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We compute analytically the logarithmic corrections to the photon propagator to order g" in massless

quantum chromodynamics. With a, =g '/4m' defined by momentum-space subtraction, we find that
cr(e+e —+hadrons)/cr(e+e —+p, +p, ) = Xqcq (1+a, +Ka, '+ -), where

K = 463/48 + (85/36+3)C12(m/3) —11((3)+ f(2/3)g(3) —23/36]nf ———2.193 + 0.162nf for nf flavors of
quark. The computation is done in momentum space using a novel generalization to 4 —e dimensions of
the usual Chebyshev-polynomial expansion of Feynman propagators.

I. INTRODUCTION

One of the cleanest and most powerful probes of
the short-distance structure of hadrons is the vir-
tual photon produced by annihilation of an energet-
ic pair in colliding beams of electrons and posi-
trans. This process provides a plethora of mea-
surable inclusive cross sections and event shapes
that can be used to answer a variety of questions
ranging from the existence of new quark species
to the form of the fundamental quark-gluon inter-
action. In this paper we shall be concerned with
the total annihilation cross section.

There was early speculation' that the total cross
section for annihilation to hadrons should behave
like const/E, ' where E, =Ms is the total ener-
gy in the c.m. system. Predictions for the con-
stant of proportionality awaited the advent of the
parton model, ' according to which the cross sec-
tion should be pointlike at high energies and should
therefore simply measure the sum of the squares
of the electric charges &, of hadronic constituents. '
With the discovery of asymptotic freedom, ' it was
realized' that the naive parton-model result is an
exact prediction of quantum chromodynamics
(QCD) at very high energies, and that corrections
to this result are calculable in asymptotic pertur-
bation theory

o(e'e —hadrons) =
3~c.m.

x(1+n, +Kn, '+ ~ ~ ~ ),
where' n, (E, ) = g'/4~' is the QCD running cou-
pling constant and the sum runs over all colors and
flavors of quark. That the prediction (1) can be
absolutely normalized is a consequence of current
conservation. Measurements in the regions above
and below the J /g resonances have since con-
firmed the magnitude of this prediction. '

That the coefficient of n, in (1) is exactly 1 was
derived' soon after the discovery of asymptotic

freedom. In this paper we shall present an analy-
tical calculation of the coefficient K of e, '. New
and more accurate experimental data forthcoming
from PETRA and PEP will allow for more stri. n-
gent tests of these higher-order predictions, and
in particular serve to measure a, in regions be-
tween heavy -quark threshold s.

.The calculation of K is of interest for several
reasons. First, knowing K is necessary from an
experimental standpoint because it determines'
the overall scale of the effective coupling in this
process. Thus if we write

1

P, ln(Q/A) (n'(Q/A))

we see from Eq. (1) that changes in the strong-
interaction scale parameter A are effects of order
n, ', and thus A cannot be extracted from the data
unless K is known to be small.

From a theorist's point of view, the magnitude
of K can be used to choose between different def-
initions of the QCD coupling constant and to esti-
mate the reliability of perturbation theory. There
is in fact no universally agreed-upon definition of
u, . Having computed K, one could redefine the
expansion parameter in (1) as follows:

n = n'(1+C n'+ ~
)

and by suitably choosing C, make the coefficient
E'=E+C of n,'2 as small as one likes. The op-
timal definition of n, , however, is one that makes
higher-order corrections small in as many differ-
ent processes as possible. Thus one should com-
pare K with the next-to-leading-order coefficients
in deep-inelastic lepton-nucleon" and photon-pho-
ton scattering, " in lepton-pair production, "the
decay of heavy-quark systems, "etc. If there is
a definition of ot, which yields small coefficients
in several processes, one might hope that its use
will minimize higher uncalculated orders of per-
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turbation theory in general.
We now give our results for K obtained by using

three of the several definitions of 0', that have been
suggested in the literature. Using the so-called
minimal-subtraction scheme" we find that

K . =~—' —~~n& +~ [in(4x) —ye —4$(3)j365

of a four-dimensional momentum-space propaga-
tor in Chebyshev polynomials. " Simple formulas
are presented which enable one to apply this tech-
nique to concrete problems such as the present
one. We then analyze the diagrams involved and

present the results of the calculation.

= 7.359 —0.441 n~, (4)

II. THE PHOTON PROPAGATOR IN @CD

A. Relating QCD predictions to the data

K~='—,
", ——",, n& -2p, g(3) =1.986 —0.115 n&. (5)

We have proposed"' "using momentum-space
subtraction to define e, . Here, all radiative cor-
rections to one of the fundamental vertices of the
theory are absorbed into the running coupling con-
stant; one might expect a Priori that this will
yield small higher-order coefficients. " The rel-
evant vertex in this problem is the quark-gluon
vertex. Upon defining e, to be the strength of this
vertex" in the Landau gauge, we obtain

463 85 (~ & 23- =
48 '38~ C'l 2 l 38 "&

k )

= —2.193+0.162 n&, (8)

where

( ) g sin(n8)

ff j Pl

is Clausen's function" [Cl,(m/3) =1.014942 ].
As shown in Ref. 17, this result is not very sen-
sitive to the choice of the gauge or vertex used to
define n, .

The small values of KMS and Z, show that the
definitions of a, favored by calculations of next-
to-leading. -order terms in deep-inelastic scatter-
ing also yield small coefficients in e'e annihila-
tion. Further comments on the different defini. —

tions of n, and their experimental implications
will be relegated to the concluding section.

In Sec. II we review the formalism upon which
the calculation is based and straighten out what
we have to do to compute K. Section III describes
the calculation. In particular, we show how to
extend to¹4-~dimensions the usual expansion

where" po= -', (33 —2n&), ye=0. 5772 is Euler's
constant, g (3) = Q"„,(1/n') = 1.2021. , and we
have assumed SU(3) of color. We see that K
is uncomfortably large. Use of minimal subtrac-
tion also gives large coefficients in deep-inelastic
scattering. In fact, this observation led to the
proposal" of a modified minimal-subtraction (MS)
scheme in which the factor" ln(4~) —ye in (4) is
absorbed into the definition of n, . This yields

We work to lowest order in the electrodynamic
fine-structure constant n: An electron-positron
pair annihilates into a single photon which then
turns into a quark-antiquark pair. The subsequent
development of the system into the final hadronic
state is governed by QCD. The annihilation cross
section is given by the discontinuity of the photon
propagator

