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Role of negative-parity resonances in the electromagnetic weak X+~py decay
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(Received 27 December 1979)

Contributions from 1/2 resonance poles to the parity-violating amplitude for X+—+py have been
estimated. Two-quark weak transitions have been described in the framework of the Weinberg-Salam model
including quantum-chromodynamics corrections. Weak matrix elements and photon emissions have been
calculated using the NIT bag model. It has been shown that 1/2 resonance poles give sizable
contributions, which might provide an explanation of the experimental results.

I. INTRODUCTION

Recent papers' on electromagnetic weak baryon
decays can serve as a motivation for reconsidering
the only radiative weak decay for which the asym-
metry parameter has been measured. This decay
Z' P y was used as an input to rule out recent
models based on single-quark transitions s -dy
(Fig. 1) and to suggest models based on two-quark
transitions (Fig. 2). Our approach belongs to the
type of models shown in Fig. 2; it is a model
based on baryon poles, as represented schematic-
ally in Fig. 3. Baryon poles of interest are those
of negative-parity baryon resonances. The weak
vertex in Fig. 3 is determined by the Weinberg-
Salam model including quantum- chromodynamics
(QCD) renormalization effects and SU(4)-flavor-
symmetry breaking. ' It has been concluded' that
such a description combined with the MIT bag
model6 7 leads to a successful description of non-
leptonic decays. ' In this way, one obtains the ef-
fective weak couplings which, together with the
effective electromagnetic couplings calculated in
the MIT bag model, enter the parity-violating
(PV) amplitude of the general electromagnetic-
weak inter action'

H„'f~~„= —,'e 4 ~(x) (C + D yq)0„„+c.(x)F~„(x)+H.c.
(la)

The expressions for the decay rate I and for the
asymmetry parameter e are of the form

and

I" =(e'/r) k'(C' +D') (1b)

CD
C2 +D2 (1c)

The energy of the outgoing photon is k =(mc.
-m~ )/2mc . In this paper we use the phase con-
vention of Ref. 9 and choose C and D to be real.

l
11. 2 BARYON POLES CONTRIBUTING TO THE PV

AMPLITUDE

According to the MIT bag model, "negative-
parity baryon resonances contribute only to PV
amplitudes. It has been shown' that these reson-
ances may play an important role in explaining the
NNp PV amplitude. On. the other hand, these res-
onances are the missing part in previous pole cal-
culations ~ and in a recent one. Therefore, our
PV amplitudes can be simply added, for example,
to those of Ref. 2.

Figure 4 shows pole-model diagrams for ~

baryon resonances relevant for the Z'-py decay.
The symbols 1V* (Z*) denote nonstrange (strange)

FIG. 1. Radiative weak decays based on the single-
quark transition s dp. The black box represents
short-distance-type models (Ref. 4).

FIG. 2. Examples of two-quark-transition radiative
weak decays.
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FIG. 3. Scheme of our calculational approach. The
shaded box represents the weak Hamiltonian [Eq. (3)].
The sum extends over all possible quark lines. The
double line is a ~ resonance propagator.

FIG. 4. Pole diagrams of negative-parity baryons.
The box represents the weak Hamiltonian IEq. (5)] and
the circle the electromagnetic Hamiltonian IEq. {7)].

I

E(N») &L r(N*)
m&z» mc4' (2a)

resonances. Particle data provide three non-
strange resonances, S„(1535),S« (1700), and

S„(1650), and one strange resonance, S„(1750).
On the other hand, the model we are using" pre-
dicts three nonstrange states, N»=(N, (1 327),
N~(1275), 6(1362)], and three strange states, Z*
=(Z,(1445), Z, (1517),Z,(1473)]. The respective
contributions from these states to the PV ampli-
tude in Eqs. (1) are givenby

We summarize the values of the coefficients C&
in Eq. (Al).

B. Calculation of matrix elements

In Fig. 3 we illustrate the determination of the
effective weak vertices E(N») appearing in the pole
diagram in Fig. 4(a). Equivalently, we determine
E(Z») appearing in the pole diagram in Fig. 4(b) by
calculating the matrix elements of Eq. (3) between
the proton state and the strange ~ resonance
state. In this way, we obtain the effective Hamil-
tonian density of the &8=1 2 —2' weak transition:

E(Z») p, (Z»)
ma» mp

(2b)

I

The couplings E and p~, which characterize weak
and electromagnetic vertices, are calculated in
Secs. III and IV, respectively.

