-
zons the function H changes sign and the radial

paths discussed above become spacelike.
In analogy with the Kerr metric, the observer

which is at rest with respect to the accelerating
particle will be called the "static" observer. As

viewed from the nonaccelerating frame the static
observer would appear to be uniformly accelerating
in the positve 8 direction along withthe particle.

VI. SUMMARY AND CONCLUSIONS

The Schwarzschild metric representing the
gravitational field of a spherically symmetric
static particle is known to have a spherically
symmetric Killing horizon at r =2m. Any kind

of motion causes this spherically symmetric sur-
face to become distorted. For example, the Kerr
metric representing the gravitational field of a
uniformly rotating particle reveals two Killing
horizons. One is the Schwarzschild surface being
deformed. The deformation is of the form of a
contraction around the poles. The larger the ro-
tation the more significant the deformation. The
other Killing horizon is being caused mainly by
the rotation and distorted by the mass of the parti
cle. We saw in this paper that a uniform recti-
linear acceleration has a somehwat similar ef-
fect, in the sense that a uniformly accelerating
particle has two Killing horizons. One is the
Schwarzschild surface being caused by the mass
and distorted by the acceleration. The distortion
is of the form of an expansion in the forward di-
rection and a contraction in the backward direc-

H'-v'&0 (5 6)
The radial velocity v is the velocity as expressed in the

accelerating coordinates. This velocity is bounded by

tion. The larger the acceleration the more
significant the deformation of this surface. The
other Killing horizon is being produced mainly due

to the acceleration and is being slightly distorted
due to the mass of the particle. As seen in an
accelerating frame with respect to which the ac-
celerating particle appears to be at rest, this
Rindler surface has a shape similar to a parabola
or revolution being open in the forward direction
and surrounds the Schwarzschild surface. The Rind-
ler surf ace is just a manifestation of the light cone
representing the poi nts traveling at the speed of light.

By increasing the acceleration the Schwarzschild
surface becomes more distorted. It becomes
contracted in the backward direction and elongated
in the forward direction. This phenomenon was
anticipated from the principle of equivalence.
However, when the acceleration reaches A = l/
v 54m, the Schwarzschild surface reaches its maxi-
mum contraction in the backward direction and

increasing the acceleration beyond this magnitude

the Schwarzschild surface in the backward direc-
tion expands outward. This behavior appears to
be a violation of the principle of equivalence.

When the acceleration is increased the Rindler
surface moves inward. The acceleration can be
increased up to A = 1/MRVmwhere the Rindler and

the Schwarzschild surfaces coincide forming a naked

singularity at the origin. As viewed by anonacceler-
ating inertial observer, these surfaces appear to be
carried along with the accelerating particle.

The timelike geodesics in the forward direction
are bound and a timelike test particle is not al-
lowed to go beyond a certain distance from the ac-
celerating particle. In the backward direction the

timelike geodesics may or may not be bound de-
pending on their energy. A test particle in this
direction can be dragged along with the accele-
rating particle and remain stationary with respect
to it. This is the effect of the dragging of the inertial
frame produced by the rectilinear acceleration.
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