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We present a new constituent-constituent multiple-scattering model for the 4 dependence of inclusive
cross sections at large y and small B, and we apply the model to p + 4 —A® 4+ X data. We are able to
extract from data the mean free path of the particles which interact with the nucleus 4 and a folding
function which relates the cross sections for different 4’s. The results confirm that the scattering is between
constituents rather than between nucleons and suggest that the apparent number of constituents in the
projectile at 300 GeV/c is about 5. The statistics are good enough to extract only two numbers, the mean
free path of the constituents and the average change in rapidity per collision. We give the general shape of
the scattering folding function. Data over a larger range of y would almost certainly reveal more structure
in the folding function. We predict the p + H—A°+ X cross section and suggest ways to analyze and

display future data on 4 dependence.

I. BACKGROUND

Invariant inclusive hadronic cross sections from
reactions in different nuclei (different atomic num-
ber A) are conventionally parametrized to display
the A dependence as a single power « of A:

Ed 2,550+ Aa(x-wE——su 5p). ()

The power « depends on x, the fraction of longi-
tudinal momentum, and p ,, the perpendicular mo-
mentum, of the measured particle, where the de-
pendence on x and p, may also vary with A. Some
data have been analyzed using a series in powers
of A3 to fit the cross section,
L0 - AP [a(y) + AV%B(3) + A7o(y)] @)
& aly y)+ cy)l.
In Eq. (2) the cross section is either at fixed P, or
has been integrated over P, and is expressed in
terms of the rapidity v instead of x. ‘

In this paper we present a new consitituent-con-
stituent multiple-scattering model which gives a
physical explanation of the features of Eq. (1) and
leads to Eq. (2) as a series approximation.

One experiment which has been analyzed using
both Egs. (1) and (2) is p +A ~ A°+ X by Heller et
all In this experiment at 300 GeV/c the three
targets used were Be, Cu, and Pb (4=9, 64, and
208). The extrapolated A=1 cross section from
Eq. (1) looks too large (see Fig. 1), while the A=1
cross section from Eq. (2) is close to the Be cross
section (which seems more reasonable). When the
A° data were being analyzed, L. Pondrom, one of
the authors of Ref. 1, was interested in using Eq.
(2) to fit the A dependence. One of us (B. D.)
found at that time a multiple-scattering model
which has Eq. (2) as an approximate solution. In
this paper we give our current version of this

multiple-scattering model, together with applica-
tions of it to the A° data.

When this model was originally formulated, it
was intended to describe constituent-constituent
multiple scattering, not hadron-hadron multiple
scattering. However, the basic equation, Eq. (3)
(see below), would be valid for either constituent-
constituent or hadron-hadron scattering and would
yield Eq. (2) in either case. In fact, only by using
the solution to Eq. (3) to fit data can one verify
which particles are involved in the scattering. A
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FIG. 1. The p+A —A'+X cross sections, integrated
over B, and expressed in terms of y,, for A=9 (Be),
64 (Cu), 208 (Pb). The dashed curve is the prediction
for A =1 (H) from Eq. (1) and the dotted curve is the pre~
diction for A =1 from Eq. (2). This figure originally
appeared in Ref. 1. The solid lines are the Be, Cu, and
Pb data integrated over P,. The triangles and squares
are predictions for the Cu and Pb distributions from
Eq. (11). The quantity dz/dy from Ref. 1 corresponds
to our n(y). These curves were normalized o Gusorption pp
=46 mb (an extrapolated value).
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mean free path L appears in the model as a pa-
rameter. If the best fit to L had been ~1.4x10-*3
cm, which is the mean free path of a protonina
nucleus, we would have concluded that the shift in
the y distribution due to target size came from
hadron-hadron scattering. We find from the A°
data that L is ~7.5x107*®* cm. We conclude that
there are between 5 and 6 constituents involved in
the scattering process. The fitstop +A—-A°+ X
in Ref. 1 using Eq. (2) were interpreted by the
authors of that paper as resulting from hadron-
hadron scattering. We hope that this present pa-
per will convince the readers that the scattering
is constituent-constituent, and we intend in the
future to carry the model further to predict con-
sequences due to different quark masses and dif-
ferent energy-loss processes.