4~+
v( ee -hadrons)= —,ImD(-q'), (7)

where q'=Z, ' and D is defined by the relation

dx e" "(TA„(x')A „(0)&

=- D„.(q)

= —,(g» — ", "
lD( —q') + gauge term. (8)

A„ is the photon-field operator. To avoid possible
confusion, we emphasize that (7) holds only in the
one-photon approximation; there are other types
of contribution to the cross section in higher or-
ders of u. The relation (7) is usually expressed
in terms of the spectral' amplitude

g(2~)'5'(p„- q)(ol z„(0)ln &(nl &„(0)I&

= (q„qu —g»q') p(q')

of the hadron electromagnetic-current correlation
function as follows

8~'n'
o(e'e -hadrons)=, p(E,. ') .

c.m.
(10)

We like to think in terms of the photon propagator
(which to order n is simply proportional to the
current correlation function) for the following rea-
son: We shall compute D(-q') for spacelike q' and
then continue to the physical region rather than
use the direct formula (9) with perturbative quark
and gluon intermediate states; D, unlike p, has
ultraviolet divergences that are not canceled by
pure QCD counterterms, and the relation of these
divergences to charge renormalization is a little
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dD(Q') nQ' " dsR(s}
d lnQ' 3~,„2(s+ Q')'

where

o(e'e -hadrons)
o(e'e -p, 'p )

The rather striking qualitative agreement of the
naive prediction R= Q, e,' based on (1) with the
data indicates that one should be able to continue
QCD predictions from the spacelike region much
closer to the physical region. There have been
many proposals as to how this should be done; for
example, one of these" relates D(—s-ib, ) to a
smeared average of the data

ub. 1

" ds'R(s')
ImD(- s -ih) =-

3m &,„,(s' —s)'+ a' (12)

with 6=3 GeV'.
Whether one uses the simple formula (1}or more

rigorous relations such as (11) or (12), it is ob-
vious that one cannot neglect the masses of heavy
quarks at presently accessible energies. How-
ever, guarks with masses M,.'» ~Q'~ effectively
decouple from the theory. '4 Between thresholds,
the energy dependence of D(Q') should be sub-
stantially that of the massless theory with the
number of quark flavors given by the number of
quarks with masses M&'«~Q'j. We shall compute
the higher-order corrections to D(Q') assuming
massless quarks. The effects of quark masses to
lowest order in at, have been discussed in Ref. 25.

B. Divergences and renormalization

The function D(Q') defined in (8) is dimension-

clearer when one works with the photon propagator
rather than the current correlation function.

Strictly speaking, the use of Im D(- q') computed
in perturbation theory in formula (7) can hardly
be justified in spite of the striking agreement of
this naive prescription with the data in regions be-
tween heavy-quark thresholds. This is equivalent
to using perturbative intermediate states in (9)
which will inevitably produce threshold singular-
ities for q'& 0. Relating these singularities to
physical hadronic states is essentially a nonper-
turbative problem. One might hope, however, that
the singularities in the perturbative expansion due
to thresholds and bound-state formation are
smoothed out as one moves away from the real
axis. In particular, one should be able to use
asymptotic freedom to compute D(Q') for large
spacelike q'= -Q'«0 and then relate this calcula-
tion to the data via a dispersion relation"

less. Its Q' dependence in the massless theory
is therefore determined by the divergences of
perturbation theory. We shall continue the theory
to%=4 —& dimensions in order to regulate these
divergences which are then manifest as poles in e.
In this section we discuss the renormalization of
D(Q'), paying special attention to the dependence
of the final result on the definition of the QCD
coupling constant.

Let ~~ and n,~ be the bare electrodynamic and
ehromodynamic coupling constants, respectively. '
When computed in perturbation theory, the unre-
normalized photon propagator function D~(Q) takes
the form

D~(Q) =1+~g Q "'d„(c)n,s" '+O(ns'). (13)
n=l

Here Q= (Q')' '. The Q dependence follows purely
from dimensional analysis: 0.~ and a,~ have
dimensions (mass)' and Q is the only other dimen-
sionful quantity in the problem. d„(e) is the result
of computing n-loop Feynman diagrams and is
therefore of the form

(~) n. n + nin-1+ ~ + N 1 +d +O(e) (14)
cf

n ~n ~n-1 ng0

since each loop integration can in general contri-
bute a simple pole.

Now introduce dimensionless renormalized cou-
pling constants n, and n as follows:

n,s=Q,' n, [1 +( 5- P/~) u, +O(n, ')],

ns = Q,'u[1+O(u')].
(15)

Requiring n and a, to be dimensionless has forced
the introduction of an arbitrary mass scale Q, into
the theory p, = —', (11.C» —2'�)is the well known
lowest-order coefficient of the renormalization-
group p function. '" 5 is a finite constant whose
choice leads to different possible definitions of a, .
For u,s fixed, Q, and 5 are not independent: Re-
scaling Q, amounts to a shift in 5 as e-0. It is
also crucial to note that the radiative corrections
in the expansion of u~ in (15) are of order n and
not 0, This is a consequence of the electrody-
namic Ward identity which ensures that fermion
self-energy and vertex divergences cancel in
electric-charge renormalization. We shall see
that this implies that d„„=0 for n& 2. It has the
consequence that the parton-model result R
=g, e,' is not multiplicatively renormalized by

(u, )'"' ~'"'~ '"'""; the conserved electromagnetic
current scales with canonical dimension.

The renormalized photon propagator function is
. given by
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D(Q/Q„u, , u)

=lim Z
y~0

xDs(Q, n,s(Q„n, , n, e),as(Q„u, , o, , e), e) .
(16}

Now, strictly speaking, the photon wave-function
renormalization constant Z z should be chosen such
that D(0, n, , o.) = 1 in order that o. be the standard
electrodynamic fine-structure constant with the
experimentally measured value 1/137.036. It is
obviously impossible to subtract Ds(Q) at Q = 0,
however, because we have assumed the quarks
to be massless. We shall therefore use moment-
um-space subtraction, i.e., we shall define Z&
by subtracting D~ at Q=Q, so that

This yields a nonstandard definition of a. For
the purposes of this calculation, this is irrelevant
since the discrepancy contributes to the total
cross section in order u2. In principle, there
should be no difficulty in defining 0. in the standard
fashion because the photon propagator in QCD is
not singular at Q'= 0, the nearest singularity be-
ing a branch point at q'=4m, '.

