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The spherically symmetric monopoles and dyons of the SU(5) model of grand unification (without quarks
and leptons) are discussed. It is shown that such monopoles and dyons can exist only in the sectors
corresponding to magnetic charges m = + 1/2e, + 1/e, + 3/2e, and +2/e, where e is the charge of the
positron. We investigate in detail the properties of the dyons with the smallest possible magnetic charge

(~m~ = l/2e). By semiclassical reasoning we show that apart from the magnetic charge the properties of
the dyons are described by two quantum numbers n and k. The dyons come in families, denoted by
n = 0, 1,2,..., with electric charge q„=n( —4e/3), baryon minus lepton number = n( —2/3), and the kth
member of the nth family (k = 0,1,2, ...) transforms according to the (n + k,k) for n & 0 or the

(k,~n~+ k) for n &0 representation of SU(3)c. We argue that all the members of a given family are

degenerate at the level we are working. This degeneracy is expected to be lifted in the full quantum theory,
in which case each family collapses to one stable dyon, characterized by one integer n and whose quantum
numbers are as follows: It has electric charge = n( —4e/3) and baryon number minus lepton number
= n( —2/3), and it transforms under SU(3)c like the symmetric combination of n 3 s, for n ) 0, or ~n~

3's, for n &0. Interesting processes involving monopoles and dyons are discussed; we show, for example,
that the presence of a dyon strongly enhances baryon-number-violating processes. Finally, a less detailed
discussion of poles with the other possible magnetic charges is included.

I. INTRODUCTION

Since the theoretical discovery' of the existence
of smooth, finite-energy, particlelike, monopole
solutions in the SO(3) Georgi-Glashow model, many
authors' have worked on problems related to mag-
netic monopoles. The stability of the 't Hooft-
Polyakov monopole has been discussed'; exact
solutions have been found for SO(3) in an extreme
case4; similar objects and analogous discussions
have been made in the context of various other mod-
els, such as SU(N)- U(1), SU(N) - SU(N/2) x SU(N/2)
x U(1), SU'(N)- SU(N —1)x U(1), etc. Julia and
Zee discovered' the existence of dyons in the
SO(3) model. The tluantization of these classical
field configurations has been discussed. ' The ef-
fects caused by the introduction of fermions' into
the theory, as well as other interesting pheno-
mena, ' have also been considered.

The purpose of this paper is to discuss the pro-
perties of monopoles in the phenomenologically
realistic" SU(5)-SU(3)c X U(1), grand unifica-
tion model. This theory, proposed a few years
ago, seems to be quite successful, as far as low-
energy phenomenology is concerned and also
seems to work in a nice way on problems related
to the origin of the universe. " So, it is interest-
ing to know the particle spectrum of this theory,
including the spectrum of particles with masses
as large as the monopole masses, about 100 times
larger than the superheavy elementary gauge
bosons and scalar particles of the model. The
discussion of the properties and the cosmological
effects" of those objects might give a clue to a

W, „—= s W„-s„w, +ig[w~, W„],

W~
—= Wp I"', a = &, ... , 24

(2.2)

deeper understanding of questions related to the
principle of grand unification, to cosmology, and
so on.

In Sec. II we expose our notation and discuss the
features of the model in the unitary gauge. In
Sec. III we give the topological argument for the
existence of magnetic-monopole solutions and also
determine the quantum of magnetic charge. Next,
we discuss the classical properties of the mono-
pole of lowest magnetic charge and its corre-
sponding dyons. In Sec. IV we consider the
problem of quantizing the classical solutions of the
previous section and determine the quantum num-
bers of the dyons. A few amusing but not very
important processes involving dyons and mono-
poles are mentioned. In Sec. V, we briefly pre-
sent Ansatze for spherically symmetric mono-
poles and dyons with magnetic charges equal to
1/e, 3/2e, and 2/e. We conclude with a short
discussion in Sec. VI.

II. NOTATION-UNITARY GAUGE

The theory we consider is an SV(5) gauge theo-
ry, "spontaneously broken to SV(3)o xU(1), by the
vacuum expectation values of two Higgs multiplets,
one (4) in the adjoint (24) representation and the
other (H) in the 5 of SU(5). The Lagrangian den-
sity is
Z = —,

' Tr(W. „W"}+Tr(u„@)a+~f)„gs V(e, e),
(2.1)
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D„H= B„H+igW„H, &„4'= &&@+ig[W„,@]. (2.3)
1
3

The group generators E', with a = 1, 2, .. . , 24, are
chosen to satisfy Tr E'E'= 26'», E'~ =E', and the
potential V(4, H) to break SU(5)- SU(3) &&U(1).

The equations of motion are

1
3

1
3 (2.8)

&„W~"= -J1' = ig-[@~4,4]

igF-'[HtF'D&H —(D"H) F'H],
with

u, u~e=- — D D1'H=-BV' BV
&H~ '

while the energy density is given by

(2.4)

1
v15

3
2

3
2

I
and tg =2

0

7f

8"= TrB'+ TrE'+ Tr(DC')2+ Tr(&,c')2
i =1, 2, 3 (2.9)

+ [ DH [ + [ D H[ + V(4, H), (2.5)

where we have defined

I.=—2~g~~+~I and @ = -+ ~ (2.6)

Since in what follows we will restrict ourselves
to the discussion of the order-g ' behavior of
the theory, the fermions do not play any role and
we do not include the quark and lepton terms in
(2.1). We will refer to the fermions only in the
definition of the baryon minus lepton number
(B —I.), which we discuss extensively at the end
of this section, and in the definition of the elec-
tric-charge generator.

ln the so-called unitary gauge, the model has
the following features. The SU(5) gauge sym-
metry is broken spontaneously to SU(3)c && U(1),
by the vacuum expectation values of @ and H,

and e is the positron charge (e & 0). The definition
of Q is consistent with the fact that the 5 of fer-
mions contains the particles (d~Ze deev)~, B, B,
G being the three colors, whose charges are the
opposite of the elements of Q. Notice that Y' and

