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The decay K ~me +e is considered in the six-quark model. The effective Hamiltonian applicable to such
decays is calculated in leading-logarithmic approximation and attention is focused on the magnitude of CP-
violating effects.

I. INTRODUCTION

The decay E -7te'e was suggested some time ago
as a process in which effects due to (virtual) heavy
quarks may play an important role. In particular,
in the four-quark model Gaillard and Lee' con-
sidered this decay as occurring mainly through a
mechanism involving an effective sdy vertex whose
origin was in diagrams with a virtual u or c quark
coupled to the photon.

For the decay E'- p'e'e the width predicted
from such considerations is of the right order of
magnitude to agree with its measured value, ' which
was often regarded as a success of the theory.
However, later calculations' ' of the quamtum-
chromodynamics (QCD) corrections to the free
(with respect to strong interactions) quark result
of Ref. 1 show that they not only change its magni-
tude, but, with typical choices of parameters, its
sign as well. Furthermore, the analysis in Ref. 3
would indicate that other diagrams give contri-
butions to the amplitude for A"- m'e'e which are
just as important as the mechanism of Ref. 1.
-From the point of view of making accurate predic-
tions it is discouraging that some contributions
enter with opposite signs.

In this paper we will reconsider the decay E- we'e in the six-quark model with QCD correc-
tions. Because of the entrance of virtual heavy
quarks into the calculation of the effective inter-
action, the additional b and t quarks of the six-
quark model could be of some importance, as
could the change in QCD corrections due to their
presence.

Of even more concern to us here, and what led
us to undertake this investigation, is the question
of CP violation. The decay E,- 7t'e'e is forbid-
den with only one intermediate y (or Z') if CP were
conserved. The physical situation, where CP is
not conser ved, permits contributions to K ~'- p'e'e both from the K -Z mass matrix and from
CP-violating decay amplitudes. As already noted
by Ellis et al. ' in the six-quark model without
QCD corrections, the presence of a virtual t quark
in the diagram leading to an effective sdy vertex

can yield a CP-violating contribution from the de-
cay amplitude comparable to that from the mass
matrix. We investigate this question here within
the context of full QCD corrections to both the
CP- conser ving and CP-violating amplitudes.

In Sec. II we present the general method of cal-
culating an effective Hamiltonian for processes of
the type K- ve'e, with QCD corrections per-
formed in the leading-logarithmic approximation.
The technique we adopt is somewhat different than
the one used previously, ' but equivalent. Section
III is devoted to examining the results of applying
the method to the specific case of six quarks, with
numerical results given for both the CP-conserv-
ing and CP-violating parts. The dependence of
QCD corrections on the choice of parameters is
discussed and the physical reasons for their sign
and magnitude is established. This is applied to
CP-violating effects in Kz- v'e'e, where QCD
corrections are found to cause a change in rela-
tive sign between the real and imaginary parts of
that portion of the decay amplitude arising from
the s -dy-de'e single-quark transition.

II. THE EFFECTIVE HAMILTONIAN FOR K~n e+e

The task of deriving an effective Hamiltonian
for weak decays of the type K- ze'e is accom-
plished in a very similar manner to that for the
effective Hamiltonian for AS=1 nonleptonic pro-
cesses, which we have recently considered in
the six-quark model. The only notable but ob-
vious change is that the matrix elements of the
effective Hamiltonian are generally to be evalu-
ated to order e', the lowest relevant order in elec-
tromagnetism. In the particular case of a six-
quark model of the weak and electromagnetic in-
teractions, one successively considers. the W bo-
son, t quark, b quark, and c quark as heavy, and
eliminates them from explicitly appearing. The
resulting effective Hamiltonian contains only u-,
d-, and s-quark fields and can be written as a
sum of Wilson coefficients times local four-fer-
mion operators, Z,.C~Q;.

This sum contains exactly the same six local
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four-quark operators as the previously calculated
nonleptonic effective Hamiltonian7 (which are
order e' and hence their matrix elements must be
evaluated to order e' for X- &(e'e ) plus one more
operator

e'
Q7 = —sy, (l —y, )dey„e,

which is of order e' and hence its matrix element
need only be evaluated to order e' to get an ampli-
tude correct to order e'.

Furthermore, on recognizing sy„(l —y, )d as the
quark representation of an isospin rotation of the
usual strangeness-changing weak current, its
matrix elements between E and p can be identi-
fied with those involved in the decay K- mev. The
magnitude of I'(K- &)e'e ) arising from just the
new term C,Q, in the effective Hamiltonian is then
directly proportional to C,'I'(K- &(ev), with com-
pletely known factors in the proportionality.

Having laid out the general features of this prob-
lem, especially in comparison with the earlier
construction of an effective Hamiltonian for 4S = 1
decays to order e', we proceed to the actual cal-
culation relevant to this paper. Most of the de-
tails mill be relegated to an appendix and we will
dram upon some results derived in our earlier
work, ' stressing only new aspects of the calcula-
tion.

In the standard SU(2)(SU(1) model of weak and
electromagnetic interaction, the six quarks are
assigned to right-handed singlets

(u)», (d)», (c)», (s)», (f)», (b)»

and left-handed doublets

of the weak SU(2) gauge group. The primed fields
are not mass eigenstates. However, they can be
related to mass eigenstates by a unitary transfor-
mation. With the standard choice for the phases
of the quark fields this transformation has the
form

sured phase of the CP-violation parameter q can
be used to determine' that 5 lies in the upper half
plane if s, and s, can be treated as small quan-
tities.

In the absence of strong interactions, an effec-
tive Hamiltonian for K- 7te'e can be derived by
treating the charged 8'boson as very heavy and
keeping only the leading contribution in 1/M ~ .
Then'

F [A (0 ( ) / O (-&)+A (O(+&+ 0( ))]

where

+ H.c. , (2)

0,"' = [(s,u )„„(u(&d(&) „+(e d, )» „(",u, )» „]
-[u- q], (3)

-i63A —S~C2(C~ C2C3 —
2 3

A, = s,s, (e,s,c, + c,s,e ").
(4a)

(4b)

In Eq. (3) the color subscripts n and p are summed
over [I,2, 3}when repeated, normal ordering of
the four-fermion operators is understood, and the
notation

(44), ,(T((j) = [T((o)r.(1 —r, )0(o)]

&( [T((o)r"(I—r, )g(0)]

is used. Since the electromagnetic fine-structure
constant is small, the E-7te'e matrix element of
the effective Hamiltonian is to be evaluated to the
lowest possible order in electromagnetic inter-
actions (i.e. , order e').