Before presenting the model and results, we
should point out that this multiple scattering is not
of the Glauber? type. We regard all beam con-
stituents as pointlike, not as being extended over
enough space to simultaneously sample several
target constituents. (It has recently been noted
by Miettinen and Pumplin® that the optical model
is not reliable for A-dependence calculations.)
Furthermore, we are not treating large-p, events,
nor are we calculating constituent-hadron scatter-
ing, both of which are done in a recent article by
Kryzywicki et al.* The reader wishing to compare
our model with others is referred to the new re-
view of A dependence by Eilam et al.® and refer-
ences therein, and to the recent references listed
collectively as Ref. 6.

One nice feature which emerged immediately
from this model was that it is consistent with the
long time scale built into Gottfried’s” explanation
of slowly growing multiplicity. The final state
need not coalesce until far downstream of the tar-
get; it will still exhibit the effects of constituent-

constituent scattering inside the target.

Another feature is that this model explains qual-
itatively the behavior of @ in A® of Eq. (1) as a
function of x.® In this model, any constituent can
interact while traversing the nucleus (unlike the
naive parton model). The interactions are not
specified, but they include both soft interactions
with radiation of energetic gluons and harder in-
teractions which impart a fair amount of momen-
tum to a target constituent. Thus all beam con-
stituents lose momentum, including those at high
x; and the more matter traversed, the more mo-
mentum will be lost by the beam particles. How-
ever, the more matter traversed, the more pos-
sibilities there are for emitted gluons or target
constituents to come out with low x. Thus a func-
tion of A high-x events are depleted while low-x
events are augmented both by a beam shift from
high to low x and by radiated or target particles
gaining momentum. Parametrizing this by A*®*?
leads to & being smaller for high x than for low
Xe

Another feature is that the A dependence of any
process involving the same constituents, including
e-, u-, y-, or v-induced hadronic interactions,
should be qualitatively the same. Various A tar-
gets thus become a laboratory for studying inter-
actions of constituents.

II. THE MODEL

We assume that some initial number density » of
constituents exists or is produced at z =0, where z
is the beam direction and z =0 corresponds to the
front surface of the target. The target is taken to
be a disk of area A%® and depth in the z direction
proportional to AY3, as in Fig. 2. The number
density » changes as the constituents travel
through the nucleus according to the equation

> dz >\ dz [max Y A - = -
dnle,y, b)) == 7 nle,y, )+ f dy'f dpr dpyF(y',y,bL,bunl,y’,Bl) . 3)
v co

The first term on the right side of Eq. (3) is a
depletion term and the second is an augmentation
term. L is the mean free path of a particle tra-
versing the nucleus. The number density #n(y) is
dN/dy , the number of particles with rapidity y in
an interval dy. The invariant inclusive cross sec-
tion Ed%c/dp®=0,,dN/dy =0 un(y). (In Ref. 1
dN/dy is called dn/dy.) In our model 0y is pro-
portional to the area of the target. The limits on
the y integral indicate that initially we have as-
sumed that the particles only lose, never gain, y

-

in a collision.

