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An example is given, additional to Frenkel s example in the preceding paper, in which Dirac s test gives

too much gauge arbitrariness, signaling a breakdown of the constraint algorithm. A common pathology of
the two examples is that Hz is not differentiable along the constraint hypersurface, and this causes the

canonical equations to be inherently singular. An augmented algorithm for the Hamiltonian is proposed

which coincides with Dirac s in the diA'erentiable case, which works correctly in a class of examples having

nondifferentiable HT, and in which the usual algorithm fails. The proposed algorithm appears to be

generally applicable.

~ 2—'z3=0 z =0 —(2xz) —y =0
df, cB

so that x(t) is undetermined while y(t) = z(t) = 0.
The total Hamiltonian is

H~ -—H+ gp,

(2)

p, being the only primary constraint, and H given
by

H= &&+p„~~2p .
The consistency condition for the primary con-

In Frenkel's example' H~ contains only one of the
two required gauge generators with arbitrary co-
efficients, so Dirac's test has failed to produce
the full set. I will give a further example that is
only slightly different, but in which too many gauge
generators result, a circumstance similar to that
encountered in the (counter) example I gave earli-
er.2 3 But the present situation rai:ses a serious
problem of consistency for the constraint algor-
ithm since the conditions embodied in Dirac's test
are almost certainly minimal. The two examples
(Frenkel's and the one I will present here), how-

ever, share a common and general kind of path-
ology, and, as I will show, the difficulties they
present possess a common resolution. The rem-
edy I propose for the general case is a nlodifica-
tion of Dirac's procedure, an "augmented algor-
ithm, " to cover cases where the canonical equa-
tions are inherently singular on the constraint
submanifold identified by Dirac's algorithm. All
the important features of the usual theory of con-
straints, including Dirac's test, are preserved for
the two examples, and for a general class of ex-
amples given at the end. The level of rigor em-
ployed is in the classical spirit of Dirac's origin-
al methods of analysis. '

My example is specified by the Lagrangian

I. =iP+yz,
the equations of motion being

straint y =p, is

P=P =g H )=z=0
that for the first secondary constraint y, —= z is

G=z=(X. , r)=p.'"=0;

H ~-H~ =up„+ vp, + zvz. (8)

The canonical equations now tell us, incorrectly,
that the y(t) and p,(t) are arbitrary as well as x(t).

The trouble, plainly put, can be traced to the
("proper") fractional power of the secondary con-
straint p„' ~' entering (by way of &) into &r in both
Frenkel's example and the present one; for the de-
cision to "doctor" H~ by augmenting it with ad-
ditional, secondary first-class constraints as de-
termined from Dirac's test is predicated upon the
assumption that H~ provides a serviceable start-
ing point. But H~ is not differentiable, for the
canonical equations from H ~ in both examples in-
clude

x=(x,&,)=-,' p„"'p„
the right-hand side of which is infinite on the con-
straint submanifold, where p„vanishes, except
for that portion of it along which, additionally,

4. -=p.=o,
where the right-hand side of Eg. (9) will assume

x =p=o
and the algorithm terminates here with' H'- K So
there are three first-class constraints to consider
in the implementation of Dirac's test. The pres-
ent example differs from that of Frenkel and my
previous one in the yz term present in H'. Ac-
cordingly, the Poisson bracket relation of the pri-
mary constraint p, with H' sets in motion a chain
enveloping both z and p„as gauge generators, and
one finds that H~ becomes the extended Hamilton-
ian
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an indeterminate form 0/0. If we do not accept the
indeterminate form, then we must accept ~ =~,
which is (inspiringly) uninteresting.