Now introduce the strong interactions in the
form of quantum chromodynamics (QCD). The
effective Hamiltonian in Eq. (2) with the W boson
removed is replaced by'

n(Mw') "'
( & (.)K„, — (—~) (A,o, +A,O, ' )

(-)nM
O'(P )

(6)

s = sgc2 c~c2c3 s2s3e c,c,s, + s,c,ei6 i6

,b, s,s, c,s2 3+ 2s3e cxs2s3 c2 3
i6 i6

S p

where the leading-logarithmic approximation has
been used. In Eq. (6), n(M') is the running fine-
structure constant for strong interactions and

where c,. —= cos 8,, s, -=sin8„ i e (1,2, 3j. The signs
of the quark fields are chosen so the 8» 8» and

83 lie in the first quadrant. Then the quadrant of
the CP-violating phase 5 has physical significance
and cannot be chosen by convention. The mea-

a '&= 6/(33 —2Nf),

a ' '= —12/(33 —2N&),

where N& is the number of quark flavors, which
equals six at this stage. The E- me'e matrix
element of the effective Hamiltonian in Eq. (6)
is to be evaluated to all orders in the strong inter-
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action, to zeroth order in the weak interactions,
and to order e' in the electromagnetic interaction.

The next step is to consider the t quark as very
heavy and eliminate it from explicitly appearing
in the effective Hamiltonian for the decay K- pe'e .
What happens to the operator 0,"' is identical with
the case of AS=1 weak nonleptonic decays, ' so we
focus our attention on 0,"'.

Assuming that m, is much greater than all the
other quark masses and the momenta of the ex-
ternal states allows us to expand the matrix ele-
ment of 0,"' in terms of ma.trix elements of op-
erators not explicitly containing the heavy-t-quark
field, '

0',"l&= pB("(mI/i g)(lo,. l&'+o(l/m, '). (8)

We choose instead to define for calculational pur-
poses

0,'= „- (s d )» „(ee)». (12)

The utility of our definition will become clear
shortly. .

With either definition of the seventh operator,
the Wilson coefficients B (m( ,/ , , i(),gas defined
in Eq. (8), are independent of the electromagnetic

The primed matrix elements are to be evaluated
in an effective theory of strong (and electromag-
netic) interactions with five quark flavors, strong
coupling g', and mass parameters m„'., m~, . . . , rn', .
That is,

(lO,. l)'=—(lo,. l&(g', e, p, , m'„, . . . , m', ).
To carry out the expansion in Eq. (8) in the lead-

ing-logarithmic approximation, seven linearly in-
dependent operators are necessary. The first
six may be chosen' just as in the absence of elec-
tromagnetism,

01—(Sndn)»-A(usus)»-A ~

Os=(s d,)» „(usu,)„„,
Os = (s d )»-A[(usus)»-A+ ~ + (bsbs)»-A]

0,= (s d,)» „[(u,u )» „+ ~ ~ ~ + (b,b ), „],
0, = (s,d )» „[(usus)»,„+ ~ + (bsbs), „],
0,= (s,ds) „„[(u,u, )»,„+ ~ ~ ~ + (bsb, )„„],

and close under strong-interaction renormaliza-
tion in the absence of electromagnetism. In the
presence of electromagnetism a seventh opera-
tor must be added; it is chosen most straight-
forwardly to be4

2

07=4 (s d )» „(ee)».4'

coupling e if we work to order e' in the overall
amplitude. They satisfy the renormalization-
gr oup equation'

t —+ ()(s) +r—,((;)m, + y" '(g)) &,,~g 8mt

-y;;(g') B',"(m,/u, g) = o.

2

y '(g) =
4 8+ 0(g'),

2
y' '(g) = —2,.+O(g').

(15a)

(16b)

The anomalous-dimension matrix y, ,(g') is that
of the operators 0,. and is to be evaluated in the
effective theory of five quark flavors (f quark re-
moved). It is defined by

7

y'(g) gZ Is/~ Z
d jib

where the Z(g') relate unrenormalized to renor-
malized operators via

(16)

O' '= Z g'0

With the more straightforward definition of 0,
in Eq. (11), y'(g') has the structure'

I I

yl1 y16 y17

I I I

y61 y66 y67

iO ~ ~ ~ 0 Oi
In a perturbative expansion the y,'. &

with 1 &i, j & 6
all start in order (g')', but the y,, start in order
(g')8 and this difference in powers of g' means
that these two pieces of the anomalous-dimension
matrix must be split off and treated separately in
solving the renormalization-group equations at
each stage of removing another heavy-quark
field. On the other hand, with the definition in
Eq. (12) which we will use, y'(g') has the struc-
ture

I I I

yll y16 y17

y61 y66 y67

&0 '''0
y77

Here P(g) is the QCD P function, which has the
perturbation expansion

3

p(g) = —(33 —2') g~+0(gs), (14)

with N&=6. The y"'(g) are the anomalous dimen-
sions of 0"', with perturbation expansion
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n, (m, ') = [g(m, /p, ,g)) /4&&,

n, (p, ') -=g'/4v .
(18a)

(18b)

More precisely, in leading-logarithmic approxima-
tion the B&"&(m, /», ,g) are related in the solution to
linear combinations of the B,"&(1,g) weighted by the
V's and powers of n, (m, ')/n, (»,'). Values for the
B,"&(1,g) are obtained by noting that at m, /p = 1 the
strong-interaction fine-structure constant is small
and no large logarithms are generated when the
renormalization point is equal to the top quark
mass. The coefficients B,."&(1,g) can be replaced
by their free- (no strong interactions) field values.
A direct calculation of the effective Hamiltonian to
order g' and e' with the Wboson and t quark re-
moved from the-theory gives

' x, [(o,+o,)+(-o,+o,)]

Now all entries start their perturbation expan-
sion in order (g'}2. The solution of the renor-
malization-group equations is a standard one
which may simply be extended from the 6 x 6 ma-
trix case of Ref. 7 to the 7 x 7 case of interest
here. After that it is just a matter of brute-force
computation. Both definitions of 0, of course
give the same final result, as is illustrated by an
explicit calculation in Appendix A.