Using the prescription (17}we have

d, =lim ii "+d, ,)=d. . .(d, ,.-0
b, ,= lim 2e ",'+ ''-+df, ,)=2d, „d, ,=0,

0 6 C

(20)
(d dd, = lim 3ml

' + '' + '' + ~ ~ )E

+2~ i
'+d(d p i

E~ "
E ~j

3d3 l 2 P 0 d2 0 + 2562

3 3 & 3s 2 3PO 2el

In general, all of the residues d„ for m&1 are
determined by the residues d i l of the simple
poles with n'&n. It is easy to see that d„„=0for
m) .1. We note that b, , and 62 are uniquely deter-
mined while b 3 is renormalization-prescription
dependent since it involves the constant 6.

Calling ln (Q/Q, )
=—t, the solution of (18) with

the initial condition (17) is

QD(e', u, , n) = 1 —— dt 'b, (o., (t'))+O(u'),
0

(21)

Im oo

=lim 1+~ g (Q
"' -Q, "')id„(e)u,~" '

&~0 ~ n=l

+O(o.~') (18)

d

dlnQ0 Qo
' '' )

To perform the summation of dominant powers
of ln(Q/Qo) for Q-~ in (18), one solves the re-
noxmalization-group equation gotten by differ-
entiating (18) with respect to Q„holding Q, n~,
e,» and e fixed:

where a, (t), the invariant charge or running cou-
pling constant, is the solution of the differential
equation

df
n, (t ) = p(n, (t )), a, (0) = n,

d

P(CKd ) = POQ P|(X —~ ~ ~

(22)

where" p, =, [17 C»' —(3C»+ 5C»)nz ]. The sol-
ution (21) is easily verified using the fact that the
invariant charge does not depend on Q, :

d df dn, (t) dn,
dlnQ

n (t)=
dt

n (f)+-dri din'Q
=0

(23)

=lim sQ nod„(e)Q, "'n,~" '
~~0 n=l

+O (n~')

In the asymptotic region u, «1, Eg. (21) can be
integrated using (22)

D(e', e, , n)

= —b. (n, ) +O (n'),Qf.

b, (n, )=Q a„n, " '.
n=l

(19)
= 1+— —tb i+~ inl

n b. t'u. (f)
n, ' p, & n,

+i ~ — ' ' i[a (f) -n ]+ ~ ~ ~
(a ap, )
k po po'

Using Eels. (14), (15), and (19) and the fact that
the 4„are finite in the limit z -0, we have +O(u') . (24)
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The quantity of physical interest is

d Q
dlnQ Q,

' '' )

Using the naive analytic continuation Q = e "~'E,
to the physical region and assuming" that u,
«n. /2P„we obtain

IrnD —,n, , e

whence K= 6,/n,

III. THE CALCULATION

A. Feynman diagrams to be computed

The asymptotic behavior of D(Q) is determined
by the. function b, . From Eq. (20) we see that the

quantities d, „d, „d, „p„6and d» deter~ice
6 through order a, '.

~ is determined by the logarithmically diver-
gent piece of the one-loop diagram in Fig. 1. It
was first computed by Schwinger" who solved the
tricky problem of maintaining gauge invariance.
Including a trivial group-theoretic factor we have

(27)

~, o= ~]' C,~ -4-', +0 3 +—' y~-ln 4~ . 29

The p-function coefficient p, is, of course, well
known. The finite renormalization coefficients 6

for various renormalization schemes are listed in
Table I; these values are taken from Ref. 17 and

reproduced here for the convenience of the reader.
This leaves the constant d, , which is the sum of
the residues of the simple poles in the diagrams of-

Fig. 3. A part of d, , has been computed by Ros-
ner. " He obtained the coefficient of lnQ in the
sum of the diagrams in Figs. 3(b) and 3(c) in
electrodynamics. This coefficient is, in fact, in-
dependent of renormalization prescription and
regularization procedure" because the electro-
dynamic Ward identity ensures that all subdiver-
gences cancel. To use Rosner's result we note
that the difference between QCD and QED, as far
as the diagrams of Figs. 3(b) and 3(c) are con-
cerned, is a trivial multiplicative group-theoretic
factor: The QED diagrams corresponding to the
uncrossed gluon diagrams of Fig. 3(b) are multi-
plied by

C2~ C2~C2~ 2

to obtain the corresponding QCD results. The
pure QCD diagrams of Fig. 3(a) have. group-theo-
retic weight C»C» while the diagrams of Fig. 3(d)
have weight C»n&. Thus if we decompose d, , as
follows:

The sum is taken over all flavors and colors of
quark s.

The residue d, , of the pole in the diagrams of
Fig. 2 is likewise obtainable from the calculation
of Jost and I uttinger":

(23)

The finite part d, , of the two-loop diagrams can
in principle be extracted from the calculation of
the photon propagator through order n' in QED
(see Kallen and Sabry, Ref. 30) if one allows for
the fact that this coefficient depends on how the
electron mass is renormalized. In practice, it is
not difficult to compute d, , directly using dimen-
sional regularization; we obta. in

(30)

a, =, (Rosner),

& ='—'l(3) -',—"+',(r —ln4 ),
a, = -al(3)+',—', —,(ys —ln4~) .

(31)

we see that a, is given by Rosner's calculation.
To determine a, we need to compute the diagrams
of Fig. 3(a) and those of either Fig. 3(b) or Fig.
3(c). We choose to compute the diagrams of Fig.
3(b) because diagram D is special in that if re-
quires an extension of the methods developed in
this paper as we shall explain later. We find that

Al A2 BI

FIG. l. One-loop diagram whose pole part gives the
coefficient d& &. See Eq. (27).

FIG. 2. Second-order @CD corrections to Fig. 1 de-
termine d2 &

and d2 0. See Eqs. (28) and (29).
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TABLE I. Summary of finite renormalization constants 6 [see Eq. (15)]. $ is the covariant gauge parameter: $ =0
for Landau gauge and ( = 1 for Feynman gauge. &= (4/4 3)C12(m'/3).