E are the four generators of an SU(2)~&& U(1) z
subgroup of SU(5), which is an invariance of the
vacuum in the limit v=0 and a =0. Let V„(x) and

B„(x)be the SU(2)~&& U(1) „gauge fields Sinc.e
this last symmetry is broken to U(l), , all those
fields except for one, called the photon, become
massive. Proceeding in exactly the same way as
in the standard SU(2) &&U(l) model, we can identify
the weak and electromagnetic gauge fields as

Z -=(-')'"[V'+(-')"B ] wit ~ = gv
2

P

(2. 10)

A& =—(2)' 2[(2)' 2V,' —B&], orthogonal to Z&,

with Af~ = 0 (2.11)

4 =v
n

——+E3

3
2

ep w

Ho= v 0

0

(2.7)

~ = 1V'„=- ~ (V,'+ V', ), with Mv=g( 2'v'+4e2v2)' ' ~

(2.12)

The interaction of the V„3 and B„gauge fields with
the fermions can be written, symbolically, as

g(t )~V +g2y~B = (2)1/2 @
A.

e

Here, we have defined the SU(3)c to act on the up-
per three components of the five-dimensional
space, while the U(1). is generated by

+ (2)1/2g[f + (2)1/2 y']pg

Requiring the electromagnetic coupling to have the
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form e(Q/e) "A.„, since the electron-photon inter-
action is+egy„)A", we get

e —(3)2/2g (2.13)

Equatian (2.13) has the form e =gsin8~, with G~

defining the V,'-B„mixing in Z„and-which, as
we read in (2.10) satisfies sin8v = (—;)'I'.

Phenomenologically interesting" is the case in
which we have v-O(10" GeV), & - 0(&/v)
-O(10 "). But, as far as our discussion is con-
cerned, since we will be interested only in the
massless gauge fields and the long-range proper-
ties of monopoles and dyons, we do not have to
choose any particular set of parameters. Every-
thing we will say below is independent of the mag-
nitude of &, as long as it is nonzero.

Now, as we promised, we. turn to the d'scussion
of the B-I symmetry of the theory. First of all,
remember that the full Lagrangian of the model
we are interested in contains a 5 (@„)and a 10
(k~e =-4 ") of fermions for each family of
quarks and leptons. " Those are coupled to the
B field through the Yukawa couplings 4 I,+"H

and &„8&qz+ +& H . Notice that 2 is then invar-
iant under

ively, is such that this symmetry remains un-
broken by the vacuum expectation values @0 and

H, . (b) The values of the diaganal elements of B3,
which are the baryon minus lepton numbers of the
fermions in the 5-piet (dsde dee v)si provide an
explanation of why this symmetry is called $ -L,.
(c) The B —I, quantum numbers of the 5-piet of
Higgs we read from J3, while those of 4' and W„
are

2 2 2
3 3 3

2
3

2
3

2
3

2
3

2
3

III. CLASSICAL MONOPOLES —DYONS

2 2 2 0
3 3 3

(d) Incidentally, this discussion answers a ques-
tion one might have, namely, what happened to the
Goldstone boson associated with the breaking of
the U(1) in (2.14). We know that (2.14) is a linear
combination of B-L, which remains unbroken,
and &, which is spontaneously broken, and the
corresponding Goldstone boson, via the Higgs
mechanism, gives mass to the Z& gauge field.

yfx8 j,(tf/2@fx8 d +(x 3j&/2 @fx

(2.14)

a global U(1) transformation. This symmetry is
broken by H„but, as we will now explain, it is
unbroken if combined with a certain gauge sym-
metry. Clearly, any such combination will be a
symmetry of the Lagrangian. So, let us combine
a U(1) rotation (2.14) with angle 3e with another,
generated by the SU(5) generator & and with angle
-4u&IM15. The net result of this transformation
on II, +, 4', and S'is

According to the general topological arguments, '
the very presence of the U(1), factar in the un-
broken gauge group guarantees the existence of
smooth, finite-energy, topologically stable, par-
ticlelike solutions of the equations of motion with
quantized magnetic charge. To determine the unit
m, of magnetic charge, it is important to realize
that the unbroken group ) of the theory is only loc-
ally isomorphic to SU(3)&U(1). The group lj, the
subgroup of SU(5) which remains unbroken by 4',

and H, in (2.7), is the set af matrices of the form

ue '"
3ja

~tx e j(dB

(2.15)
2 4 . 2 2 21'=diag(-3t 3p 3y010)l
5 15

4'"=e( 4" B'=—— Y'=diag( — —— 1 1)
5 4 ~ 1 1 1

1 5 ~15 313l3l

(2.16)

4 =e~~~ce-j~~ Wt —ej»W e-«~ B= 4
v15

(2.17)

respectively. This is a V(1) symmetry of the
theory with the following properties: (a) The
form of B" and B in (2.15) and (2.17), respect-

(3.1)

with K= 3 and Q,.„ the smallest positive charge
that can exist in the theory. In our case we have
Q = —,

' e. So, the quantum of magnetic charge is
m, = 1/2e and the possible magnetic charges are

with u(=SU(3). The mapping from SU(3) x U(1) to
t(, defined by (u, e'")-diag(ue '", e"",1) of g,
is ((= 3 to 1, since the three elements (u, e'"),
(ue2&(/3 e(( &+22/3)

) and (ue4&(/3 e( ( a+42/3) ) af
SU(3) &&U(l) are mapped to the same element of fj.
As a consequence of this, the minimum magnetic
charge m, is given by'"

1
2Q
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integral multiples of m, .
There exists another way to prove that the

smallest possible value of the magnetic charge is
m, =1/2e. Corrigan and Olive" have shown that
the only possible values of magnetic charge m,
are those which satisfy the condition e4" ~ = k,
with k an element of the center of the SU(3)c sub-
group of SU(5). This is an operator equation.
Acting on the ie') state, the right-hand side gives
[e'), since the positron is a color singlet, and the
above condition reduces to exp (4wime) = 1, which
implies m =nl2e for any integer n.