Notice that in either case the elements y', , for
1 ~i, j & 6 are identical to those that would be
present in the absence of electromagnetism. An
inspection of the renormalization-group equation
[Eq. (13)]then shows that the B.for 1 ~j & 8 obey
exactly the same equations as they would in the
absence of electromagnetism. Thus, the Wilson
coefficients of the operators 0„.. . , 0, will be
the same as calculated previously for the effec-
tive AS = 1 nonleptonic Hamiltonian.

The actual 7 &( 7 matrix y,',(g} to order g" is
given in Appendix B. Eigenvectors of y'", ac-
cording to Eq. (13), correspond to combinations
of operators which are simply multiplicatively
renormalized (i.e. , do not mix with other operat-
ors}. We denote by V the matrix which diagonal-
izes y'r to give eigenvalues y,.(g') with 1 &j & 7.
The solution to the diagonalized version of Eq. (13),
the renormalization-group equation for the

B,'"(m, /(L(, g), involves arunningcouplingg(m, /p, g)
defined as in Ref. 7, from which we define

magnetic interactions and the calculation has been
done in a mass-independent subtraction scheme
chosen so that the coefficient of 0, has no pieces
independent of m, /p. From Eq. (19) we read off
the free-field values

B& &=B&'&(1,0)=+1,

B,"' = B,'"'(1,0) = + 1,
g(+) @(+) g(+) ~(+) 03 4 5

(20)

as in Ref. 7, and, with our definition of 0„
B(+&,B(»(m /+ 1 g)

This last result follows even though 0,' contains
1/@12, since the logarithm vanishes when the re-
normalization point equals the t-quark mass.

Our final aim is to derive an effective Hamil-
tonian independent of the heavy-W-boson, t-quark,
b-quark, and c-quark fields. To do this, the b

quark and c quark must still be considered as
heavy and removed from explicitly appearing in
the effective Hamiltonian. However, the key dif-
ferences between this calculation and that of de-
riving the nonleptonic effective Hamiltonian for
~S = 1 weak decays have already been illustrated
in our discussion of how the t quark is removed
from explicitly appearing in the theory. From here
on we follow the path discussed in detail in Ref. 7,
defining effective couplings g" and g" in the four-
and three-quark theories, respectively, diagonaliz-
ing the transpose of the anomalous dimension ma-
trices y "(g") and y "(g"') with matrices W and X,
respectively, and treating all the solutions of the
renormaliz ation-group equations in leading-loga-
rithmic approximation. The actual matrices are
found in Appendix B. At the last step of removing
the c quark, some care must be taken because
there are only six (instead of the naively expected
seven) linearly independent four-fermion opera-
tors. With the brute-force portion of the calcula-
tion completed, we revert from our choice for the
seventh operator, &I&,', to &I&„with an appropriate
factor in the corresponding Wi lson coefficient.

In the light-three-quark sector the effective
Hamiltonian for the decay E-~e'e is the following
sum of Wilson coefficients times local four-fer-
mion operators:

—
~2(

—)(4,)A, ln(,' ) (r,d, & „(ee&

(19)

Qy
Xsf& = —~2s&c~c3 Q C&Q(+ H.c.

where p, is the renormalization point for electro- where the sum is over i = 1,2, 3, 5,, 6, 7 and
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Q x
—(s~d~ )»-A(usus)»-4 t

(~ada) v A-(usu )»-A

(s~d~)» „[(usus)»-~+ (dsds)»

+ (sass)»-A] 1

Q5 = (s„d~)» „[(usus)»,„+(dsds)», „ (22)

TABLE I. Coefficient of the operator Qv [defined in
Eq. (22)] in the effective Hami1tonian, K,ff ( CQ+f+f+3/
~2)(Q;C;Q;), for decays likeK ss+e in the six-
quark model. v=—s2 + s2c2sse /cf cs.2

Parameter s
m& (GeV) A (GeV )

+ (sass)»~] 1

Q, = (s~d, )v „[(usu~)v.„+(d,d~) v,„
+ (sssa)v~],

e
Q, =4 (s~d~)v„(ee)».

1

This is to be compared to the corresponding ef-
fective Hamiltonian in the "free-quark model, "
i.e. , no strong interactions, which with the 8', t, b„
and c quarks removed from explicitly appearing is

Gg
i i s( ~ ~)»-~( sds)» ~

0.75
1.00
1.25
0.75
1.00
1.25
0.75
1.00
1.25
0.75
1.00
1.25

15
15
15
30
30
30
15
15
15
30
30

-30

0.1
0.1
0.1
0.1
0.1
0.1
0.01
0.01
0.01
0.01
0.01
0.01

-0.036+ 0.0567
-0.066+ 0.058&
-0.091+ 0.0597'
-0.034+ 0.12&
-0.064+ 0.12T
-0.088+ 0.13&
-0.055+ 0.10T
-0.089+ 0.107
-0.12 + 0.10m
-0.051+ 0.18&
-0.085+ 0.18'
-0.11 + 0.187

x (s,d )» „(ee)»

Hamiltonian.
In leading-logarithmic approximation, within

which we are working,

+ H.e. 12s 1
33 —2N ln(Q2/As) (24)

The matrix elements of the operators Q, in the ef-
fective Hamiltonian (21) are to be evaluated to all
orders in the effective theory of strong interac-
tions with three quark flavors and coupling g"
(since strong-interaction perturbation theory is
probably not valid), and to the lowest possible
order in electromagnetic interactions. 'The Wilson
coefficients C, are independent of the electromag-
netic coupling e. Each Wilson coefficient has a
real and imaginary part, being of the form a+ b7,
where v = s,'+ s,c,s,e "/c,c, and a, b are real num-
bers. The imaginary part arises from diagrams
with virtual heavy quarks. The operators Q„Q„
Q„Q„and Q, occur in the effective Hamiltonian
for M = 1 nonleptonic weak decays and their Wilson
coefficients are the same as in that problem, '
where the operator Q, (which arises due to electro-
magnetic interactions) is absent.

III. NUMERICAL RESULTS AND DISCUSSION

We now proceed to choose. a parametrization
for u(M') and values for the W-boson and heavy-
quark masses in order to evaluate the coefficients
of the local four-fermion operators in the effective

I

We shall take A'= 0.1 or 0.01 GeV', thereby in-
cluding roughly the range of value suggested in
recent experimental and theoretical analyses. "
If the leading-logarithmic approximation is in fact
valid, the calculation is insensitive to the precise
value of A'. We take m, to be 1.5 GeV, m, =4.5
GeV, and m, =15 or 30 GeV, and do not differenti-
ate between, for example, ~, and m-„ the b-quark
masses in the effective strong-interaction theories
with six and five quarks, respectively. Mt„= 85
GeV. Finally, since u, (g') is to be of order unity,
we let u, (it') =0.75, 1.0, and 1.25.