Reno rmalization scheme

Minimal subtraction (MS)
(Ref. 14)

MS
(Ref. 10)

MS'
(Ref. 16)

Momentum-
space
subtraction
Ref. 17

Three-gluon
vertex

Quark-
gluon
vertex

Ghost-
gluon
vertex

0

~MS
2

+ g ——+—+ (2 ———=+n —+—11 238 9 98 2 3 8 2&

2 48 16 16 8 8 16 3 9

89 85& 25 25~ 2 3 & 5ny
DMS-—+ +g ——+—+g ———+16 144 24 36 16 16 18

205 Q 9 &
2 3 & 5'

~MS +( + + ( + +48 32 8 4 16 32 18

A6

82

84

85

(c)

C2

B. Gegenbauer expansion in 4- c dimensions

To compute the Feynman diagrams of Figs. 2
and 3 we will use a generalization of the well
known Chebyshev-polynomial expansion of propa-
gator denominators to 4 —e dimensions working
directly in momentum space. This expansion is
very different from the position-space formalism
that has recently been suggested, "but it is just
as practical and easy to work with as our calcula-
tion will demonstrate. In this section we will pre-
sent the general formulas involved in a form suit-
able for practical application.

Consider the denominator

(k -T)'=k'+1' —2kl k. l (32)

of the propagator of a massless particle with mo-
mentum k -T. k and T are vectors in%-dimension-
al Euclideaxr space; &—= (k')' ' and & l is the co-
sine of the angle between k and f. Since the
Gegenbauer polynomials'4 C „"(5~ l ), n = 0, 1, 2, . . . ,» ——,

' form a complete set on the interval (-1,1),
an expansion of the type

(33)

A7

FIG. 3. Diagrams contributing to the vacuum pol-
arization in fourth order. Diagrams in the first,
second, and third columns involve essentially one-,
two-, and three-loop calculations. Diagrams in (a)
are peculiar to QCD while those in (b)-(d) arise also in
QED. The simple pole parts of these diagrams deter-
mine d3 &

in Eq. (30): {b) and (c) contribute to a~, {a)
and (c) to a2, and (d) to a3.

can be made. The C „can be generated from C,"
—= 1 using the following recursion formula":

+ (1 —5„0)(n+ 2& —1)C„~(t) . (34)

Familiar special cases of these polynomials are
the Legendre polynomials (&=-', ) and the Chebyshev
polynomials (A. = 1) which have useful orthogonality
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properties in 3 and 4 dimensions, respectively.
We shall choose the index ~ so that the C„" are
orthogonal on the N-dimensional sphere. From the
orthogonality relation"

(f8(sin8)2"C„(cos8)C (cos8)

where

d„k=-k" '4k' k

2~ N/2

Is(f(//2) lV '

(37)

2' ' I (n, + 2&)
" "~!(n+ ~)[rp)]

it follows that if we choose &= 2N ——1 = 1 —e/2,
then

d~kC~ k l C~ I

A,Itn + 2A.}
n! (n + d(.)I'(2A. )

(36)

Equation (36) is most easily derived from Eq. (35)
by choosing the z axis in the direction / in analogy
with spherical polar coordinates in 3 dimensions;
one then has

J/d„k=fd„, k I (sin(k'()]" 'd(nns 'k ))
~ 7I

Using the addition theorem"

I'(2A. —1) ~ „ I"(n —m+ 1)[I"(&+ m)] '
('os&'"' '""&""'""}=[1(J)] ~ I( 2J)

x(2m+2& -1)(sing, sin8, )"C1' (cosg, )C„'„(cos8,) C' '/'(cos8, }

(36)

for Gegenbauer polynomials, one obtains the very
useful convolution formula

solutions of Eq. (40}.] The relation can be de-
rived from the expansion"

dEkcx - l Cx k q =6„.B„Cx l q, 39 i x2212[ ln(y)]2(z2 I))i-1/2
8 —t

(n+ &)I'(n+ I)
I'(n+ 2A.)

(41)

This formula is easily derived by choosing a co-
ordinate system such that l = (1,f„,), Pj=(cosg„
sing„(}„2), !2=(cos8„sin8,cos8„&„2)and

t

Jl d„k= d„,k J (sink)" 'dd, f (sink, )" 'dd, .

For our purposes it is more convenient to express
the f„(k, l ) in terms of hypergeometric functions
whose properties are better known. Using Eq.
(41) and the relation"

r(n+ 2J(.)
D (z) 8 [z + (z 1) ]

It turns out that the formulas (34), (36), and (39)
suffice to perform all the angular integrations we

shall encounter in this problem.
It remains to specify the functions f„(k, l ) in

Eq. (33). They are, in fact, related to the Gegen-
bauer functions of the second kind D~(z) which

are the solutions of the differential equation

z (z 2 1)1/2
& 2E~ ~, n+2&; n+X+ 1;

(42)

d'
(z' —1),+ (2)2+ 1)z —-n(n+ 2A.) D„(z)=0

(40)

that are irregular at the singular points z = +1.
[ The Gegenbauer polynomials are the regular

FIG. 4. The "Mercedes-Benz" diagram Cl showing
a "planar" choice of momentum routings. The external
momentum q is held fixed. It is easily seen that each
propagator involves at most two momenta.
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we obtain an expansion of G„ in powers of &. Thus in the
present calculation, we have found it sufficient to
know

k', if k&l,
(b~)) =

l', ifl&k,
(43)

(i) G„(0) to order c2 for n~ 3,

(ii) —G„(x)~„,to order e2 for n ~ 1,

(iii) G„(x) to order e for n ~ 3.

x 2E, (A, n+ 2.X; n+X+1; x),

where the hypergeometric function, E, has the
series expansion

2E,(a, b; c;x) = (a)„(b)„ x"
(c)„n!'

(a), = 1,

(a)„=a(a+1)(a+2)~ ~ (a+n —1), n& 1 .
(44)

The derivatives of G„(x) at x = 0 can be written
down immediately for arbitrary & using the formu-
la

d" (a)„(b)„
dxsl 2 1( l P lx) /

x =p term

With a little more effort (see Appendix A), one
obtains the following very simple formula for the
complete x dependence of G„ through order e:

G„(x)=1+- (1-5„,,)g ~

—.
&1

ie j=1

1
+ (n+1)Q . , +0(e2) .

g (n+J+ 1

(45)

We note that for N = 4 (i.e., ) = 1), G„=1 and we
recover the standard Chebyshev expansion of the
propagator.

In practice, one only needs the first few terms in

In order to estimate the convergence of various
radial integrals encountered in this calculation, it
is sufficient to know (see Appendix A) that G„(x) is
analytic for lxl + 1 and that for x-1,

G (.) =(.,~)
r(2X-1)r("'1), r(')r(1 2X)(1- )' "O((1- )'-') .r(n+ 2X) r(1 —X)

(46)

In order to compute a diagram such as Fig. 3(a) 82, it is useful to have an expansion for [(k -T) 2)"'~2
which is the behavior of a one-loop corrected propagator carrying momentum k -T in the massless theory;
such an expansion is worked out in Appendix A.