Let us now proceed to the explicit construction
and discussion of properties of monopoles and

dyons which exist in this theory. Since it is easier
to work with symmetric objects and, on the other
hand, we believe that the larger the symmetry of
a solution the smaller its energy will be, we ask
for time-independent solutions of the equations of
motion with the highest possible symmetry, which,
in addition, are topologically nontrivial. If L
=——ir&& V and T', a=1, 2, 3, the three generators
of an SU(2) embedding in SU(5), we ask for the
most general Ansatz satisfying

I

[LI + T), W) ]= ie;i» W», [L; + T), Wo] = 0,

(3 2)

[I, + Ti, 4'] = 0, (L, + T ( )H = 0 .

A configuration with the transformation proper-
ties (3.2) is what we call spherically symmetric.
To maximize the symmetry of the solutions we

I

are after, we also require them to be invariant
under the largest possible subgroup I' of U(5)
[the U(1) factor is related to the B —L symmetry]
which is compatible with the spherical symmetry
I+T, i.e.,

[I"; @(r)]=o, I", H(r)=o, [I'„W„(r)]=0

[I', , L +T)]=0, j=1,2, 3, i =1, 2, . . . , (3.3)
where I; are the generators of I'.

In this section, we will construct a particular
monopole with its corresponding dyons. In fact,
we will always be considering the pure magnetic
poles as special cases of dyons with W, =O. We
will determine the classical properties of those
objects in this section. We leave for the next
section the discussion of the quantum properties
of this family of dyons. Other possibilities and
some of their properties are discussed in Sec. V.

Consider the 5- 2+ 1+ 1+ 1 embedding of SU(2)
into SU(5), given by

r
0

(3.4)

0,

where v', a=1, 2, 3, are the Pauli matrices. The
U(5) subgroup I'which commutes with T is quite large,
but in order to be able to get a nontrivial Ansatz
for H(r), we restrict I' to be an SU(2)x U(1) &U(1)
generated by

1r=—
2

12' 1
and r =-

5

0

The general form of a field configuration, spherically symmetric, i'-invariant, and also invariant under
simultaneous inversion of r and T isr

0

y, (r)+ y, (r) r7~
(3.5)

J r
& (r)+ r" ~ ~2 2

—2(J, +j,) i,



2944 CONSTANTINE P. DOKOS AND THEODORE N. TOMARAS 21

The functions K(r), yj(r), and J,(r) a. re real, as
required by the Hermiticity of 8', , 4', and 8'„re-
spectively. We also consider h(r) to be real. The
reason for this is the following. Consider instead
of h(r), the complex function h(r)e'"'"'. The ex-
ponent ib. (r) appears in the energy functional only
through the term ~DH~'=)b"(r)+n"(r)h'(r). Thus,
the field equations are consistent with n = constant
and, furthermore, the- energy becomes smaller
in this ease. Without loss of generality we can
take +=0.

The inversion symmetry we required from 8',.
forbids the appearance of terms with the struc-
ture r, or T, Also, terms of theform (r T)(r x T),
are not independent since the matrices (3.4) satis-
fy ~,~b+~b~, =~a~,

b (a, b=1, 2, 3). Finally, notice
that (3.5) automatically satisfies the gauge-fixing
condition 8,.$"= 0.

As usual, we insert the Ansatz (3.5) into the en-
ergy functional and minimize with respect to the
radial functions to get the field equations for sym-
metric solutions. ' The boundary conditions at
infinity are determined from the fact that finite-
ness of the energy requires the fields to approach
the Higgs vacuum away from the origin, i.e.,
to satisfy V(C, H)=0, S,C =0, and D H=0. Along
the z direction, C and B must approach at infinity
Co and IIO, respectively, from which we conclude
that

F„„-=—Tr (W„„(r)Q(r)) (3.8)

with Q(r) the spherically symmetric version of
(2.8), which in this case has the behavior

1-Q(r)
e y ~oo

3

'j. 2
~
~

3 K 7

Notice, as a consistency check of our definition,
that in the unitary gauge the photon field A. „can
be written in the form A „=(2/g)Tr(W„(x)Q),
where Q is now the matrix (2.8).

Using (3.5) and (3.7), we get

2 A A A

+'j(r) bT ( jb b i ~i b b jgy2 0 Jg 6 J Jc

dyons, as well as their B-I.charge. This is ex-
actly what we will do next.

Let us start with the magnetic charge. This we
calculate by integrating the ordinary magnetic
field over a sphere at infinity. The electromag-
netic field strengths are defined to be

Ii(ir) = vg, g, --,' vg(--,'+e), Q, ( )r--', vg(b —e)

A A

gF
~'J'g+)+ T (3.10)

(3.8)

and Ib(r)-&g. As for the boundary conditions for
the functions ES(r), J (r), and J,'(r), i =1, 2, the ob-
vious similarity of our dyon to the one of Julia and
Zee, ' makes it reasonable to assume that there
exists a solution of the field equations of the form
(3.5) with"

1B — rr'T, (3.11)

This magnetic field has, obviously, both ordinary
magnetic and color-magnetic components. The
electromagnetic part of the field B is, according
to (3.8) given by

The magnetic fields B' = ——,'e&» W» are at infinity

ff(r) ~ g b", J(r)- M+ —+O(r b) J,.(r) O(r ') .
~oo r

(3.7)

1B—= —Tr(B(r)Q(r)) ~
2e (3.12)

The parameter a depends, as in the Julia-Zee
case, upon v, v, M, and g. Since we are interest-
ed in having a & 0, the possible values of M are
restricted. We expect that Mhas to satisfy ~M(