Values of the coefficients of the local operators
Q„Q„Q„Q„Q„andQ, in Eq. (21) were cal-
culated for the values of the parameters given
above. As mentioned. in the previous section, the
coefficients of all but Q, are exactly the same as
in the absence of electromagnetism and are found
in Ref. V. Values of C, for A'= 0.1 and 0.01 GeV',
m, =15 and 30 GeV, and u, (p. ') =0.75, 1.0, and
1.25 are found in Table I. Choosing one "typical"
case [A'= 0.1 GeV', m, = 15 GeV, and u, (p. ') = 1]
and combining the results here with those in Ref.
7, we have

X«f = —~ s|c,c,[( —0.87+ 0.036')Q, + (1.5 —0.036»)Q, + (-0.021 —0.012m)Q,

+ (0.011+0.007 ')Q, + ( —0.047 —0.0727)Qs+ (- 0.066+ 0.058v)Q, ], (25)
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TABLE II. Coefficient of the operator Q& [defined
in Eq. (22)] in the effective Hamiltonian, X,ff
= (-G~sgcf/~2){ggCjQf), for decays like E re+e

in the six-quark model with 02 = 83 = 0 and mixing
with the penguin-type operators Q3 'Q5 and Q6 ne-
glected.

0'(](2)
Parameters

mt (GeV) A2 (GeV2) C7

0.75
1.00
1.25
0.75
1.00
1.25
0.75
1.00
1.25
0.75
1.00
1.25

15
15
15
30
30
30
15
15
15
30
30
30

0.1
0.1
0.1
0.1
0.1
0.1
0.01
0.01
0.01
0.01
0.01
0.01

-0.037
-0.069
-0.096
-0.036
-0.067
-0.093
-0.063
-0.1Q

-0.13
-0.060
-0.097
-0.13

where v= s,'+s,c,s,e "/c,c,.
To check on the sensitivity to varying other

aspects of the calculation, Table II contains the
values of C7 that follow in the six-quark model
with 6, = 8, = 0 (so that r =0) and with mixing of
the "penguin operators" Q„Q„and Q, with Q„
Q, and Q, neglected. In Table III, on the other
hand, values of C, are given which pertain to the
four-quark model, .again with mixing of the pen-
guin operators Q„Q„and Q, with Q„Q„and
Q, neglected. Comparison of Tables I, II, and

III quickly shows that for a given value of A' and

n, (p'), changing m, from 15 to 30 Gev, dropping
mixing between penguin operators and the usual
operators, or going from a six-quark to a four-
quark model, each results in less than a factor
-1.5 change in ReC, . Of course, setting 6, = 63
= 0, or going from the six- to four-quark model

Parameters
~2 (GeV2) c,

0.75
1.00
1.25
0.75
1.00
1.25

0.1
0.1
0.1
0.01
0.01
0.01

-0.045
-0.081
-Q.11
-0.10
-Q.15
-0.19

TABLE III. Coefficient of the operator Q& [defined in
Eq. (22)] in the effective Hamiltonian, 3C,ff =
= (-Gs sinec cosec/~2)(P;CqQq ), for decays like
K xe+e in the four-quark model when the mixing
with the penguin-type operators Q3, Qs, and Qt; is ne-
glected.

2 &m, 2 (fmt'
C =+—»I 2 +'»( ~2 ~

9m ~ p,
' ~m,

'

We need to choose the scale parameter p in Eq.
(26), which refers to the renormalization point
of electromagnetic interactions (QCD is turned .

off), if we are to make a comparison with the
QCD-corrected values of C,. The obvious choice
of p is such that n, (p. ') has the appropriate value
when the strong interactions are turned on [i.e.,
such that n, (p') =0.75, 1.00, or 1.25 in Table I].

.In Table IV we then list the free-quark values of
C, for A'= 0.1 and 0.01 GGV', m, = 15 and 30 GeV,
and n, (p. ') = 0.75, 1.00, and 1.25, using this pre-
scription for p in Eq. (26). Comparison of Table
IV with Table I immediately reveals that ReC7
changes sign due to QCD corrections, but ImC,
(proportional to the coefficient of ~) does not.

TABLE IV. Coefficient of the operator Q& [defined
in Eq. (22)] in the free-quark-model (i.e., no strong
interactions) effective Hamiltonian, gQe ff (-G~sg cg c3/~2)
(g&C;Q;), given in Eq. (23). For given values of n(p )
and A, the renormalization point is determined by p2

=A' exp [12s/27n (p')].

Parameters
~ (]LE) P2 (Qev2) ypgt (Qe+) ~2 (Qe+2)

0.75
1.00
1.25
0.75
1.00
1.25
0.75
1.00
1.25
0.75
1.00
1.25

0.1
0.1
0.1
0.1
0.1
0.1
0.01
0.01
0.01
0.01
0.01
0.01

15
15
15
30
30
30
15
15
15
30
30
30

0.64
0.40
0.31
0.64
0.40
Q.31
0.064
0.040
0.031
0.064
0.040
0.031

Q.089+ 0.33T
0.12 + 0.331
0.14 + 0.33~
0.089+ 0.427
0.12 + 0.42~
0.14 + 0.427
0.25 + 0.33'
0.28 +0.33~
0.30 + 0.33~
0.25 + 0.42'
0,28 + 0.42'.
0,30 + 0.42m

(Tables II and III, respectively) makes

T= s,'+ s c,s,e ' /c c,=0

and therefore forces ImC, = 0. Changing A' from
0.1 to 0.01 GeV' or n, (p, ') from 0.75 to 1.25 makes
a somewhat larger effect —over a factor of 2 for
either A' or n, (p, ') in some cases. Note that in
the case of changing A', both HeC, and, when

applicable, ImC, (proportional to the coefficient
of v) change, and that they both change magnitude
in the same direction. Thus, their ratio is some-
what less sensitive to changes in parameters than
each is individually.