As an example of the use of these formulas, we evaluate the quadratically divergent integral

J
d k = J| b 'dk Jt d„a „Q x„," G„(g„')C„'(& j)

t oo G 2)
=f1 A, 122 'd!20 „(bq) (4V)

We have used the orthogonality relation (36) to evaluate the angular integral. The radial integral splits
into two parts corresponding to q& k and q& k:

1
=q' '

' dFF' 'G (Y2) ~ dXX '+'G (X')
hs p 0

(48)
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where we have let k = q Y in the first integral and
k = q/X in the second. Since G,(z) ™const as z - 1
for &=0, the ~ integral is convergent and can be
evaluated at & =0. The X integral converges at the
lower limit X =0 (i.e. , k=~) only if &&2-. How-
ever, if we make the analytic continuation to
e & 2, the integral (47) becomes infrared divergent
at k=q (i.e. , X= Y= 1); indeed, G,(z)-(1 -z)' '
for & & 2. It is in fact we11. known" that the inte-
gral (47) cannot be evaluated consistently by naive
dimensional continuation. This integral is there-
fore set equal to zero by fiat —a regularization
prescription that is consistent with the Ward iden-
tities. Within the Gegenbauer expansion -formal-
ism, this prescription can be implemented by
using the following rule: Assume that 0& e &1 and

simply discard the divergent contribution at the
k = ~ limit of integration [i.e., at X = 0 in Eq. (48),
for example]. Thus, if e & 1 we can use the ex-
pansion (45) in Eq. (48) to obtain

q' '
J dYY'+ J dXX "' (1+ 0(c)

0 0 4

(49)

It can be shown that this prescription sets the
quadratically divergent integral (47) to zero to
all orders in &.

The diagrams in Figs. 1, 2, and 3 are all po-
tentially quadratically divergent, although, of
course, gauge invariance requires that these
divergences cancel among themselves. In the
present calculation, these divergences will all
be manifest as simple one-dimensional integrals
such as the X integral in Eq. (48); we use the
prescription given above, namely discard con-
tributions at X =0 to regulate these divergences
consistently throughout the calculation.

gences that were the bane of previous calculations
of the vacuum polarization are, as shown in the
previous subsection, trivial to deal with when one
uses dimensional regularization. Accordingly, we
find we can compute D(Q) directly rather than
having to differentiate with respect to Q in order
to eliminate the quadratic divergences.

To simplify numerators as much as possible we
use the transversality of the photon propagator
[see Eq. (8)]:

(50)

The factor in brackets receives contributions
from the diagrams of Figs. 1, 2, and 3, with the
external lines amputated and the polarization in-
dices p, and v contracted together. " Since the
electrodynamic current is conserved and a color
singlet, D(Q) is invariant under general eolor-
gauge transformations. Dimensional regulariza-
tion respects this gauge invariance. We choose to
do the calculation in the Feynman gauge.

In order to use the Gegenbauer-expansion for-
malism, it must be possible to choose loop mo-
menta and a routing of the external momentum
through the diagram such that every propagator
denominator has one of two forms: k,.' or (k,
-k,. )', where {k,.) is the set consisting of the loop
momenta and the external momentum. It is easy
to see that it is always possible to do so if the
diagram gotten by joining together the two exter-
nal photon lines is topologically planar. " All the
diagrams of Figs. 1, 2, and 3, with the exception
of Fig. 3(c)D satisfy this criterion. As an exam-
ple, Fig. 4 shows a "planar" choice of momentum
routings for the "Mercedes-Benz" diagram and
makes the above assertion about planarity intui-
tively obvious. The corresponding Feynman inte-
gral is

d„k d„f d„p (numerator trace}
k'l' '(k -T)'(k — )'(r-p)'(k -q)'(T-q)'

C. Application of the Gegenbauer-expansion technique

our calculationa1 technique has three novel
aspects when compared with previous calcula-
tions of the vacuum polarization. "' "'" First,
we use the Gegenbauer expansion of propagator
denominators described in the previous subsection
working directly in momentum space and in 4 —~

di.mensions. This formalism we believe is new.
Second, we use the external momentum as an in-
frared cutoff and so we never have to introduce a
mass into any propagator to regulate infrared di-
vergences. Third, the spurious quadratic diver-

The five denominators which involve differences
of two momenta can be expanded in Gegenbauer
polynomials. Because the Lorentz indices of the
photon have been contracted, the numerator is a
polynomial in the dot products of k, T, p, and q.
The direction cosines in the numerator can be re-
duced to Gegenbauer polynomials using Eq. (34).
Thus the seemingly complicated integral (51) is,
in principle, not more complicated than the sim-
ple one-loop example discussed in the previous
subsection: The angular integrands are products
of Gegenbauer polynomials and the radial inte-
grands are polynomials in 4, l, and P. In prac-
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tice, the integrals are difficult to compute simply
because of the large number of terms involved;
for example, the numerator trace in (51) consists
of 133 terms.

There are a few technical details which are best
discussed by dividing the diagrams into four
clasles+

Class A: Biagrams A2, AZ, A3, A4, A5, Ag;
and A7. It is obvious that these diagrams can be
viewed as a succession of one-l. oop propagator in-
sertions in one-loop propagator diagrams. They
are therefore completely trivial to compute in the
massless theory.

Class B: Diagrams Bl, B2, 83, B4, B5, and
BG. Diagram 81 is really a two-loop diagram be-
cause the one-loop vertex insertion is sufficiently
complicated that it is of no great advantage to
compute it first and then insert the result in the
one-loop diagram of Fig. 1. Diagrams 82, 84,
and 86 are essentially two-loop diagrams with
one-loop propagator insertions in one of the in-
ternallines. Now, since thebare coupling constant
n, ~ has dimensions (mass)', a one-loop gluon-
propagator insertion is necessarily of the form

i ( kUk„'t ~,~ (a——,/g „—', "f;
(

—+&+ca+ ~

k' ( &" k' ] k' («
(52)

while a dressed quark propagator is of the form

iti o.,~ a'—+ 5'+ c'e+ (53)

ikn ' (a" b"
(
~+—+c"+ ~ ~ f.E««] (54)

The remaining one-loop calculation is trivial.
Thus the diagrams of class 8 essentially in-

volve the calculation of two-loop diagrams through
order" «'. Each of these diagrams has three