The scattering equation can be easily solved if
F(y’,y,D%,D,) is a function of y' —y and (B, -p.)%,
and we assume for convenience that

F(y',9,05,0.) =" = )g(®. =.)%). (4)

~ We perform a Laplace transform on (y' —y) and a

Fourier transform on (p), —p,), calling the La-
place-transformed variable 77 and the Fourier-
transformed variable q; we use tilde to denote
Laplace transform and caret to denote Fourier
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FIG. 2. The geometry of Eq. (3). We assume that the
target nucleus is a disk of area A?/3 and depth propor-
tional to A1/3, The beam direction is z.

transform. The exact solution to the transformed
equation is

(e, n, ) = e~/ expl(2 /L) MEG)I7(0,7,3) . (5)

We should comment on a few points. In this
simple model many questions are ignored in the
interests of solving the equation and concentrating
on a qualitative picture. For example, we cannot
say where z =0 in #(0, y,D,) should be. We should
probably average over the nucleus to allow for the
inelastic interaction which produces the stream
of constituents to happen anywhere. Instead we
take #(0) as given at the surface of the target.
Likewise, a disk is not necessarily the best
geometry except mathematically. We might have
taken a sphere and averaged z over path lengths,
and in fact in Eq. (10) we will use a value of the
proton mean free path for a spherical nucleus.

Initially, we believed that F, f, and g should
all be normalized to 1. We changed our opinion
on this when we found that a normalized f would
not fit the A° data. Thus F really includes some
excess (particle “production”) from target con-
stituents having their momentum boosted in col--
lisions or fragmentation of beam particles, e.g.,
gluon emission. And thus the y integral limits
are not really y and y,,, since some particles
could reach y from below.

We have assumed separability as in Eq. (4) which
would be in violation of energy-momentum con-
servation, since y is a function of p,, but fortu-
nately the data are expressed in terms of y,.
Also, we argue below that the P, dependence is
weak. Equation (3) has also been solved by
iteration, yielding the same result as with trans-
forms.

Neither f nor g is a known function. To get a
physical picture of what is happening in p,, it is

“useful to assume that 2(§% has a maximum at
q2=0:

@) ~g, 3808 (6)

The exponential part of Eq. (5) is now

2 (73 L2 onrae
exp(L (fgo-1)> eXp( AL q)-
The inverse Fourier transform of this contains
a Gaussian in () -D,)=AD,,
2

1 Ap?
exp(— 2(17) — exp (_ 5 bzl) . (7)

FT1

This Gaussian dependence can be interpreted as
the outcome of a random walk in p,, which is
reasonable for a multiple-scattering model, es-
pecially for small B, .

Equation (5) can be written in three alternative
ways:

ﬁ(z’ n, a) = h:(z’ n, az)ﬁ(o’ m, a.) ’ (Sa)

ﬁ(z,n,a)=e-m[1+§-f§r+2‘—!(§) o]
Xﬁ(oa 77,?1) ’ (8b)

ﬁ(z,n,ﬁ)=[1+§(f§—1)+§1!—<§> (Fo =12+ - ]
x7(0,n,3) . (8¢)

We use the inverse transform of (8b) to fit data.
In Ref. 1, a folding function which was essentially
nz,v,D.% from the inverse transform of (8a) was
used to fit the Be and Cu cross sections and pre-
dict the Pb and (unknown) H cross sections. Later
in Ref. 1, the cross sections were fitted by Eq.
(2), which was justified by comparison to our in-
verse transformed series (8c) truncated after the
third term.

The inverse Laplace and Fourier-transformed
Eq. (8b) is

n(z,9,p.)
400, 5,5 + 6/ 20,3,
+ -21—!(Z/L)2fg +fg xn(0,9,D,) + - ] ,

)

where * stands for convolution in y and b, .

The empirically obtained “best” folding function
in p, from Ref. 1 is a sufficiently sharp Gaussian
to be taken to be a 6 function. This justifies
dropping the g’s from Eq. (9). Using Eq. (9) with
only the f(y’ —y) folding function, we have fitted data
at fixed p, and data integrated over p,. (The
integration of data was done by Heller ef al.)

The average distance z traveled in nuclear
matter is given by Hahn ef al.® as
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2=AY3x1.5%10"% c¢m.