More interesting is to compare the results with

QCD corrections to those of the free-quark model,
i.e., g= 0. In this latter case we read off from
Eq. (23) that
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B

-d

FIG. 1. Diagram contributing to C7. The black box
represents W exchange plus all strong-interaction cor-
rections.

This result, which is at first glance surprising,
may be understood physically as follows.

If we again neglect strong-interaction-induced
penguin-type operators (which we have seen make
little numerical difference in C,), then the opera-
tor @, comes about from heavy-quark loops, as
illustrated graphically in Fig. 1. It is an "electro-
magnetic penguin operator, " whose strength is
determined by the integration over the momentum
carried around the quark loop and the strength of
the four-quark weak interaction arising due to
W exchange with QCD corrections. Analytically,
we may rewrite the last integration in the formula
for C,"' in Appendix A [i.e. , Eq. (A14)] in terms
of momentum instead of the running coupling.
Then we find, as in Ref. 3, that

, [2C ' (q') —C (q')] (27)

with C'" (q') and C' ' (q') the coefficients of the
operators

0+ =(s~u„)v „(usds)v „+(s~d„)v ~(usus)v-~-

0=(„„) ( d) „—(sd) ( u)
in the effective Hamiltonian for nonleptonic weak
interactions at a mass squared scale character-
ized by q'. The coefficients of C'" and C' ' in Eq.
(27) stem from color. In the free-quark model
C "'=

C
' ' = I and the integration in Eq. (27) leads

to the characteristic logarithms in Eq. (26). In
the integration range from p,

' to nz, ', the c- and
t quark c-ontributions (with coefficients A, and
A „respectively) add, leading to the first term
in Eq. (26) proportional to In(m, '/p, '), while be-
tween m, and m, only the t quark contributes,
leading to the second'term in Eq. (26) proportional
to 71n(m, '/m, ').

With strong interactions turned on, C "' (q') is
suppressed, while C' '(q') is enhanced, having
forms [ n(q') /n(M~')] ' "and [n, (q')/n, (M~')]'2 ',
respectively, with four quarks operative. With
reasonable choices of strong-interaction parame-
ters the enhancement of C' '(q') and suppression of
C "(q') for values of q' & m, ' more than makes up

for the extra factor 2 in the first term in the in-
tegrand in Eq. (27), and the integral from p' to
m, ' has the opposite sign from the free-quark
model. On the other hand, for reasonable QCD
parameters the enhancement [suppression] of
C' '(q') [C'" (q')] is considerably less at q'=m, ',
and the integration range from m, ' to m, ', which
contributes the term in C, proportional to v, turns
out to yield a result which has the same sign as
the free-quark-model result. We then understand
in a fairly physical manner the change in sign or
lack of it in applying QCD corrections to the free-
quark-model result for C, .

Precisely because of the cancellation between
the two terms in the integrand, the values of C,
after QCD corrections found in Table I are in
general considerably smaller in magnitude than
those of the free-quark model which are given in
Table IV. In any situation where an operator is
induced only through mixing with other operators,
its Wilson coefficient will be the sum of several
terms which partially cancel against one another.
However, in the case of both ReC, and ImC, it
is a particularly delicate cancellation and we are
wary about taking the QCD-corrected results for
C, too seriously. Also ReC„ like ReC'„ for ex-
ample, depends primarily on integration from
p' to m, ', where the leading-logarithmic approx-
imation is most dubious.

With these limitations on the accuracy of the
calculation in mind, let us now look at the pre-
dicted rates for ~-7(e'e, and especially A~
—~'e'e which to order e' proceeds through vio-
lation of CP. First, let us calculate the contri-
bution arising through the electromagnetic penguin
operator Q, in the effective Hamiltonian Eq. (21).
For A. '-~'e'e we find an amplitude

A(IS'- n'e'e ) =P s,c,c, C,f,(K+ v) „ey—„e,
(26)

where K„and ~„represent the K and 7( four-mo-
menta. , respectively, and f, is the form factor
in K» decay. For comparison, this latter process
has an amplitude

A.(K'- n'e' v) = ps, c,—'(K+ ~)py~(1 —y,„)e.
(29)

Similarly, the amplitude for K,- v'e'e (neglect-
ing CP-violating effects)

g2
A(As -v'e'e ) = ~ s,c,c,—C, ( f,)(EC+ n)„ey„e. —

(30)

As already noted, to order e' the amplitude for
&I.- 7T'e'e involves only CP-violating effects.
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Recall that

(31)

The value of & depends on the phase convention
used for the iK') and iK') states. We adopt the
usual phase convention where the K' (Ko) states
have a quark content e '~sd (e' ds) and $ is chosen
to make the K'-»w (I =0) amplitude real, apart
from final-state ~~ strong interactions. Then
e =(2x10 ')e'" ' and

A(K~-»'e'e ) =~ s,c,c,—(-f,)

iC, i =0.3. (33)

The values of C, which are found in Tables I-III
(with QCD corrections) are all a factor 2 or more
smaller than this. " In addition to those of Q„
possible contributions, illustrated in Fig. 2(a)
and 2(b), have been estimated by Vainshtein et al. '
In our effective Hamiltonian, formalism contribu-
tions such as these" arise from taking matrix
elements of Q„Q„Q„Q.„and Q, to order e'.
With the "vacuum-insertion" method of estimating
matrix elements they find comparable contribu-
tions of differing signs for the decay K'-~'e'e .

P) Q)

~ S
K gg TI

K

(b)
FIG. 2. Some diagrams contributing to X—me'e . The

black box represents the action of the effective Hamil-
tonian for AS = 1 nonleptonic weak decays.

x I(e —ig)ReC, + ilmC, ](K+»)„ey„e.

(32)

In Ref. 7 it was shown that

& =fImC, /ReC,

when the fraction of the K'- »» (I= 0) amplitude
arising from the operator Q, in the effective Ham-
iltonian for b, S = 1 weak nonleptonic decays, f, is
large. The only measured decay of the form
K - ~e'e is K' n'e'e with a branching ratio' of
(2.6+0.5)x10 '. If this were all to arise from the
C,Q, piece of the effective Hamiltonian it would

imply

It is particularly interesting that for Fig. 2(b) they
find that the penguin term C,Q, in the effective
Hamiltonian gives comparable contributions to the
normal (V -A)x(V -A) terms C,Q, + C,Q,. This
is unlike the case for ordinary nonleptonic 45= 1
weak decays (such as K-»»), where matrix ele-
ments of Q, are argued to be strongly enhanced
over those of Q, and Q,. In the case at hand such
an enhancement factor again arises, but is com-
pensated by a factor (r')~ (r —'),. in terms in-
volving Q, versus just (r ')». in those involving

Q, and Q,. Note that in applying this method of
estimating matrix elements to either K~ -~'e'e
or K~ -~'e'e, the relevant electromagnetic
charge radius squared that enters is that of the
K' which, as expected, is measured" now to be
much smaller than that of the K' or ~'. This gives
some indication that the terms in the matrix ele-
ment of C,Q, +C,Q, involving the charge radius
will be less important in K'-~'e'e than they are
in K' ~'e'e .