&gv. On the other hand, there is no restriction on
the continuous pa, rameter b. For the discussion
that follows we do not need to know what the short-
range behavior of the solution is. Qf course, the
radial functions are expected to behave smoothly
for the energy of the solution to be finite. But,
apart from this, the asymptotic behavior of the
fields is all we need to know in order to investi-
gate the magnetic and electric properties of the

Thus, the magnetic charge of our field configura-
tion is

1
jm =

28
(3.13)

B' —= 2 Tr(B(r)V(r)) ~ 5'b&-"v3 gy
(3.14)

We now proceed to the investigation of the elee-

equal to the smallest possible, according to the
topological argument. The long-range color-
magnetic fields, carried by the dyon configuration
(3.5)-(3.7), is analogously given by
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tric properties, both ordinary and color, of our
dyons. Here we need to know the asymptotic
behavior of J(r) and J~(r), k = 1,2. Using (3.7), we
conclude that

We now observe that 8$/84 = Q4 =0 for our dyon
and, similarly, 6H=0=5oH~, since 5oH=iQ(r)H(r}
=0. Since we also have 82/8W, =-W ', we end up
with

Wp(r) ~ -(M+ b/r)r ~ T+ 0(r ') .
From (3.15) we can immediately calculate

b
Wp, (r) ~ (3.16)

q=2 g Tr &ggB'

and by the same token we have

B L=-2 dPz Tr(W '5zW, ) .

q = -4vb/2e . (3.17}

It is simpler to calculate the asymptotic behavior
of the color-electric fields by looking at what
happens along the +z axis at infinity. From (3.16)
we conclude

b 1 8 1
W, (rz) ~. , z. — X — q .&-"gx ' l3 2e

[The quantity in parentheses, with Xp =(1/2~8
diag (1,1,-2,0,0) and Q given by (2.8), is equal to
Tp.] The color-electric field is then, using the
spherical symmetry,

(3.18)

Notice that (3.18) is exactly the solution of the
classical Poisson equation for the color-electric
fields created by a source at the origin with density

cPp(x) =
2 5 5(x) ~

4» .8-
3g

What is left is the computation of the B-I
(baryon minus lepton number} of the configuration
(3.5)-(3.7). &s we will show, the B-I.of the dyon
is 1/2e times itis electric charge. Notice, first
of all, that we can equally well calculate the elec-
tric and B-L charges of the dyon simply by inte-
grating over space the zeroth component of the
Noether current associated with the transforma-
tions generated by Q(r) and B(r), respectively.
Q(r) and B(r) represent the spherically symme-
tric forms of the generators of U(1), and B-L.
Thus,

(3.19)

and again, we can split it into ordinary electric
and color-electric fields. The first is

E'(r) =—Ep,.(r) =—Tr(W„.(r)Q(r)) ~—2 4~b

g " -" 2e 4n~' '

so the dyon electric charge is

the same with the formula used previously and

B L=-—-I d S,.Tr(W '(r)B(r)). (3.21)

In formulas (3.20) and (3.21) only the r parts of
the generators Q(r) and B(r) give nonzero con-
tributions to q and B-L, respectively. From (2.8)
and (2.17) one can easily check that the rp part of
B is 1/2e times that of Q. By spherical symmetry
we conclude that everywhere at infinity the r ~ &

part of B(r) is 1/2e times that of Q(r), which leads
to

nbB-L= q=-
2e e (3.22)

This completes our discussion of the classical
properties of the dyon. A few comments are in
order. (a) In the special case Wp =0 we can still
find a solution of the field equations with W, ,
4, and H having the form (3.5). This represents
a pure magnetic pole without electric fields and
with B-L=0. (b) The electric properties, as well
as the B-I.of the dyons, depend upon the contin-
uous parameter b. Thus, the dyon electric pro-
perties and B-L are not quantized at the classical
level, unlike the magnetic charge, which is re-
lated to topology. (c) Had we started with an an-
satz differing from (3.5} only in the sign of W„
we would arrive at another monopole and its cor-
responding tower of dyons with m =-1/2e.

The transformations generated by Q(r) and B(r)
are local gauge transformations. This means
that 6&W, and 5z W, are given by 5&W, = if/(r), Wi(r)]
—(1/g)8 0( ) and 5 W = lB( ) W ( )] —(1/g) 8,B( ).
If we make use of the field equations (S,Wp,

——0),
we arrive at the expressions

q = —— d2S, Tr(W '(r) Q (r))= Jl dS ~ E(r),
g ~

(3.20)

with
IV. DYON QUANTUM NUMBERS

To determine the propexties of our dyons at the
quantum level, we will use the existing"' semi-
classical reasoning. We will apply the Bohr-
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Sommerfeld quantization condition, according to
which, if we have a one-parameter family of
periodic solutions, labeled by the period T, then
an energy eigenstate occurs whenever

S(T) +E(T)T=2vn, n =integer (4.1)

T=4v/M. (4.3)

Thus, the family of the static solutions parame-
trized by M can be thought of as a family of
periodic solutions yarametrized by T given in
(4.3).

On the other hand, the quantity action plus per-
iod times energy, on the left-hand side of Eq. (4.1},
is gauge invariant. So, we will calculate it using
the time independent form (3.5) of the ensate. It
is easy to show that

T

S(T)+Z(T)T= dt d'gZ+e")

r
dt d'~ gv's, y' -~(T),

(4.4)
f

where the first term on the right represents the
integral of the sum of terms of the form (time
derivative of a field $ ) &(its conjugate momen-
tum v'), while the second is

T
Z(T) = dt d S,. Tr(Wp,.Wp+fspW,).

0
(4.5)

(f is related to the longitudinal part of Wp, by
-s,f= Wf,.). For the static solution only the first
term of Z(T) survives, since all the time-deriva-
tive terms vanish, and is easily calculable. The
computation gives Z(T) =2~bMT/g and by using
(4.3) the quantization condition reads

4wb=ng, n is any integer. (4.6)

The quantization of b leads, through (3.17)-(3.19)

with S and E the action and energy of the solution,
respectively.