Now p„' 'p, should not be regarded as a "limit"
to be fixed by some application of. l'Hopital's rule
in Eq. (9), and none of the other canonical equations
in fact fix such a limit, i. e., none exists. On the
other hand, the functions X, =P„and g, =P, are
functionally independent, so any motion of the
quantity X2 '~2$, may be assumed arbitrarily. If
we do this and implement the decision by writing

forfar~

in Eq. (3)

&~ —=&~ = -ye+ up„+ vp, , (11)

where I have replaced p„' p, by an undetermined
function of t, u=u(t), then we have a new, "saniti-
zed" total Hamiltonian functional form &~, from
which to start again.

Evidently, this is the general situation. The
function & is computed from I- via an elimination
of q's in favor of p's, and it cannot be guaranteed
to be free of "messy" functional dependence upon
the secondary constraints, which appear later.
Hence &~ cannot be guaranteed differentiable, and
it might have Poisson brackets with some of the
canonical variables that are-infinite on the con-
straint submanifold identified by Dirac's algor-
ithm. On the other hand, analyticity is not neces-
sary to produce finite canonical equations; dif-
ferentiable expressions like y' ' present in &~

'

offer only vanishing contributions. It can happen
that "sanitization" does not produce any new con-
straints (g's), but only new gauge arbitrariness.
Thus, if a term like (X,X3)'~' is present, it may
produce either or both of the X,

' ' and y2
' terms

in some of the canonical equations, so &~ would
have to be reexpressed. If X,, is first class, this
could be done by writing

(x.x.) '"=(xi"'xm '")x.=u(f) x2

and no new constraint is needed. But also the
other choice, having X, and X, interchanged, might
be made instead of Eq. (12), and X„would become
the gauge generator. Here two distinct serviceable
Hamiltonians &~ and &~ result and each must be1 2
regarded on separate and equal bases. In this
instance, the augmented algorithm presented below
would branch, generally not an uncommon kind of
occurrence for singular systems.

I will call any g's which arise from additional
requirements such as Eq. (10) subseconda~ con-
straints. Just as the starting form of &~ involves
a specified function & plus a linear sum of pri-
mary constraints with undetermined multipliers,
but no secondary constraints, &~ starts with a
new specified function, which is &' with the "mes-
sy" parts subtracted off, plus a linear combination

of primary and secondary constraints with unde-
termined multipliers, but with no subsecondary
constraints.

Now for the augmented algorithm. It is neces-
sary, since && is a different function from &~, to
impose new consistency conditions on all the orig-
inal primary and secondary constraints, i.e.,

P; =4'»+s)=0& Xg=(Xy&+s)= 0 &

and, in addition, to require

(14)

for each of any subsecondary constraints that may
have arisen from the reexpression of &~. The y's,
X 's, and $'s all are to be treated on an equal foot-
ing, Dirac's algorithm is to be implemented in full
for H~, and then it is to be augmentedwith the check
for further nondifferentiabilities and further g's.
If any are found, &, again must be reexpressed
and the steps just described repeated for the new
version and for all the constraints so far produced.
The process is to be continued until a differenti-
able Hamiltonian is found and the procedure ter-
minates. In this way one arrives at a final &~,
which I write as

+ u

where the ub are the multipliers whose values have
remained arbitrary.

Equation (15) may be compared with Dirac's
equation, '

Hr =If'+ g v,y, .
Dirac's theorem that &' and the p, are first class
followed from analysis of the form of the consis-
tency conditions, and it applies to the subset em-
bodied in the primary and secondary constraints of
the first, "unsanitized, " total Hamiltonian. Since
now all the constraints satisfy the same consistency
conditions but are based on the final &~, the same
theorem again follows for H" and the @~ over the
full constraint set in Eq. (15). But Hs is guaran-
teed now not to give canonical equations that imply
infinite velocities for the canonical variables.