III. WEAK VERTICES

A. The effective weak Hamiltonian

The operators 0, appearing in expression (3) are
normal-ordered sums of several four-quark com-
binations. We represent them in a comprehensi-
ble form in Table I. The symbols L and R have
the following meaning:

The weak AS = 1 transition Z -N* (N*-p) can be
calculated using the effective weak Hamiltonian
based on the Weinberg-Salam model. and renormal-
ized by QCD effects, including SU (4)-symmetry
breaking (the so-called penguin terms)':

6

(Hw ='),zz=v2 G~ sin8c cos8c Q C&O&. (3)

[H s (x)l"= Q [E(N»)4' »(x)4 (x)+H.c.]

E g* +~ ~ 4~* x + H.c. . 5

We calculate the matrix elements by using the
MIT-bag-model wave function. Our description
of ~ resonances, which we summarize in the
Appendix [see formulas (A2) and (A3)], is entirely
based on Ref. 13. The explicit structure of these
states allows the contributions only from the first
two quark combinations in Table I [i.e., (ds) (uu)
and (du) (us), where each q contains an s- and a
p-wave part]. According to formula (4), the ma-
trix elements of these combinations (denoted below
by M and N, respectively) build up the matrix ele-
ments of the operators from Table I as follows:

(P S (N»O) ~O&' ~Z,*S(Z&))

» [( «A™A«)—(N«A+NA«)]c»&zz»&, (6a)
R

(P &(N,
*t) ~O,P«, , ~Z, i(Z~))

= —
» [(M «A +M

A v) + (N v„+NA v)]C*(g», , (6b)

(zfEIL)( fL IL) = —l [(f 7 )@'e')] A+Av

(vLeL)4ws) .[4 ~ )(a'e )lvA-Av-
(4a)

(4b)

(P4(Nq t) ~o~v ~Z, I(Zt))= --, [M «A-MA«]a*«*»

(6c)
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TABLE I. Operators entering Eq. (3).

C,.O,.

Operators
SU(3) flavor

and isospin content (ds) (uu)

Four-quark combinations
(~1,7p~l. ) (~g7p~i, )

(du) (us) (ds) (dd) (ds) (ss)

c,o,

C202

C303

C404

DI=-
Sg,

i

27, AI =—

27, DI =—
2

c,
C2

-C(

C3 C3

C4 C4

2C2

2C3

-C4

2C2

-3C3

C50~

c,o,
8,

8,

DI =—
2

QI =—
2

C&[(dL)).,SL)(uR)(()uR+ dRQ dR+ SR)(()SR)]

C(([(dLsL) (usuR+ dR R+ ~RsR)]

(P4(N» t) iO»P~ iZ»4(Zt)) = —,'[M ~» —))f„„JE*(z&. (6d)

In Table II we list the resulting matrix elements
E(&, ) [E(N, )] of expression (3) for the set of res-.
onances considered.

IV. ELECTROMAGNETIC VERTICES-

The electromagnetic transition N -Py (Z'-Z y)
is a counterpa, rt of the weak transition (5) and, on
a general symmetry ground, is of the form

yy, „(y)=g ' W„,(y)rr ye, ( y) y„„( y)+H. r)
)L,(N )—

+~ " W~, (rr)rr„„y,e, (rr)y„„(y)+H.r..) .~~ )L,(~*)—

Therefore, let us call p. ~ the magnetic moment of
the (-,'- —,") (i.e. , p, i, s, i,) transition. We use
the usual procedure' '" for calculating the matrix
elements of two-quark operators appearing in the

quark electromagnetic current. First, we calcu-
late the emission of a photon at the-quark level.
Single-quark matrix elements describing the ab-
sorption of a helicity + 1 photon can be easily ex-
pressed by the helicity amplitudes A,'1, (Refs.
v, is),

(. ~ i~' ' iE i. s). (8)

Here i denotes light (f) and strange (s) quarks,
and the electromagnetic current operator in the
bag has the usual form

q" ~ J u=
I d'~q'(r)q" ~ c(g (I (r)e'".'.