Thus, depending on the mean free path L, % terms
of the series in Eq. (9) must be used to fit cross
sections until (1/k!)(z/L)* is sufficiently small.

n(A 25 y) = e—(zz-zl)/L [5 *+ (A21/3 —A11/3)< =

+3(A 21/3 —A11/3)2< L

We used this formula to fit the Be, Cu, and Pb
data and predict the H cross section.

III. FITS OF A° DATA

Before applying Eq. (10) to the A° data at p, =0
(“zero milliradian” data), we smoothed the Be
data. We used this smoothed data for the n(A,, y)
in Eq. (10). It was found when applying Eq. (10)
to the Be data and fitting n(A,, y) to the Cu and
Pb data separately, that no matter what folding
function f(y’ - y) is used, the best value of L for
the Cu data is the same as the best value of L for
the Pb data, within a few percent. This is what
is expected if L is independent of the nucleus in
question because

z, —210CA21/3 _All/s
=(4.0-2.1) for A,=Cu, A,=Be
=(5.9-2.1) for A,=Pb, A =Be,

and 3.8 is twice 1.9. We believe that this inde-
pendence of the mean free path is a strong feature
of the model.

We considered different forms with free pa-
rameters for f(y’ —y). This gave us a set of fold-
ing functions which would predict the Cu and Pb
data based upon the Be data. These folding func-
tions were used in Eq. (10), with n(A,, y) the

1.5x107*% ¢m

1.5x107% cm

)zf*f*+- . ]n(Al, 3. (10)

We have found that we must keep the (z/L)? term
to fit the Cu data and the (z/L)° term to fit the Pb
data.

Our inverse-transformed series (8b), fixing
P., becomes

smoothed Be data. The Cu and Pb data were

fitted to n(A,, y) simultaneously. When doing these
fits L and the parameters in the folding functions
were varied. The results are given in Table I.

We note from Table I that L and Ay,, are roughly
independent of the shape of f(3' —y). These seem
to be the parameters that our model is most sensi-
tive to. The significance of Ay, can be seen in
Fig. 3 as the shift in the peak of the cross section
from one A to another, although the range of y is
too small to really check this for Cu and Pb.

The area under f is always greater than one,
which means that the number of particles is not
conserved. An explanation of this follows. A
change in y of 0.7 corresponds to a reduction in
p. by a factor of 2. If the beam particle loses
half its momentum in a scattering, the target
particle which picked up that momentum or the
fragment which carried off that momentum may
appear in the final state. Thus we expect con-
tributions from the target and fragments except
for very high y. The area under our best f is 1.6
and the average change in y is 0.91, which cor-
responds to p,~ 0.4p,. The value of Ay,, was
surprisingly high, indicating harder collisions
than initially expected, although the peaks in Fig.
3 do bear out this shift.

We compare L with the mean free path of a pro-
ton in a nucleus,

TABLE 1. The Cu and Pb data were simultaneously fitted to the smoothed Be data using the folding function f(y).
Polynomial f’s gave better fits than exponential /’s and the best x?/d.f. was for f(y) =a +by with ¢ =0.37 and 6 =0.94.
Coupled with f is the value of the parameter L, which in fact is nearly independent of the form of f. L is the mean free
path of a constituent and is 5.4 times the proton mean free path for our bestf(y). The average shift in y and the area
under f(y) are given. Area in excess of one is due to target constituents and beam fragmentation.

Best parameters

f) a b c L (cm) L/L,  Average Ay Area under f(y) X2/d.f.
) =a 0.8 7.0x10718 5.0 0.8 1.2 72/46=1.6
) =by 1.8 8.0x10713 5.7 1.0 2.0 70/46=1.5
f@)=a+by 0.37 0.94 7.5x10713 5.4 0.9 1.6 62/45=1.4
Ff@)=a+by+cy? 0.37 0,94 2x107¢ 7.5x10788 5.4 0.9 1.6 62/44=1.4
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FIG. 3. The p+A — A%+ X cross sections at P, =0 and
expressed in terms of y,,, for Be, Cu, and Pb. The
line through the Be data represents smoothed data. The
lines through the Cu and Pb data are the best joint fit
via Eq. (10), the solution to Eq. (3) for fixed B, . The
dashed line is our predicted A=1 (H) cross section.
These curves have been normalized to the total cross

sections for p +A for each A, which are proportional
to A%/3,

L,=1.4%10"% cm

1
“on
where o is the total absorption cross section of
40 mb and # is the nuclear density [£7(1.1
x 10713 cm)®]-L.