Where is the one-parameter family of periodic
solutions in our case?" Let us perform the local
gauge transformation

V(r, t}= e' '" (4.2)

on the static dyon field configurations (3.5)-(3.7).
The fields 4 and H remain the same, ~0 tends now

to zero at infinity like I/p, and the W, become
periodic. Although their period is 2m/M, as we
-argue in Ref. 17, what actually matters is the
period of the gauge transformation itself, and this
ls

and (3.22), to the quantization of the electric
charge B-L and color properties of the dyons.
If we combine the above results, we conclude
that the dyons have (a) electric charge
q„=n(-4e/3), (b) B-L=n( ,'-),—(c)magnetic charge,
of course, m =1/2e. (d) To determine their color
properties, we argue as follows. Combining (4.6)
with (3.19) we get cPp(x) = (n/~35' 5(x) ~ This is the
color density of a "color-isospin" singlet [due to
the fact that the I' symmetry of the Ansatz con-
tains the color-isospin SU(2) factor], with X

= -n/v3 . Thus, our dyons transform according
to the (n+lp, lp) for n-0, or (l'p, ~n~ +0) for n&0
(0=0,1,2, . . . ) representation of SU(3)c, since
all those have their SU(2) singlet at the position
( O, -n/~3 on the weight diagram in the (XP,AP)

coordinate system.
The conclusion is that our dyons, all with mag-

netic charge m =1/2e, come in families, denoted
by n = 0,1,2, . . . , with electric charge q„
=n( p4 e), B-I.=n(- —',), and the 0th member of the
nth family (0=0,1,2, . . . ) transforms according
to the (n+ k, k) for n ~ 0, or the (k,

~
n ~+lp) for n &0

representation of SU(3)e.
We would like at this point to sketch another

line of reasoning which leads to the same con-
clusion. Let us go to the 8'0 ——0 gauge with the
Higgs fields pointing everywhere in the same
direction of internal space and think of the dyons
as being rotational excitations in internal space
of the pure monopole. The global vacuum sym-
metry in our theory is SU(3)exU(1), &&U(1)s ~
and the classical monopole (Wp ——0) is invariant
under I' =SU(2) x U(1)r 4

&& U( 1)r p
C SU(3)c x U(1),

x U(1)e ~. Any quantum state of the theory will
be characterized by its SU(3)c &&U(1), XU(1)s ~
quantum numbers, i.e., it will have the form
~(p, l;Ap, X ),q,B-L), where (p, l) with p, l ~ 0 is the
SU(3)c representation, (A. ,X ) is the particular
state in that representation, and q, B-L are the
electric charge and the B-L quantum numbers,

.respectively. Since the classical dyons are I"

invariant, the corresponding quantum states will
be I' singlets. Every SU(3) representation (p, l)
contains one and only one SU(2) singlet; its posi-
tion in the weight diagram is (0,-(p - l)/W3} in
the (A. ,X ) coordinate system. On the other hand,
since 14 ——(I/2~2 diag(1, 1,-1,-1,0) =(-,')'~ X
—(I/2~2@/e, the requirement I'4 =0 leads to the
further restriction on the dyon states ~g), [A'
-(~3/4)Q/e]~g)=0, with A and Q being the
color-hypercharge" and the electric charge op-

erators, respectively. This implies q = (p
—l) (- —;e).

Finally, I'5 ——0 leads to the condition B-L
=(1/2e)q. Thus, in agreement with our previous
results the dyon states are
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n 4e'n+k, k;0, ——,q=n — B-L=n(-—')
qs P 3 P 3

for n&0

4
k, ~m~+k0, -~, q=n —,& L=n(---,*))

for n&0,

r

where we have defined n=—p —l and k=0, 1,2, . . . .
We will now argue that all the dyons with the

same n are degenerate at the level at which we
are working. The reason is that their mass
splitting is'8 b,M-1/I0, where Io is the classical
moment of inertia of the dyon around any of the 4th
through 7th directions in color space. But,

Io~ dsr Tr 5W, +Tr 54 + 5H '
&

where by 5Q we mean the change in Q due to
SU(3) rotations generated by X, X, X, or A, . It
is easy to see that under such rotations our mono-
pole (with W0=0) gives 5H=O, Tr(M)2-e ~", be-
cause all the functions of the 4-Ansgtz are ex-
pected to approach the vacuum expectation value
(VEV) exponentially fast, but Tr(5 W)2- I/r .
This last makes Io ——~ and thus &M =0. The dyons
with different n's are not degenerate because they
carry different electric and color charge and, at
the same time, the moments of inertia around the
electromagnetic and the 8th SU(3) directions are
both finite.

The analysis of the quantum problem, at the
level we discussed it in this section, is certainly
not adequate to answer the question of stability
of the dyons. It is expected that in the full quan-
tum theory of the dyons the infinite k degeneracy,
mentioned above, will be lifted and the energy of
the dyons will increase with k. But then the
(n+ k, k) dyon will decay through the emission of
k gluons to the (n, 0) one, without any change in q,
B-L, and m.

Recall that this model contains a fundamental
superheavy gauge particle (X) with quantum num-
bers' q=-4e/3, B I=- —', and col-or triplet.
Thus, the above results can be equivalently stated:
The nth stable dyon has the quantum numbers of
the symmetric combination of n X's for n & 0 or of
~n~ X's for n&0, and magnetic charge m=1/2e.