~bag

For completeness, .let us write the magnetic mo-
ment of the (-,''- —,'') (i,e. , s, i, -s, i, ) single-quark
transition" expressed over radial integrals listed
in (A4):

N
(io)

TABLE II. Resonances with the quark content (tilde denotes the quark in the P state), masses
in GeV, and radii in GeV . The effective weak vertices are calculated for two sets of bag-
model parameters and for two choices of integration radius, as explained in the Appendix.

resonance Qua rksa
2

E (10 ~ GeV)
(i) Bag model' (ii) Bag model

Solution A Solution B Solution A Solution B

N~
Ng

Z

Z]),

(uud, uud)
(uud, uud)
(uud, uud)
(uu s)
(uu s)
(uu s)

1.327
1.275
1.362
1.445
1.517
1.473

5.613
5.539
5.663
5.569
5.607
5.513

1.0462
0.4878
0.0932
0-3180
0.4480

-0.6149

0.8792
0.4030
0.0372
0.2590
0.3687

-0.5081

0.3545
0.1679
0.0107
0.1022
0.1506

-0.2076

0.3206
0.1412
0.0086
0.0830
0.1237

-0.1707

~ Reference 13.
Reference 6.
Reference 7.
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g p= X)P g+ X~V g ~ (12)

To conclude, in Table III we list the values of
transition magnetic moments and the values of
hadronic factors X,. for all resonances of interest.

V. RESULTS AND DISCUSSION

Expressions (1) enable us to calculate the ex-
pected value of the PV amplitude using the em-
pirical values of asymmetry and decay rate."
The experimental value of the PV amplitude is

.24 x 10 ' Gev '.
This value is about 2.5 times larger than the value
(0.5 x 10 ' GeV ') calculated in Ref. 2. According
to Eq. (2), our predictions for this quantity follow
from the results of the preceding sections. Fol-
lowing the two chains of calculations of polarized-
Z' decay in Tables II and III, namely,

and

An analogous expression for the magnetic mo-
ment of the transition we are considering is of
the form [see (A5)-(AV)]

Here the —,
' --', " (i.e. , p, &.,-s, &,) relative phase is

already incorporated.
Second, we consider hadronic transitions. The

magnetic moment for hadronic transitions receives
contributions from the magnetic moments of light
and strange quarks,

we summarize final results in Table IV. These
are rather close to the experimental value.

Note that the values of amplitudes in Table IV
are entirely predicted by choice (i) given in the
Appendix, because the masses of resonances we
are considering are also calculated for this choice.
It is evident from Tables -II and III that choice
(ii) leads to somewhat lower values.

We should also note that the main role in the
total contribution in Table IV is played by the res-
onance R, as given in Ref. 13. Obviously, the
mixing of states tsee (A2) j is of importance. To
gain an insight into the meaning of our calculation,
we compare some other empirically known quan-
tities (Table V). Apparent disagreement as seen
in. the last row of Table V might be due to the
problem with the matching between theoretical
and experimental 2 resonances. It is well known
that the MIT bag model predicts more & states
than found empirically (see Sec. II). Thus it would
be quite possible to match N~(S„) what would lead
to too small results. In view of these problems it
seemed most consistent to employ theoretical
magnetic moments (12) in combination with the
theoretical & states.

The results listed in the Table IV are encour-
aging. They indicate that the QCD-renormalized
Weinberg-Salam model combined with the MIT
bag model, implemented by & resonances, may
also be important in explaining the weak electro-
magnetic PV amplitude considered. Irrespective
of relatively large experimental uncertainties
(n = —1.03~~"„'), there is no doubt that —,

' reso-
nance poles should be taken into account. More-
over, the inclusion of & resonances can explain
the PV (D) amplitude measured for the radiative
weak decay Z'-py.

TABLE III. Transition magnetic moments for the resonances and the choices of bag-model
parameters as in Table II. The hadronic factors g resulting from the overlap of quark oper-
ators between baryon states are also listed.

pz, (eGeV )

resonance a
2 (x&'x.)