The connection between L, and our L can be seen
from the following naive argument, where p stands
for proton (hadron), ¢ for constituent, and N, for
the number of constituents per proton (hadron):

1
Oy,
pp'p
1 1
Lc:O“Jl = -
¢ N OCPNCnP
N
:0 ;l =NCL,,.
pp'°p

Thus if our multiple scattering is between con-
stituents, we would expect the mean free path L
in Eq. (3) tobe L=L_ =N_L,. From the A° data
J

n(A,y)=[n(0,y)+A”3<-1—'-5—X—1I0m)(f— 5)*n(0,y) +§A2/3<

we find L =5.4L,. This confirms that it is the
constituents which are interacting. It also indi-
cates that there are 5 to 6 constituents in whatever
went through the nucleus and later produced a A°.

In Table I, the fit f(y)=0.37+0.94y is the best
fit to Cu and Pb data simultaneously, which gives
a x2/d.f. of 1.4. When the Cu and Pb data were
fitted separately to f(y)=a+by, we got x/d.f.=1.2
for Cuand x?/d.f. =1 for Pb. When we fitted the data
integrated over D, by Heller ef al. instead of the
smaller number of data at fixed §,=0, we found a
folding function f with more structure than a+ by.
However, we had no errors on the integrated data
and thus could not calculate a x?/d.f. We have,
therefore, not presented that result.

In Fig. 3 we show the result of the a+ by fit to f
from Table I and our prediction for the p+H —~ A°
+X cross section. To get the H cross section
from Eq. (10), we again let n(A,,y) be the smoothed
Be data. The value of A, is then 9 and 4, is 1.

We will now compare our analysis with that of
Ref. 1. Our z is a continuous variable, so the
series can be used for any value of A. Part of the
analysis in Ref. 1 was done using discrete z, by
noting that there is roughly one more nucleon
mean free path in Cu than in Be, and in Pb than in
Cu. Then each folding represents an extra colli-
sion between nucleons which would be equivalent
to using the inverse-transformed (8a):

n(Cu)=h*xn(Be),
n(Pb)=hxhxn(Be), (11)
n(Be)=hx*n(H).

Since 7 is an exponential, n(z)*h(z)=h(2z). The
function % includes all powers of A'/3. We note
that A'/2 for H, Be, Cu, Pbis 1, 2, 4, 6 approxi-
mately, so that the discrete folding for Be - Cu
- Pb may be very good, but H would not be ex-
pected to be one mean free path shorter than Be.
Thus our extrapolated H cross section comes from
setting A,'/%=1 in z,; and in Ref. 1 the extrapolated
hydrogen cross section comes from setting A=1
in Eq. (2), which should give the same result as
long as we keep only three terms in our series.
Any difference between Figs. 1 and 3 is due to the
P, integration.

In Ref. 1 the three functions a(y), b(y), and
c(y) in Eq. (2) were fitted to the data from the
three cross sections for Be, Cu, and Pb. Our Eq.
(8c) has the form (omitting P, and performing the
inverse transform)

0N ) (1 om0, ],

(12)
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where 7(0,y) is obtained from the Be data and Eq. (10) with 4,=0. To convert n(4,y) to a cross section
(do/dy)(A,y), we multiply by a constant times A%/ (the area of the target). do/dy = (const)A®/%:(y). As-
suming that » is approximately normalized, we define A%3a(y)=0,,7(0,y), and we get

-13
Z—;(A,y)=A2’3[a(y)+A”3(————-—————1'5 X107 cm

The first three terms in this series clearly re-
semble Eq. (2) if we make the identifications

()= (122 e agy),

e()=3 (XN 7 o) (7= B)maly).