We can now get some partial information con-
cerning the stability issue of those dyons by the
folowi. ng heuristic discussion, based on simple
energetic considerations. ' Notice that the mass

0

—Qg 0 Q~
1

up -Qg 0
V2

Qg Q~ Qg

dg

—ug

—ug

-Qg

0

e+ 0

B

and the dyons can mix them. Since those proces-
ses are all possible at the classical level, their
cross sections are of the order of the geometrical
area of the dyons, i.e., O(1/M„'). This must be
compared to baryon-number-violating processes
in the absence of a dyon, which are O(1/Mr4).
Therefore, the dyon acts as a catalyst —the pre-
sence of.a dyon strongly enhances baryon-number-
violating processes.

Incidentally, the above discussion is an indepen-
dent consistency check of the quantum numbers we
have found for the dyons. Since d- e' in a dyon

M, of the pure monopole is of order O(o. 'Mx)
—O(10'Mx), since in our model and at the grand
unification mass scale we have n =g'/4m = ~o (Mr
is the mass of the superheavy gauge boson X). On
the other hand, the mass splitting between two suc-
cessive dyons is expected" to be of the order
O(nMX), i.e. , O(10 'Mx). This rough estimate
makes almost certain the stability of the nth dyon
(D„) against decays to D„, and X. However, it is
not conclusive about the possibility of the decay
D„-D„,+IIS+ V, where H, is a color triplet of
Higgs fields with q =-—,

' and B- I,=-—,'(Ref. 10)
which:also exists in our model, and V the weak
gauge field defined in (2.12). The reason is that,
presumably, "the mass of II, is smaller than Mx
by one or two powers of ten, i.e., M„-O(10 '
—10-'M ).

We can also discuss at this level certain pro-
cesses involving quarks and leptons. Consider,
for example, "a d quark plunging through the cen-
ter of the first positively charged dyon, which we
treat for the moment as a fixed static potential.
Since this potential, according to (3.5), mixes the
third and fourth components of the 5-piet, the d
quark will be replaced by a positron in the final
state. This process must be accompanied by a
transfer of charge and color to the dyon. So, we
actually have the process d+D y e++Dp or more
generally we can have d+D„e'+ D„+,. For n &0
this process is exothermic, while for n~0 the cen-
ter-of-mass energy of the system has to be high
enough to compensate for the mass difference of
the D„„and D„. Analogously, we can have the
reaction u+ D„-u+ D„„since the Q and N are
both in the 10 representation of SU(5) (Ref. 10):
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field there must exist neighboring dyons which
differ in quantum numbers by an amount corre-
sponding to the difference between d and e'. But
this agrees with what we found using the semiclas-
sical argument.

Notice, though, that if we take into account the
fermion effects in their full glory, interesting and
amusing phenomena will occur." For example,
since the dyons have the same quantum numbers
as combinations of X's they decay to monopoles
through the emission of quarks and leptons. Their
width is estimated to be of O(1 GeV), which is tiny
compared to the grand unification mass scale.
We can have, in analogy to charmonium, unstable
dyon-antidyon bound systems, as well a.s dyon-
quark and dyon-lepton meson bound states. A de-
tailed analysis of the above processes, as well as
other phenomenological properties of those dyons,
are included in Ref. 20.

V. OTHER MONOPOLE ANSATZE

In this section we will discuss briefly other
Ansatze corresponding to monopolies and dyons
with spherical symmetry and magnetic charge
larger than the one considered before. By defini-
tion, the spherical symmetry is meant under L
+ T, a combination of ordinary spatial rotations
and an SU(2) embedding in SU(5) generated by T.
For every such T embedding we can write the
most general spherically symmetric Ansatz for
the fields W„, 4, and. H. We want, of course, the
Ansatz to have nonzero magnetic charge in order
to be topologically stable and also to have the max-
imum possible symmetry I', since we believe that
the higher the symmetry of a solution, the less its
mass will be. According to this last belief, when-
ever we have two possible spherically symmetric
Ansatze in the same topological sector, we will
be considering the one with higher I' symmetry as
the interesting one, while the other will be con-
sidered unstable. The asymptotic behavior of the
radial functions, which appear in the Higgs fields,
are completely determined by the requirement that
at spatial infinity along the z axis they approach
the values 4, and H, given in (2. 1). As for the
gauge fields, although we cannot determine the
asymptotic behavior of W' without actually solving
the field equations, there exists only a small num-
ber of possible behaviors of the lV' fields for every
T embedding, and those we can specify in the fol-
lowing way. The method makes use of a rather
obvious generalization of a theorem due to Wilkin-
son and Goldhaber, "to the case of interest, in
which we also have the Higgs field H in the 5 rep-
resentation of SU(5). Let us consider first the
case of monopoles (W'= 0). We start with the ob-
servation that for any constant matrix Q, which

sa,tisfies

[Q, 4,]=0 and QH, =O, (5.1)

the configuration

O(r) =4» H(r) =H» and W(r) =—QXD (5.2)

[with C „H, given by (2.7), and XD = P(1 —cose)/
xsin8, the singular Dirac vector potential of a unit
charge monopole] is a solution of the field eilua-
tions. The requirement that the string be unob-
servable implies the further condition on Q

e4fljQ ] (5.3)
Since C, and H, break the symmetry down to
SU(3) c&&U(1) and Q is, according to (5.1), a sym-
metry of both 4, and H„Q must be a linear com-
bination of the generator Q/e of U(1), given, by
(2.8), and an element C of the SU(3)c algebra, i.e.,

Q =me —+ C. (5.4)e
Making use of the definition (3.8) of the electro-
magnetic fields and of the fact that X~ represents
the vector potential of a unit of magnetic charge,
it is easy to see that the factor m in (5.4) is the
magnetic charge of the configuration (5.2). We
now state the previously mentioned theorem of
Wilkinson and Goldhaber, as applied in our case.

Let T be the generators of any SU(2) subgroup
of SU(5) (not necessarily irreducible). There
exists a gauge transformation which transforms
the solution (5.2) to a spherically symmetric one
under L+ T, if and only if there exists another
SU(2) embedding in SU(5) generated by f (also not
necessarily irreducible), satisfying

Q=I, —T» [I,Q]=0, [I,@g]=0, and IHg=O.