One should also note at this point that the matrix
elements of+', C,Q, taken to order e' must be p
dependent. This follows since C, is p dependent
while the matrix elements of Q, are not, "so that
matrix elements of C,Q, are explicitiy p. depen-.
dent. However, the total amplitude obtained from
the effective Hamiltonian cannot depend on the
renormalization point, whose choice is arbitrary.
Therefore, the matrix elements of the remaining
terms', 'C, Q,. must somehow compensate for that
of C,Q, .

This fact can be seen most strikingly in the
free-quark-model effective Hamiltonian of Eq.
(23). Here only the operators Q, and Q, enter.
The logarithmic coefficient of Q, is explicitly
dependent upon p. , while matrix elements of the
operator Q, itself are not. The opposite pertains
to Q, : Its coefficient is explicitly p, independent,
and hence its matrix element must be p, dependent
in just such a way as to exactly compensate for
the coefficient of Q, . Explicit calculation verifies
this.

The same kind of situation occurs in the case
of 6,S = 1 nonleptonic decays. ' There the Wilson
coefficient of the penguin operator Q, is explicitly
p, dependent, but p. dependence in the matrix ele-
ment of Q, as well as in the matrix elements of

+~5C,Q; must compensate for that of C, in just
such a way as to make the net physical amplitude
independent of the choice of renormalization point
p (at least if the Wilson coefficients are calculated
exactly). On top of this, the accuracy of the vacu-
um-insertion approximation, which is usually
used to evaluate the matrix elements, must be
p. dependent since it separates a renormalized
local four-quark operator into a product of re-
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normalized quark bilinears. Consequently, both
in our previous application of the AS= 1 nonlep-
tonic effective Hamiltonian' to A -«decays and
in the present paper, we are wary'" .of making
quantitative predictions using this method for
evaluating the matrix elements of Q„..., Q,.

If we stick to just Q„whose matrix element
(but not Wilson coefficient) is unambiguous, we
see from Eqs. (28) and (32) that

A(K'- v'e'e ) ReC,
(34)

X
1'(K~ -v'e'e )
I'(K'- ))'e'e )

' (35)

with the first two factors on the right-hand side
taken directly from experiment. "" To obtain a
crude estimate, the ratio I'(K~-7)'e'e )/I'(K'- v'e'e ) is assumed to be as the ratio of contribu-
tions from C,Q, in Eq. (34). These assumptions
yield

(36)

The final factor on the right-hand side of Eq. (36)
seems unlikely to gain us much more than a factor
of 2. This is very far below the recent upper
limit"

B(K~- w'e'e ) ~ 2.3 && 10

Since ImC, arises from Imr= —~,s,c, sin~, we
.see that Table I has ImC, /ReC, = Cs,s,c, sin5, with
C a positive number with a magnitude roughly in
the range one to four. The sign of C is opposite
to that in the free-quark model, which was used
previously to estimate it.' In the six-quark model
the E'-X' mass matrix gives a contribution to e
of roughly' (3 to 6)xs,s,c, sin5e" /', so that the
e and i ImC, /ReC, terms in Eq. (34) give compar-
able contributions to the net CP-violating ampli-
tude and Im& interferes constructively with '.

ImC, /ReC, and -g when 0, can be treated as a
small quantity.

The branching ratio for K~- ~'e'e may be cal-
culated from

I'(K — 'e'e )

r(K, - all)

I'{K'-all) I'(K'. —w"e'e )
I'(K~ —all) I'(IS'- all)

Q, which must be added to that of Q, to get the
full K~ —~'e'e amplitude. It would seem that the
change in sign of ImC, /ReC, due to QCD correc-
tions will remain a theoretical curiosity incapable
of being checked experimentally.
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APPENDIX A

&~o"'))=L"'( ~)()& ~)'

0

+r™,g o, ~, (A2)

Here we derive the effective Hamiltonian for
K- me'e in the four-quark model when the mixing
with penguin-type four-quark operators is ne-
glected. The purpose of this appendix is to com-
pare the result of the method used in Ref. 4 to that
of the method used in Sec. II in a situation where
analytic expressions can be stated in each case.

After the 5'boson is treated as heavy and re-
moved from explicitly appearing in the theory, the
resulting effective Hamiltonian density is

~ (i') -'~"
Ref~ — ~ siQHc cosec

( 2)
0 +

(~2}"+12/25
+

( 2}, 0 + H c ~

(Al)

The operators 0,"' are defined in Eq. (3). The
matrix elements of this Hamiltonian are to be
evaluated to order e' in the electromagnetic inter-
actions.

The next step is to treat the charm quark as
heavy and remove it from explicitly appearing in
the theory. The matrix elements of 0"' may be
expanded in terms of matrix elements [evaluated
in an effective three-quark theory wit;h coupling
g'(m, /p, , g)] of operators not explicitly involving
the heavy-charm-quark field. When the mixing
with penguin-type operators is neglected, this ex-
pansion has the form

and, moreover, at a level where it seems likely
that the CP-conserving decay process through
two intermediate photons, E~-~'yy- ~'e'e, also
contributes. In addition there are CP-violating
contributions from the matrix elements of Q„.. . ,

where

0, = (s~u„)v ~(u,d, )v-~

+(sadu)v x(uncut))v g (A3)
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and, using the definition of Ref. 4,
e'

0, =
4
—(e d„)» „(ee)». (A4)

The factor of p,
"arises from the relation e,'

= l),26e' From (A6)

4g "/16w'

0~&0'=QZ~;0;,
i

where the Z&, are independent of the electromag-
netic coupling e. A simple calculation of the re-
normalization of the operators 0, at the one-loop
level gives"

(A5)

1 —2g"/16w'e 8/9w&

The primed matrix elements in Eq. (A2) are eval-
uated in an effective three-quark theory with
coupling g'. The factor of e'/4w is inserted into
the definition of 0, so that if we work to the lowest
possible order in the electromagnetic interactions
the operators 0&, j(= (+, —,7) undergo a renormali-
zation

-8g "/16w' 0

0

(A7)

y.' (g') = QZ '. i(, —Z
d

2g"/8w' 0 -16/917

0 4g z'/-Sw' 8/9w . (AS)

0 0

'The term proportional to & is not negligible since
it combines with terms of order 1/c in Z ' to give
an anomalous-dimension matrix

Z (g")= 1+4g"/16w'E 4/9w e-
0

(A6)
I

The Wilson coefficients L&")(m,/p, g) sati, sfy the
renormaliz ati.on-group equations

u +P(—g) +y,—(g)m, +r"'(g) ~;, -r;&(g') L,"' ~,gi =o.
8 JLl C

(A9)

il —y(x)
1ny=

'
d" p(') g(l g)=g.