&s =
&s=

(i) Bag model '

Solution A Solution B
0.5532 0.5569
0.5015 0.5

(ii) Bag model
Solution A Solution B

0.5743 0.5801
0.4833 0.4801

Ng
N~

Zg

Z

ZQ

( 0.0236;0)
(-0.6647;0)
(-0.0428;0)
(0;-0.0370)
(-0.2113;0)
(-0.4656;0)

0.0130
-0.3677
-0.0237
-0.0186
-0.1168
-0.2576

0.0131
-0.3702
-0.0238
-0.0185
-0.1176
-0.2593

0.0135
-0.3817
-0.0246
-0.0179
-0.1213
-0.2674

0.0137
-0.3856
-0.0248
-0.0178
-0.1225
-0.2701

Reference 13.
Reference 6.
Reference 7.
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TABLE IV. PV amplitudes calculated according to Eqs. (2a) and (2b) for nonstrange and
strange

2
baryons, respectively.

resonance1 a
2

m~ w(p) —my+(p)(oeV)
D (10 7 GeV ) for (i) bag model 'b

Solution A Solution B

Ng

Ng,

Z(
Z

Z~

Total contribution

0.183
0.131
0.218
0.507
0.579
0.535

-0.074
1.369
0.0'10

0.015
0.090
0.296

1.496

-0.063
1.139
0.004
0.012
0.075
0.246

1.239

Reference 13.
Reference 6.
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APPENDIX

The renormalization coefficients appearing in
Eq. (3) are the same as in Ref. 5:

C~ 2 410~ C2 0 089~ C3 0 085)

C4 = 0.423, C, = —0.063, C6 = —0.014.
(Al)

0.68 0.73
(A2)

The —, resonance states N„N„b, Z„Z„and 7,
are taken from Ref. 13. We list only the state-
mixing matrices which determine the "hadronic
factors" in Table III; they are as follows:

We have used two versions of the bag model:
(i) the one corresponding to Ref. 6 and also used

in Ref. 13 and

(ii) the other referring to Ref. V.

The outstanding problem in calculating nondiag-
onal matrix elements in the bag model is the
choice of the radius of integration. The two logi-
cal possibilities used in the fixed-sphere bag mod-
el are R = min (R„R,) and R = —,'(R, + R,). In Table
VI we denote them as Solution A and Solution B.
For each choice of the "characteristic radius"
in Table VI we recalculate the eigenfrequencies
and replace R, and A, by R. Such an ansatz for
calculating the transition bag matrix elements
was motivated and used in Ref. 14. In this way,
we can calculate the radial integrals which deter-
mine the electromagnetic transition moments (10)
and (11). For example, the transition moment and
the decay rate of Zo-Ay'4 are entirely determined
by

0.73 -0.68

0.81 0.58

0.58 -0.81
(A3)

(A4)

The absolute values of the predicted and measured
moments are compared in Table V.

TABLE V. Model predictions of some measured quantities.

Hadronic
quantity AB

Predicted value
(i) (ii)

B
Measured

value Reference

Transition
moment
l@roAI («eV ')

0.573 0.611 0.785 0.834 0.'9'7+p
fp 16

0.012 0.012 0.013 0.013 0.044 + 0.024Helicity
amplitudes
[Aggm[ (GeV ~ ) N~(S(() 0.349 0.351 0.362 0.365 0.064+ 0.019

12
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TABLE VI. Values of bag-model parameters and the choices used in preparing Tables II and
III.

Bag model Solution g (GeV )

(i) References 6 and 13
(Gev)

Z~~4 = 0.147
m) = 0, m~ = 0.279

4.950

5.285

2.0428 2.8430 3.8115 4.1806

2.0428 2.9059 3.8115 4.2201

(ii) Reference 7
(Ge V)

a~~4=0.»39
m~ = 0.0441, ms = 0.2978

7.25

7.75

2.2033 3.3946 3.8576 4.5541

2.2151 3.5066 3.8617 4.6363

In Table V we also compare the calculated and
measured" absolute values of helicity amplitudes.
The relevant integrals are

R',,= dr r 'j,(kr)j,(Pr )j,(Pr),
0

(ur —mR)(e+ mR)
((o+mR)(~ —mR)

R
dr r 'j,(kr)j, (pr)j, (pr),

0

R ((u —mR)(~+mR) ~'~'

(e+ mR)(u —mR)

X d+r ~2 ~+~1 Pr ~1
0

Here k is the photon momentum, p = (1/R) (&o'

—m' R' )' ', and the tilde marks p-state quanti-
ties.

In addition, neutron-electric-dipole-moment
calculations" show indirectly that the description
of 2 resonance states in the framework of the
MIT bag model leads to reasonable estimates of
their matrix elements.
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