(5.5)
The form of that gauge transformation is

A(r) = A(r)(u '(r),
Q(r) e iQTge ie-Tgei /rg-

b

id (r) e i41ge ieIgei gtIg--
7

(5.6)

and the spherically symmetric equivalent form of
the solution (5.2) is

W=—(I(r) -T)xr, C(r) =g(r)@,g-'(r),
(5 S

H(r) = Q($')H„with I (r) = A(r) fA ' (r) .
An immediate consequence of the above theorem
is the following. Consider H„4 „and Q as given
by (2.V) and (2.8). Since, according to the theorem
[1,4,]=0, IH, =O, I is restricted to act only on the
upper three components of the 5-piet of SU(5).
The form of C, and Il„on the other hand, speci-
fies that SU(3) o also acts in the same three-di-
mensional subspace. Thus, the 4-4 element of Q
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as given by (5.4} is (me), and as given by Q =Is
—T, is -(T$~4. This implies that the possible
values of (me), for a given T embedding, are the
eigenvalues of T,.

In what follows, we will write down the smooth,
finite-energy monopole and dyon Anscitze satis-
fying the conditions and the symmetries mentioned
in the beginning of this section, with asymptotic
behavior determined by (5.V). The time-indepen-
dent dyon Ansatze have, of course, W, 0. The
form of W, is dictated by the already mentioned
symmetries, but its asymptotic behavior can
actually be determined only by the field equations,
except for some partial information we extract
from the condition D+-„„O(1/r'), which is
required for the energy to be finite.

As will become clear from the following discus-
sion of aQ the T embeddings, there can possibly
exist spherically symmetric monopoles and dyons
only in the sectors corresponding to magnetic
charges" m =+1/2e, +1/e, +3/2e, and +2/e. Al-
though in each of those sectors there exists more
than one spherically symmetric dyon, by using
the criteria discussed in the beginning of this sec-
tion, we will uniquely determine and write the
Ansatze of the stable ones.

(A) In the 5 2+ 1+1+1 embedding the only pos-

sible nonzero magnetic charges are +1/2e. This
is the monopole (and its antimonopole) we dis-
cussedinSecs. IIIandIV, wherewe sawthattheI'
symmetry was SU(2) x U(1). No other possibility for
a stable monopole exists in this embedding.

(B) The possible magnetic charges in the 5

-2+2+1 case are +1/2e. Since here we ca'nnot

have a I' larger than the U(1) x U(1) generated by
(1/2~2) diag (1,1, -1, -1,0) and 2 diag(1, 1,0, 0, 0)
the monopoles and dyons for this are expected to be
unstable and decay to the previous one.

(C) Let us now consider the 5- 3+ 1+1 embed-
ding V= diag(0, 0, T&»},with T,» the standard
spin-1 representation of the generators of SU(2).
Here, the highest possible residual I' symmetry
is an SU(2) x U(1) acting on the upper two compo-
nents of the S-piet, and is achieved only for f~O,
H, = col(0, 0, 0, v, 0), and (1/v)C, = diag (1,1,1, --,'
-e, ——', + e). Notice that what we have actually done
in this case in order to simplify, by having stan-
dard f's, the construction of the Ansatz, is to con-
sider SU(3) c again acting on the upper three com-
ponents of the 5-piet, but (1/e)Q = diag(--,', --,', --'„
0, 1). Since Q= —T, = diag(0, 0, -1,0, 1), the mag-
netic charge of this monopole is m=1/e, and the
color-magnetic fields do not vanish at infinity.
The spherically symmetric Ansatz in this case is'

-4(r) =

'-24'i- 43
3
2 1 43

+Q, (r)r T+P,(r)(r V)',

H(r) =—h(r) —Y, ,(8,p), Y,„are the spherical harmonics

Y„(e,y)

Yll (~) 4 }

i(5, S)

W(r) =- +—(Ko(r)+K, (r)I'"T+K2(r)(r 7)', 1 xrj+—(7-r(r 7), L,(r)+ f„(r)r T+I.,(r)(r T)').Txf' 1 1-
W, (r) =of the same form as (1/v)C (r), with the re-
placement

Z, (r}, i =1,2, 3

where (A, Bj~AB+ BA. A few comments are in order:
(a) C (r), W'(r), and W'(r) are traceless, as they

should be.
(b) Notice that we have required the Ansatz to

satisfy the gauge-fixing condition r W(r) = 0. This
ip compatible with spherical symmetry. "

I

(c) All the radial functions are real, for the
same reasons as in the 5- 2+ 1+1+1 Ansatz. '4

(d} Also, notice that in this case we cannot re-
quire invariance of the Ansatz under simultaneous
inversion of r and T, since H(r) does not have this
invariance for h(r) wO.

(e) Observe that the chosen form of JI, forces
the last three components of H(r) to have ~T~ =1.
In order for H(r) to be a singlet under L+ T, we
had;to require ~L~ =1 also. This is why we used
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the Y, 's in the Ansatz for K
(f) Along the +z axis at infinity 4(rz) -4„and

H(rg) P,. This leads to

p, (r)-~~, y, (r)-g 2+2, y, (r)-g —2'-1,

(r) (4v/3)'t'vg .
(5.9)

The asymptotic form of %' has to be the one given
in (5.7) with I(r) = 0. This leads to

K,.(r) =0, Z„(r) . -0, i=0, 1,2. (5.10)

Finally, D+ ~ 0(1/r') for the energy to be finite
and as a consequence

l

J,(r) O(1/r') . (5.11)

(D) The embedding 5- 3+ 2 does not lead to any-
thing interesting to us, the reason being that the
possible magnetic charges in this case are +I/e,
+I/2e, and the I' symmetry cannot be larger than
the U(1) generated by —,

' diag(1, 1,0, 0, 0). As a
consequence, we expect those monopo)es to be un-
stable and decay to the ones we have already dis-
cussed.