The transversality of the gluon propagator follows
from gauge invariance, and the electrodynamic
Ward identity further allows us to drop the k&k„
term in (52) when it is inserted, for example, into
the sum of diagrams B1 and A2. In diagram 84
one can choose momentum routings so that the dres-
sed quark propagator carries a single momentum
variable. Indiagrams 82 and B6by contrast, the
dressed gluon must carry two momenta for any
"planar" routing of variables. In order to treat the
dressed gluon as an insertion in a two-loop diagram,
one needs the expansion of a denominator of the form
[ I/(k —I )']"' ~'. In Appendix A we use a simple
trick to derive such an expansion. Diagrams B3 and
B5 are best treated by computing the two-loop guark-
propagator insertions first; these are of the form

propagator denominators which must be expanded
in Gegenbauer polynomials. The two angular in-
tegrations reduce the three infinite series so ob-
tained to one. The radial integrations are then
straightforward. The 1/e' and 1/e pieces of the
two-loop diagrams arise only from the first few
terms of this series; being integrals of simple
powers of momenta, the residues are rational
numbers. The terms of order «' can involve an
infinite series of the form

OO 1
n+a n+b n+c '

with a, b, and c positive integers. Using a par-
tial-fraction decomposition, these sums can be
expressed in terms of the transcendental numbers
f(2) =Q„",1/n'= m'/6 and g(3) =Q"„,1jn'. The re-
markable fact is that if one factors 0„'=[2w"~'/
I'(N/2)]' out of these two-loop diagrams then the
residuum is free of g(2). In fact, the same is
true of all the three-loop diagrams: The pole part
of any of the Feynman integrals divided by
Q~'(na/~) n.~' is free of the transcendental num-
bers w, y~, and f(2) which appear in various inter-
mediate stages of the calculation —it is given en-
tirely in terms of rational numbers and the one
transcendental number" g(3).

The numerators of the two-loop parts of class
8 diagrams involve typically on the order of ten
terms. Each of these is a propagator diagram in-
volving three momenta, two loop and one external,
which can be ordered in 3~ different ways. Thus
there are six regions of integration in the radial
variables, but symmetry considerations can
usually be invoked to reduce this number to three.
Diagrams 81, 82, and 86 were computed by hand.
Nevertheless, this calculation was of sufficient
complexity that it was decided to use the compu-
ter program MAcsYMA to compute all the diagrams
of this class. It was found that all of these dia-
grams could be reduced to the calculation of 28
integrals. Appendix 8 contains a table -of these
integrals.

Class C: Diagrams C2, CZ, and C3. These are
essentially three-loop calculations. We need only
the pole parts of these diagrams: It turns out
that « ', « ', and « ' parts of these diagrams in-
volve much the same types of radial integrations
as the « ', « ', and «' parts, respectively, of the
two-loop subdiagrams of class B. The principal
differences between classes 8 and C are the fol-
lowing: First, the angular integrations are more
complicated in class C and the radial and angular
integrations cannot be performed in arbitrary or-
der; and second, there is an enormous prolifera-
tion of the number of numerator terms in the class
C diagrams.
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There are three reasons for the large number of
terms involved in computing these diagrams.
First, the numerator traces are complicated, con-
sisting of on the order of fifty different types of
terms. Second, each of the numerator terms is
a product of up to three direction cosines; use of
the recursion relation (34) to reduce these cosines
to Gegenbauer polynomials increases the number
of terms by a factor of 2 for each direction co-
sine. Third, there are four momenta in the prob-
lem and therefore 4! regions of radia, l integra-
tion. Actually, power counting shows that only 12
of these regions contribute pole terms for dia-
grams C1 and C3 and 16 for diagram C2; sym-
metries reduce these numbers to 6 and 8, respec-
tively. It is clearly not practical to evaluate the
integrals term by term and region by region as
was done with the diagrams of class B. The cal-
culation was done region by region, integrating all
terms simultaneously in each region using the al-
gebraic-manipulation program SCHGONSCHIP.

(Problems with speed and memory space caused
us to abandon an attempt to use MACSYMA for this

dkC„k l C„k P C„k q (56)

for which there appears to exist no simple closed
form. The numerator, however, certainly con-
tains powers of p q. On expanding these powers
in Gegenbauer polynomials, one would be faced
with integrals such as (56) in the P as well as the

phase of the calculation. )
We now discuss the problem, referred to above,

concerning the order in which the radial and angu-
lar integrals are to be evaluated. Let us consider
the "Benz" diagram of Fig. 4, i.e., the Feynman
integral (51). There are five denominators to be
expanded in Gegenbauer polynomials. Because the
denominators do not involve P q, the angular in-
tegrations could, if one ignored the numerator,
be performed in the order fdp followed by Jdk
or Jdl using Eqs. (39) and (36). Note that one
would not be able to do the k or l integrations be-
fore the P integration because one would encounter
integrals of three Gegenbauer polynomials such
as

TABLE II. Values of the Feynman integrals corresponding to the diagrams of Fig. 3, and

partial sums for Figs. 3(a)-3(d). To obtain the contribution to D&{Q) add the numbers in the
last four columns multiplied by the factor at the head of the column, and then multiply by an
overall factor of

4 3
2 +g 2 ~N(2&)

~f GS'~™c9 N04 (2x)

Diagram
Group

weight GI 3 2

Coefficient of
1 &(3)

A3 &

B2
B3

{a) r
A4
A5
A6
i14

2

(b)

B5
C3

(c)

A7
36

(d)

(a) --,(c)

(b) + (c)

C2~ C~

C)y 2

C~ C2~
2&

C2~ng

C2z C2~

C2 2

5/54
-5/54

1/6
-1/6

-1/18
-1/9
-1/18

1/3
-1/9

1/9
-1/9

-1/27
1/27

187/648
-277/648

11/24
-17/24

-7/18

-25/216
-11/54
-11/108

37/36
-95/216

1/6

19/108
-49/108

1/9

-1/6
-35/324

53/324

1/18

-11/36

5335/7776
-11851/77,76

343/288
-727/288

-469/216

-757/2592
-157/324
-83/324

1441/432
-3971/2592

37/48

607/1296
-1465/1296

-19/216

-3/4
-1007/3888

2267/3888

35/108

-97/54

1/48

5/6
-1/6

5/3

7/3

4/3
-1/3

-1/3
11/6



21 FOURTH-ORDER QUANTUM-CHROMODYNAMIC CONTRIBUTIONS. . . 3123

k and l variables. However, the residues of the
poles are independent of the external momentum
and hence really only involve the three loop mo-
menta, which would lead one to suspect that there
should be a way to avoid having to evaluate inte-
grals such as (56). The solution to this problem is
to evaluate the radial integrals before the angular
integrals. It was found empirically that it was
only necessary to evaluate one of the radial inte-
grals, appropriately chosen, and then discard
terms which could not contribute to the residues
of the poles. This forced at least one of the in-
dices n„n„n, in integrals such as (56) to zero.
Since C, =1, the angular integrals could then be
evaluated.