~I g ha

Because of the structure of the matrix y'(g') in Eq, (A8), the renormalization-group equations for L."' and
L"' relate them only to themselves and they have a standard solution. ' The equation for L,"' relates it to

L,"', L"', and itself, and has the solution

(A10)

The y"'(g) are the anomalous dimensions for the operators 0, and were calculated in Ref. 19. The renor-
malization-group equations (A9) may be solved with the aid of a running coupling constant g(y, g) defined by

(, ) m, - . -r y"'(x)
L,"' —,g = exp dx

x dz
g exp

g (1iE) -8
+ dz exp

r'(1 E') 2x (y)dx
8 ~pz( )

L,"'(l,g)

|.r ' (1~g)
(Al 1)

where g =g(m, /p, ,g) and g'=gz(m, /)(), ,g). Now defining

g(1) — 6 g( ) — 12

and utilizing

P(x)=,x'+0(x'), (Sz(x)=,x'+0(x') and g'(l, g)=g,-25 3 5 -27 3

(A12)

(A13)

the solution Eq. (All) becomes

0 im '& -'' I'2'mzz(™z)
i

) de 2e-3-&2)'27-&2i2')L&~)(1 )

z J dzz '"' "z;"" '(1 z)zz '*'(zzz)I (A14)
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(A15)

Noting that the L,(."(l,g) may be replaced by their free-field values (see Sec. II) in a leading-loga, rithmic
calculation and using the solutions to the renormalization-group equations for L,"' and I(" gives

~ &I(+2) -6/27 & (~ 2) -6/23
f &,(+2) 2/27(/& (~ 2)) 2/26

f ~ l((((2) -33/27
C( (222 2) 6/25

9o!,(m, ') l1, (n, (m,'),(M2 ')

(
.'(v*)

)
"'*'

(
.( .')}"'*'}()),„,

as the effective Hamiltonian density in the light-three-quark sector. This is the result in closed form de-
rived starting from the definition of 0, in Eq. (A4), which is similar to that in Ref. 4.

To perform the expansion in Eq. (A2) in a manner similar to that used in Sec. II we use an operator
0,' defined by

0'= 8@d~ y g e8 ~. (A16)

This has the advantage of giving an anomalous-dimension matrix proportional to the coupling squared, for
when 0, is given by (A16)

2
12

y/ (~S)— 08~2

0

O 32
9

4 16
9

O
27
3~1

(A17)

In this case the renormalization-group equations for the coefficients L/(m, /p, g) are still given by Eq.
(A9), but now with the anomalous-dimension matrix in Eq. (A17). The equations and solutions for L,' ' and
L"' are as before. For L,")(m,/l/, ,g) the solution is now

,„, m, "r y")(x) t""" +27x'', g = exp dx ~() expJ dx 42~()
4z 33x (,)

t-a'' (12K) 2@2

I

(A18)

Using the perturbation expansions for P, P', and Z") it is easy to show that Eq. (A18) together with the so-
lution for L,")(m,/p, ,g) and L")(m,/l/, ,g) leads to an effective Hamiltonian density which is identical with
that [in Eq. (A15)] derived starting with the other definition of 0, . Thus, although the anomalous-dimension
matrices which correspond to the two definitions of 0, are quite different, the effective Hamiltonian dens-
ity in the light-three-quark sector is independent of the way 0, is defined.

Finally we note that the results derived in this appendix are equivalent to those in Ref. 3. This is most
easily seen by converting Eq. (A14) to an integration over the momentum variable q through the substitu-
tion

with

= [4 .(~')I"', (A19)

12m

27 in( '/A') '

APPENDIX I
In this section numerical results are given for various quantities which play a role in deriving the ef-

fective Hamiltonian for K -~e'e .
%hen the t quark is treated as heavy, and removed from explicitly appearing in the theory, a straightfor-

ward calculation of the renormalization of the operators (0„... , 0,'}[defined in Eqs. (10) and (12)] at the
one-loop level gives an anomalous-dimension matrix
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-1 3 0 0 0 0 8
3

gi2
y(4(z') =

8,3

3 -1
0 0

0 0

3

ii
3 8

22 2 5
S 3

0 0 0 0 1

Q Q
5 5 5
9 3 9

0 0 0 0 0

i
3

2
3

3 4 +O( 14)
3 9

4
3

io 4
3 9

0 23
3

(Bl)

4»

The element yT', (g') arises because the coupling constant in the definition of 07 [see Eq. (12)] gets renor-
malized. The matrix yI((g') can be diagonalized by the transformation

Q ~ '((y('8(a'')~8( = &(gy('(g'),
kl

(B2)

where

0 0

0 0

0.695 89 0

-0.695 89 0

-0.706 58 0

-0.706 58 0

Q -0.202 36 -0.231 96 0.959 85 0.171 32 0.100 94 -0.402 26

V~~
—

Q 0.281 03 0.231 96 -0.830 58 0.083 375 0.100 94 -0.776 72 (B2)

0 -0.044316 0

0 -0.829 89 0

-0.079 869 0.964 45 0

-0.163 34 -0.354 39

0.31309

-0.264 31

1 0.742 68 -0.281 17 -0.165 37 -0.158 7 0.241 33 0.053 852

and

-7.6667

-6.8954

I2

y(l(g') = 3 -2.2429 + O(g' ) .
8w

1.1166

(B4)

3.1327

Note that the last six of these eigenvalues are the same as those which occur in the diagonalization of the
anomalous-dimension matrix in Eq. (A7} of Ref. 7, where the effective Hamiltonian for b8 =1 weak non-
leptonic decays was discussed.