The natural procedure from here is to imple-
ment Dirac's test by replacing &' by &" in the test
and the primary subset of the y, by the collection
of @~:

Hg —H"+ ug

as in Ref. 2.
If the augmented algorithm proposed above is

applied to Frenkel's example, Eq. (11) is replaced
by
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p. = (p. Hs}=o

and the additional consistency condition is

(1S}

(20)

which gives a new constraint. Continuing further,

P, =y=(y, H }=~=0 (21)

and the Dirac procedure stops. Since now yz =0,
Eg. (11)becomes

(22)&s =uP„,

so that, with H" —-0 there can be no more subsec-
ondary constraints, Eq. (22} gives a serviceable
Hamiltonian and the augmented algorithm also
stops. Dirac's test trivially gives &~ =&s and this
produces the -correct canonical equations, as is
again easily checked. It is worth noting that the
constraints, p„, z, and p„ in Egs. (19), were they
to have formed the complete set, would have been
first class; while at the end of the algorithm, with
the addition of P, and y to the collection, only p„
remains as first class.

&s ——up. + vP„, (la)
and the new consistency conditions on p, z, p„, and
the subsecondary constraint p„all are already
satisfied. So H, is the (final) "serviceable" total
Hamiltonian, Dirac's test gives H~ =@s, and the
canonical equations correctly reproduce the con-
tent of the Euler equations, as may be verified.

The application to my example goes as follows:
The consistency conditions to the primary and sec-
ondary constraints are computed from Eg. (11) as

The Lagrangian of Ref. 2, Frenkel's Lagran-
gian, and Eg. (1) can be generalized to a class'

~zs+yz l ) 0, m&0, (23)

where the conditions on l and m are needed for
consistency of the Euler-Lagrange equations (-~
&x,y, z, (+~}.Corresponding to l-l, m(1, and
l =0, Eg. (23) specifies a large number of distinct
examples with varying properties. &~ is not dif-
ferentiable if either l) 1 or m & 1 holds, and is
differentiable otherwise. Dirac's algorithm works
correctly in the differentiable cases and fails in
all the nondifferentiable cases, while the proposed
augmented algorithm with its corresponding Dir-
ac test works correctly in every case.

It seems a reasonable guess that the sanitization
of &~ to &s and the augmented algorithm presented
here which, in conjunction with the corresponding
Dirac test, seems to be the natural implementa-
tion of this approach to the determination of a
Hamiltonian, is a complete and generally justifi-
able scheme. A key ingredient has been the intro-
duction of "gauge functions" to deal with nondiffer-
entiable or messy functional combinations of the
constraints when they occur in &, the possibility
for which the examples show to be nonvacuous.

Note added in Proof. The nondifferentiable case
l=0, m (0 in Eq. (23) has a notable feature.
must be sanitized owing to a term -yz", and the
secondary constraint z = 0. But p, = 0 also, so z
is second class; hence the coefficient -yz ' is
not a gauge function and must be set equal to zero.
As y =0 is already a (second class) secondary con-
straint here, no subsecondaries arise from this.

This work was supported by the Naval Surface
Weapons Center Independent Research Program.

'A. Frenkel, preceding paper, Phys. Rev. D 2&, 2986
(1980).

Robert Cawley, Phys. Rev. Lett. 42, 413 (1979).
3Since the publication of my counterexample to Dirac's

conjecture concerning the extended Hamiltonian, I
learned of the work of G. R. Allcock, Philos. Trans. R.
Soc. London A279, 33 (1975), in which the failure of
Dirac's conjecture also was recognized.

4P. A. M. Dirac, Can. J. Math. 2, 147 (1950); Proc. R.
Soc. London A246, 326 (1958).

P. A. M. Dirac, Lectures on Quanhcm Mechanics (Ye-
shiva University Press, New York, 1964). My notation
will be that of Dirac's book, or of Refs. 1 and 2, as
appropriate.

The notation H' is that of Dirac's book (Ref. 5); viz.
Il'=II+ U ~t}~, where the U~ are the Lagrange multi-
pliers that are determined by the algorithm.

~The case 5 =4, m= 2 was considered in the earlier ver-
sion of Frenkel's note.