Class D. Diagram D is the lone member of this
class and the only diagram we have not computed.
It is easily seen that this diagram is not planar
when the external lines are joined together. It is
also easy to convince oneself that at least one
propagator must carry three momenta. There are
two possible ways of dealing with this problem:
(a) Since the pole part of the sum of all diagrams
is independent of q, one should be able to set q to
zero after differentiating twice with respect to q
to get rid of an overall factor of q'. One would
then have to introduce an infrared cutoff such as
a mass in one or more of the propagators in in-
termediate stages of the calculation. (b) In the
spirit of the rest of this calculation one could con-
tinue to use the external momentum as an infrared
cutoff as follows. The offending propagator is ex-
panded to

1 I 2(p-f) q
(p -k -q)' (p -k)'+q' [(p -k)'+q'P

4[(p-k) ~I]'
'[(p-ka'. 'i '".

Power counting shows that the integral is infrared
finite term by term, and that the expansion (57)
can be terminated at the third term to obtain the
pole parts of the diagram. One would then have to
expand the denominators in (57) in Gegenbauer
polynomials C~(p k). Such expansions are in

/

principle straightforward to derive using Eqs. (4],)-
and (42). The q' in (57) acts very much like a
mass. In view of the existence of Rosner's well-
known result from which the contribution of some
of the QED diagrams can readily be obtained as
explained in Sec. III A, we have not actually car-
ried out this suggestion.

Table II lists our results for the Dole parts of
the three-loop diagrams of Fig. 3.

IV. CONCLUSIONS

We have presented an analytical calculation
of the fourth-order QCD contributions to the pro-
cess e'e -hadrons. The calculation was done
using a novel extension of the Gegenbauer-expan-
sion technique to 4-c dimensions in momentum
space.

The implications of this calculation for phe-
nomenology are as follows. The parton model
predicts scaling for processes such as e'e -had-
rons. Perturbative QCD corrections computed to
lowest order in o, ,(Q) predict logarithmic correc-
tions to the parton-model result. More precisely,
they predict the Q dependence of scaling viola-
tions. The next-to-leading-order QCD correc-
tions then determine the scale A of the effective
coupling constant and thus the overall magnitude
of this Q dependence.

In order for the next-to-leading-order correc-
tions to have any predictive content, one must
compare two or more processes. This is simply
because the dominant effect of these corrections
is to determine A. Any one process can be chosen
to serve as a measurement of A; one then obtains
absolute predictions for every other process.

The coefficients in next-to-leading order are
renormalization-prescription dependent. Since
an a, = 0.1 rather marginally satisfies the require-
ments of a reliable expansion parameter, ' one
must be careful to renormalize the theory in a
way which optimizes the convergence of the per-
turbation series. Strictly speaking, this can only
be done if one could estimate higher unca. lculated

TABLE III. Magnitude of perturbative massless-Qt D corrections to the parton-model re-
sult R=Z, s for typical values of q =Ms and n&. The running coupling constant has been
computed using Eq. (58') with A = 0.85 GeV for the momentum-space subtraction (mom) scheme
and A= 0.5 GeV for the MS scheme.

@CD
effect

Renormalization
scheme /=3; ny

——3 5; ny -—4 Q = 20; n& = 5 Q = 40; n& = 6

~c +&ac~

mom
MS

mom
MS

0.125
0.089

0.098
0.102

0.100
0.079

0.084
0.088

0.067
0.058

0.061
0.063

0.064
0.057

0.059
0.061
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orders in perturbation theory. In practice, one
can choose a definition of n, which makes the cal-
culated next-to-leading-order coefficients small
in a number of processes.

The magnitude of the next-to-leading-order co-
efficient E in e'e annihilation in a modified min-
imal-subtraction (MS) scheme and in a momen-
tum-space subtraction scheme are given in Eqs.
(5) and (6), respectively. These schemes have
been shown to give higher-order coefficients of
reasonable size in other processes"; the fact that
K, is small (e.g. , K, =-1.545 for n&=4) sup-
ports the conjecture" that defining n, by momen-
tum-space subtraction will minimize higher-or-
der corrections in general.

To obtain a prediction for the magnitude of
higher-order correction terms, one must specify
A, which determines n, through the order in which
we are interested via the formula

1 P, ln ln(Q'/A')
I801n(Q/A) P o ln (Q/A)

(58)

gotten by integrating Eq. (22), with the constant of
integration being fixed by convention"" such
that (58) contains no additional term of the form
const/ln'(Q/A). At present, the best estimates of
A come from deep-inelastic scattering data. " If
one uses the MS scheme, one obtains a value of

AMS =-0.5 GeV; momentum-space subtraction fav-
ors a larger value of A, =—0.85 GeV and hence a
slightly larger coupling constant. In Table III we
list values of n, (Q) and (o.,+ Ka.,') for typical val-
ues of Q and nI. The sum of leading- and next-to-
leading-order corrections is practically identical
in the two schemes: The fact that A, is larger
than A» is compensated for by the fact that Kmpfp

is negative.
In conclusion, we note that it will be possible in

the near future to use e e annihilation cross-sec-
tion measurements to determirie A as more accu-
rate data become available from experiments at
PETRA and PEP. The small size of the next-to-
leading-order corrections (-15% relative to the
leading order) indicates that the perturbative as-
pects of @CD predictions for this process are re-
liably under control in regions of Q' where mass
and threshold effects are not important.