When the b quark is treated as heavy the renormalization of the operators fP(, .. . ,P~$, where

P( =(Sadn)V A((484(8)V A ~ P3 =(Sag[8)V A(3(8(4n)V-A y P3 =(Sndn)V-A[(3(83(8)V-A + +(CBC(l)'V A]

P4 (S dB)V nA[(QBQ )VM+n' -' +(CBCn}V A] ~ P3 =(S ada) V A[(4(8(48)V»A+ +(C BC 8)V»A] s

2

PB =(SndB)V A[(3(BQn)V»A + ' '+ (C BC n}V»A] & P(=,~ (Sn(f n)V-A(ee) V ~

gives rise to the anomalous-dimension matrix
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-1 3

3 -1
0 0

t/2

y;",(g")=, o o

0 0 0

i
9

ii
9

ii 2

3

23 i 4
9 3 9

0 8
3

1 8
3

2 8
3 3

(B6)

0 0 0 0 1

0 0 4 4 4
9

20
3

3

0 0 0 0 0 0

k, l

where

fl Yl, k +kj ~fP j

yI'& (g") is diagonalized by the transformation

25
3

(B'f)

0 0

0 0

0.655 8 0

-0.655 8 0

0.706 43 0

0.706 43 0

0 0.144 52 -0.327 9 -0.78Q 05 0.141 4 -0.11774 -Q.675 61

0 -0.202 98 0.327 9 0.712 36 0.067 442 -0.11774 -1.146 8 (B8)

0 0.032 867 0

0 0725 49 0

0.041 364 0.967 75 0

0.096 564 -0.350 21 0

0.429 31

-0.341 87

1 -0.726 43 -0.134 52 0.258 84 -0.286 98 -0.202 56 0.176 41

-8.333 3

-7.042 8

+ o(g"') ~ (Be)

1.097 4

2.890 9

When the charm quark is treated as heavy and removed from explicitly appearing in the theory only the
six operators Q&, Q„Q3, Q„Q6, and Q~ (Q~=[1/a,"(p, )]Q~) defined in Eq. (22) are required. Calculating
their renormalization at the one-loop level gives the anomalous-dimension matrix

3 0 0 0 8
3

8
3

ii
3

2

3

ii
3

22 2 2

9 9 3
0

o o o 1 -8 o +o(g"').
~72 i

3 3

27
3

The matrix y,"& (g") is diagonalized by the transformation

(B10)

(B11)
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where

0 0.175 24 -0.695 47 -0.051 101 -0.812 29 O.V34 89

0 -0.175 24 0.695 47 0.051 101 -0.541 53 -O.V34 89

0 -0.05212 -0.030131 0.1607

X~~ = 0 0.029 23 0.018 233 0.975 15

0 0.814 15 0.048 407 -0.346 86

0 0.247 09

-0.186

0.270 76 -1.221 2

(B12)

1 -0.175 23 0.235 77 +0.009 015 9 0.240 68 -0.11186

-9
-7.2221

-3.7559

1.0761 (B13)

2.6797
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A similar situation occurs in the weak radiative decays
of hyperons. There, diagrams at the one-loop level
give rise to an effective magnetic-moment st vertex
which is suppressed by a factor of (m~/m )2 compared
to other contributions which come from the matrix
elements of the operators Q~, ... , Qe evaluated to order
e' in the electromagnetic interactions (see Ref. 1). Dia-
grams beyond the one-loop level induce a magnetic-
moment operator in the effective Hamiltonian for weak
radiative decays which is not suppressed by a factor of
(m~/m~) . However, its Wilson coefficient as calcu-
lated by M. A. Shifman et al. [Phys. Rev. D 18, 2583
(1978)I, is much too small to explain the observed

pp decay width. In addition, it has been shown
by F. J. Gilman and M. B. Wise [Phys. Rev. D 19,
976 (1979)t that an effective st vertex of arbitrary

strength by itself is inconsistent with the present ex-
perimental data on the weak radiative decays of hyper-
ons.

~2In general, a given diagram in perturbation theory will
contribute to both the Wilson coefficients C& and to the
matrix elements of the local four-fermion operators
Q&. For example, the electromagnetic penguin-type
diagram with g, c, and t quarks in the loop shown in
Fig. 1 contributes to the Wilson coefficient CY but it
also gives contributions to the matrix elements of
Q~, ..., Q6. Exactly how much of the diagram goes into
C& and how much goes into the matrix elements of
.Q&, ..., Q& is determined by the value of the renormali-
zation point p.

SW. R. Molzon et al. , Phys. Rev. Lett. 41, 1213 (1978).
~4Although the hadronic part of Q& is a composite opera-

tor involving two quark fields at the same point, it does
not require renormalization since it is a partially con-
served current. Thus, its matrix elements are not p
dependent.

~~In AS=1 weak nonleptonic decays, if the vacuum-in-
sertion approximation is used to evaluate matrix ele-
ments then it appears that, with the Wilson coefficients
calculated in Ref. 7, one does not account for the full
K —7|7t. amplitude. One can attribute this failure either
to uncertainties in the matrix elements or to uncertain-
ties in the real part of the Wilson coefficient for Q6.
The first approach was adopted in Refs. 7 and 8 togeth-
er with the assumption that most of the K -7r7t. ampli-
tude is coming from matrix elements of Qe. The second
approach has been used by V. V. Prokhorov, Yad. Fiz.
30, 1111 (1979); B. Guberina and B. D. Peccei, Nucl.
Phys. B163, 289 (1980). The latter approach generally
leads to smaller values for the CP-violation parameter
e' than does the former.

~Particle Data Group, Phys. Lett. 75B, 1 (1978).
'VA. S. Carroll et a/. , Phys. Rev. Lett. 44, 525 (1980).
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~This is the renormalization in the m'inimal subtraction
scheme. As mentioned in Sec. II we are working in a
closely related scheme where extra pieces not propor-
tional to 1/e are put into the "infinite" part. However,
such pieces give higher-order (in g'2) contributions to

y'(g') and can be neglected in the leading-logarithmic
approximation.

i~M. K. Gaillard and B. W. Lee, Phys. Hev. Lett. 33,
108 (1974); G. Altarelli and L. Maiani, Phys. Lett.
52B, 351 (1974).