We have found, however, that four or five terms
should be kept for Pb or higher A targets. In
fact, there will be (small) contributions from se-
cond and possibly higher-order terms even in
cross sections for small A, such as H, depending
on the magnitude of (1.5%10-*3 ¢cm)/L. This analy-
sis is pictured in Fig. 4. Figure 4 should be com-
-pared with Fig. 5, which is taken from Ref. 1.
Note the different scales in Figs. 4 and 5. The
different scales reflect the fact that the data in
Ref. 1 were integrated over B,® while we used data
at fixed P, =0. It is the shapes of a(y), b(y), and
¢(y) which we wish to illustrate.

Since a(y) is defined in terms of #(0,y), we have
found at least the shape of the initial y distribution.
The area under a(y) is related to a constituent
cross section and the area under a(y) multiplied

1.5 T T T
dS
= =A% a(y) + Ably)+ AV3 c(y)
| dy dDJ pL:o
aly)
10
o
O
ol X 5+
E|
Qe
0
cly) bly)
_.5 1 1 1
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FIG. 4. The first three terms in the series of Eq.
(10), corresponding to Eq. (2), plotted vs y,,, for b,
=0. The vertical scale is mb/(GeV/c)?.

T )(f—5)*a(v)+

A?/3 (1.5x10°'% cm
2\ L

)2(]‘— 8)x (f - 5)*a(v)+---] .

I

by A%/3/0, ... is the number of constituents

f dy n(0,y). We cannot say much more about consti-
tuent cross sections or numbers from Figs. 4 and
5 because we know a(y) only over a very limited
range of y and we do not know the overall normali-
zation factor which would get us from o, ,, for
hadrons to 0,.,,, for constituents.

Although c(y) is very small on Fig. 4, A*/3 can
be quite large (~1200 for Pb). It is typical in ex-
perimental papers to use Eq. (2) with only three
terms. Our d(y) was too small to plot, but did
contribute significantly to the Pb cross section.
We thus recommend carrying the series as far as
necessary. Since c¢,d,... all can be found from a
and b, one is not restricted to three functions by
having only three cross sections to fit.

IV. CONCLUSIONS

In conclusion, we suggest that data from different
A targets be analyzed either at fixed P, or inte-
grated over P, rather than at fixed angle. While
the analysis could be carried out in terms of x,
we have used y which has useful Lorentz proper-
ties. We further suggest that our Eqs. (10) and
(12) be used to fit low-p, data, keeping as many
terms as necessary depending on z/L. It would

T T T

6+ do

2
ay A aly)+ A b(y) + AV3 cly)
SH
/._.\a(y)
A N
4 . L

\,
‘\.
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cly) *e_o¢” b(y)
- 1 1 L
| 2 3
Ye

FIG. 5. The same three terms as ours in Fig. 4,
from Ref. 1, plotted vs v, for integrated p,. The
vertical scale is mb.



be interesting to compare the values of L and
Ay, .. for other reactions to the values L/L,=5.4
and Ay, . =0.91 for p+A - A°+X. We believe that
the model can be refined to apply to all reactions
by incorporating fragmentation functions, con-
stituent structure functions, quark masses, care-
ful consideration of energy-loss mechanisms, and
retaining the P, dependence.

Our main result is that the A dependence of high-
9, low-J, inclusive cross sections is well describ-
ed by simple multiple scattering of the beam con-
stituents from the target constituents. The model
gives a power series in A'/® and explains the fea-
tures of @ in the customary A* parametrization
of A dependence. Each term in the power series
represents one scattering. The physical picture
is consistent with current ideas on the structure
of hadrons and the interactions of quarks and
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gluons. It suggests that A dependence can be
used to investigate those interactions.
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