During the course of this calculation we learned
that Dine and Sapirstein" have computed E nu-
merically. Our results agree with theirs to within
their stated computational errors on the final re-
sult as well as on transverse subsets of dia-
grams. "'" Our calculation was substantially com-
plete when we became aware of an independent
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num(+g, +2) b3

(a) I(num(k, ,k, ) )= —,+—+ bs
bg b2

(k, k, )(k, q) 1/16 17/64

(k& q)(k2'q) 0 1/16

(k, k2)' O 3/32

(k, .k, )q' 0 1/4

4, '(k, .q) 1/4 7/16

0 0

k 2q2 1/2

(k, - q)' 1/8

147/256

9/64+ 3$(3)/8

29/128

5/8

49/64

3/4

7/32

5/4

49/128+ 3 &(3)/8

(b) I(num(k&, k~)~k&-k2~ ')=q '(—,+—+b3)

(kg ' k 2) (kg ' q) 1/48 31/192 ' 425/768

(k, q) (k, .q) 0 1/24 7/48+ 3P(3)/8

(ki kt) 0 1/16 11/48

(k, k, )q' 0 1/6 2/3

&&'(k2. q) 1/12 1/4 31/48

0 0 0

2 q2 1

(k~ q)'

1/6 5/12

1/24 ll/96 113/384+ 3K(3)/8

(c) I(num(k&, k2)k& ')= q
' —+—+ b3)

b2

(k, .k, ) (k, q) 1/48 31/192 123/256

(k~. k2) (k2 q) 1/24 3/16 25/48

(k, .q) (k2- q) 0 1/24

(k( k2)2 0 1/24

(k, k, )q2 0 1/6

~~'(k2 q) 1/12 1/4

&2'(k$ q) 1/6 1/3 17/24

0( k2 0 -1/12
k&2q2 1/6 5/12 1

2q2 1/3 2/3

(k~ q)' 1/24 11/96

(k2 q)' 1/12 3/16

1/8+ 31'(3)/8

5/48

7/12

29/48

-7/24

17/12

113/384 + 3&(3)/8

5/12+ 3&(3)/8
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somewhat different techniques. These authors
quote a final result which agrees with our Eq. (4).
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APPENDIX A

In this appendix we will derive Eqs. (45) and
(46) and obtain an expansion for [(k- gl'] ' '~'.

If one substitutes the expansion of the hyper-
geometric function given in Eq. (44) in Eq. (43),
one obtains by straightforward differentiation

g(n) = y(1) + —., n ~ 2
1

~=1 2
(A3)

to simplify (A2) and (A1).
The asymptotic form (46) for G„(x) in the limit

x-1 is obtained most easily by using the linear
transformation formula"

,E,(a, b; c;x)

r(c)1(c-a- b)
(c a)~(c b)

2El(a, b; a+ b —c+ 1;1 —x)

(I ). . .I"(c)r(a+b- c)
r (a)l'(b)

x,+,(c —a, c —b; c —a —b+ 1;1 —x) (A4)

which is valid for
~
arg(1 —x)

~
& n, in conjunction

with the series expansion (44). It is useful to keep
in mind that the expansion (44) is absolutely con-
vergent for ~x~ &1.

We shall now derive an expansion in Gegen-
bauer polynomials for

d—Gn

1 d=-——6
O 2',

1= t!I(n+ 2) — —ln(1 —x)2(n+ I)

(1 —2zt+z'

where z-=z„, and t=k I [see Eq. (43)]. Let

(A5)

Q x [g(m+1)+g(n+m+2)].
m=0

(Al)

(1 —2zt+z') " = Q z"II„(z';p)C~(t).
n=0

(A6)

That JI„ is a function of z' follows from the fact
that C~(-t) = (-)"C„(t). We obviously have

Here g(x) —= (d/dx) Inl'(x). The last term can be re-
arranged as follows:

a„(z';1)= G„(z'),

and using the fact that

(A7)

(1 —x) Q x™[y(m+1)+y(n+m+2)]
m=0

=
|jt (1)+ y(n+ 2) + Q x [y(m+ 1) —y(m)

+g(n+m+2) —g(n+m+I)]. (A2)

(1 —2zt+z')-~ = g z "C„'(t)
n=0

(As)

is a generating function for the Gegenbauer poly-
nomials, ' we have

Equation (45) then follows if one uses the formu-
la48

e„(z';X)=1.
Use of Rodrigues's formula'

(A 9)

2" I 2A I' A, dC~( ) = (-)"— ( ' ' ' (1 —t2)~t2 ~ ('I —P)"+~-~t2
n! I'(Z)r (2m+ 2Z) dt"

and the orthogonality relation (36), yields the following integral representation for H„:

(A10)

n! (n+~) [I'(~)]' t", (1 —t')'-'t'C„'(t)
z"v2' ''r(n+2X) ", (1 —2zt+z')"
2'" '~ ' I'(y)1'(n+y+ I)1'(p, +n) ' (1. —tz)"+~ '&'

CPr(2n+2X)r(p), (1-2zt+z')"'" '

Using (A11), it is simple to show that

(A11)
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I'(A) I (p, +n)
r(g) I'(Z+n) 'd, p, -A l I'(X) I'(p, +n+1)

dz' " '~, , n+1+ A. )~r(p) I (Z+n)

Now let us assume that p- A. = O(e) and expand the first equality of (A11) about p, =X:

)
2 t d (1 t ) C (i') In(l 2zt+z )

(A12)

(A13)

d 2 d
Jf„(z'; 1+—e /2) = 2—G„(z')

tR p dE ",
~ p

(A14)

The formulas (A12) and (A14) suffice to deal with

the class B diagrams B2 and B6 as discussed in
the text.

APPENDIX B: TWO-LOOP INTEGRALS

Class A and B diagrams are A1-A 7 and 81-B6
(see Figs. 1-3). Diagrams such as B3 are com-
puted by first calculating the two-loop insertions
on the quark line and then making the insertion in
the one-loop diagram. The two-loop self-energy
diagram (i.e. , the quark insertion) depends on the
(internal) momentum k as k "so the one-loop
diagram with insertion simply requires calcula-
ting I,(2) where (all momenta Euclidean)

We have made use of (A9). Upon evaluating (A13)
with g=1 and p=1+e/2 and comparing the result-
ing expressions through order c, we obtain

The trace in (B1) must, of course, be computed in
N= (4 —e) dimensions. The integral in (B1) is
easily evaluated through O(e) as described in the
text Isee Eq. (47) and the subsequent discussionj.
The result is

I ( ) @2-(1+a)& 0
9+1

x [4/e + 3a+ (7a'+ 10a+ 4)c/4+ O(e')]. (B2)

In a similar way, diagram B4 (for instance) can
be computed by calculating the one-loop fermion
insertion in the two-loop diagram. Since the re-
sulting three-loop graph need only be computed
through O(1/e), the two-loop diagram need only be
expanded through O(e'). The nontrivial integrals
to be evaluated are

26
I (numerator) =, d~k, d„k,g 2~ N 1 g 2

numerator
0,'k, '(k, —k,)'(k, —q)'(k, —q)

(B1) These integrals are tabulated in Table IV.
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