(E) We now come to the case 5-4+ 1, with T
= diag(T&3&», 0) and T&,&» the SU(2) generators inthe
spin- —,

' representation. The l" symmetry in this
case can at most be the U(1) generated by (I/2~p)
diag(1, 1,1, 1,0), and if we require invariance un-
der simultaneous inversion of r and T, we have the
most general Ansatz:

+P,(r)r T+y, (r)(r 7)'+y, (r)(r T)',

4$,(-r) —5$,(r)

e(r) =— W, (r) =the same form as —4 (r), with Q~-J~(r), 4=0, 1,2, 3
1

(5.12)

and

W(r) = — + (K—(r)+ K—, (r)r T +K,(r)(r.T)'+K,(r)(r T)', T xr).
gx gz

with all the radial functions real. The possible magnetic charges in this case are +3/2e and +1/2e. In the
sectors with m=+1/2e we have already found more symmetric monopoles. There exists more than one
possibility of spherically symmetric monopoles with m=+3/2e. All those have the same F symmetry, and
we cannot use this criterion to decide which the stable one is. Notice, though, -that in one of the possible
Ansatse, namely the one with I = diag(I&», 0, 0), 4„and Po as given by (2.V), we have @=I;T, = diag(--,', —
--,', $, 0) = —,'&I&&/e, which is purely electromagnetic. At infinity the corresponding monopole has no color-
magnetic field. Considering this as an indication of smaller energy, w'e give the asymptotic behavior of
the radial functions appropriate for this monopole. Following the same procedure as before, we are led to

&&.(r)-16(«+2o), &&i(r)--g 24 &&2(r)--Z
4

y, (r) -g, h(r) -gv, 4J, + 5J', -0(1/r'),a+4
(5.13)

K(r)- (5M3 —1), K, (r)—,K,(r)- (1 —M3), K,(r)-0.

(F) Finally, we consider the embedding 5- 5. The T's now have the standard form of the generators of
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SU(2) in the spin-2 representation. The possible magnetic charges now are m=+2/e, +I/e. Again, since
there is no residual I" symmetry a nontrivial solution can have in this embedding, the monopole we found
in (C) with m=+1/e and I'=SU(2) xU(1) is expected to be the stable one in this sector. Thus, we are left
with the new option m=+2/e. Again, there are more than one possible spherically symmetric Ansatze with
these last magnetic charges. Our guess is that we will have the stable monopole if we take 0,
=

col�(0,

0, v, 0, 0), (I /v) 4, = diag (1, 1, ——,
' —e, 1,——,

' + e ), (1/e) q = diag (-—,', ——', , 0, ——,', 1), SU(3) c acting on the
first, second, and fourth components of the 5-piet, and I =-,' diag(o, 0, 0, 0) with o the Pauli matrices. The
corresponding Q = diag(-~, -$, 0, 1,2) = 2@/e.—(5/v 3 )A. ', where' we used X'= (1/2~3) diag(1, 1, 0, -2, 0).
Consequently, these monopoles and the associated dyons have magnetic charge m=2/e, and their form is

—4 (r) =-24, (r) —~5&,(r)+y, (~)r T+4,(r)(r T)'+4, (r)(r T)'+P, (~)(f"T)',

H(r) =—h(r)
1

W, (r)=the same form as —C(r), with Q, -J,(r), k=1, 2, 3, 4

and

W(r) = — + (K—o(r) + K(~)f"T+ K(r)(f"T)'+ K3(~) (f" T)'+ K4(~)(f"T)', T xr)

+—PT —r(r T), L(r) +L, (r)(f"T)+ L,(r)(f"T)'+ L,(x)(f"T)'+ L,(x)(r ~ T)')

with all the radial functions being real and W(r) satisfying the gauge-fixing condition i'W(r) =0. It is easy
to check that (L, + T,)H=O and (L„+TB)H=0. Finally, the fields 4(r), W, (r), and W'(r) are all traceless.

The asymptotic behavior of the radial functions in the Ansatz is

4+a 34- 29a 4+a 5a —10
4,(~)--

12 r, e.(~)-
24 g, 4.(~)-

12 A, 4.(~)-
24

h(r)-(4w/5}'~'vg, K,(r)--~, K„(v)- -~, K,(r)-~, K,(r)-~, K,(x)-0, L(x)- ,0z=0, 1,2, 3, 4.

How fast the asymptotic values are approached is, as always, determined by the field equations.

VI. SUMMARY AND DISCUSSION

We showed that spherically symmetric mono-
pole and dyon Ansatze exist only in the sectors
with magnetic charge +I/2e, +I/e, +3/2e, and
a2/e. The existence of a spherically symmetric
Ansatz does not guarantee the existence of a solu-
tion of the field equations. Using the intuitive ar-
gument that the larger the symmetry of a configu-
ration, the smaller its energy is, we were able to
uniquely specify and write down the Ansatz for the
monopole and dyons that have a greater chance of
being stable in each sector. We concentrated on
the dyons with the smallest possible magnetic
charge (1/2e). We discussed their properties in
detail. We used the Bohr-Sommerfeld quantization
condition with a plausible definition of periodicity
in gauge theories to determine the stable dyon
quantum numbers, which turned out to be normal.
The first stable dyon has, apart from the magnetic

charge, the same quantum numbers as the super-
heavy Xgauge boson. Thus, it can be involved in
processes analogous to the ones which employ the
X's. The fact, on the other hand, that their den-
sity in the universe seems to be extremely small,
makes them phenomenologi cally uninteresting.

We determined the magnetic properties, both or-
dinary and color, of the stable dyons in every sec-
tor. Those properties depend only upon the as-
ymptotic behavior of 5", , and this is uniquely given
by (). But, for the electric properties as well as
the B-L of the dyons we need the asymptotic be-
havior of $V„and this we do not know a priori
without actually solving the field equations.
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