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I make a preliminary study of quaternionic chromodynamics [i,e., U(2) algebraic chromodynamics] as a
theory of composite quarks and leptons. In the unphysical symmetric static limit in which the gluon field is
massless and the fundamental two-internal-component spinor is infinitely massive, I compute the internal-
symmetry structure of the residual interactions of three-spinor composites, using the heuristic quark and
lepton identifications proposed by Harari and Shupe. Three types of interactions appear: (i) a color-singlet,
flavor-diagonal photon, coupling to the electron, quarks, and neutrino with the correct charge assignments,
and a second photon coupling to the neutrino and quarks, but not to the electron; (ii) color-changing, flavor-
diagonal gluons, coupling to the quarks in a pattern resembling, but not identical to, SU(3) quantum
chromodynamics; (iii) color-changing, flavor-changing gluons, three exchanges of which can produce a weak
flavor-changing transition between color-singlet states, without requiring the existence of conventional
intermediate bosons. While certain aspects of the symmetric static limit are clearly at variance with standard
phenomenology, the results make it plausible that a more realistic calculation, taking symmetry breaking
into account, may reproduce the observed features of the usual SU(3)„l„)&[SU(2) )& U(1)]„„k.,l„t g t model.
I briefly discuss some ideas about symmetry breaking, and describe a mechanism leading to topologically
inequivalent quark-lepton generations.

I. INTRODUCTION

It is now widely accepted that the observed
properties of matter can be explained as arising
from the interactions, through gauge-field inter-
mediaries, of spin --,' leptons and quarks. These
fermions appear' to occur in three families, or
generations, containing four members each, to-
gether with their corresponding antiparticles, as
indicated in Table I. Within each generation there
is a charge-multiplicity regularity which has been
graphically depicted by Glashow' as a cube on its
end (Fig. l}. The appearance of such regularities,
and their associated weight diagrams, has in the
past always been indicative of composite struc-
ture, and so it is natural to seek an explanation
for the regularities of the quark-lepton generations
by postulating the existence of further substruc-
ture. Recently, Harari' and Shupe' have proposed
a set of simple heuristic rules for building com-
posite quarks and leptons. They postulate the
existence of two types of fundamental spin -& ob-
jects, which in this paper I will call simply U
and D spinors, carrying, respectively, electric
charges 1 and 0 in units of e/3. They then con-
struct the quarks and leptons in the lowest gen-
eration as three-spinor composites as indicated
in Table II, and postulate the two higher genera-
tions to be internal, dynamical excitations of the
lowest generation. These rules clearly give a
simple accounting (based essentially on the fact
that 8=2') for the cubic regularity depicted in
Fig. 1. What is needed to carry the Harari-Shupe
idea further is a plausible underlying dynamics

1 0 0 1'
~0 1.0 1.' .1 0. '

0 -g'
3 1 0

7.i 0. 0 -1.

TABLE I. The three fermion generations, according
to standard phenomenology.

Charge
(units of e/3)

Generation 3
Generation 2
Generation 1
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00
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Pp Vp

ve ve

for the constituent U and D spinors.
My aim in this paper is to give a preliminary

analysis of what I believe to be a promising can-
didate for the dynamics of quark-lepton constitu-
ents. In a recent paper, ' I proposed a generali-
zation of the usual SU(n} quantum chromodynamics,
which I called "algebraic chromodynamics", in
which the equations of motion are covariant under
local oPerator- valued gauge transformations. I
further suggested that the n =2 version of alge-
braic chromodynamics might provide a suitable
dynamics for quark-lepton constituents, and this
is the idea which I wish to pursue further here.
Let me begin by recapitulating the central argu-
ments of Ref. 5, as specialized to the n=2 case.
Let v', a =0, 1, 2, 3 be the usual Hermitian bases
for U(2),
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Q = 3, N =3

Q= 2, N=3

f'„„, related by

B =O'—Ta
v v2

BBp, BBv

(5a)

Q= ), N=3
which implies that

Q= 0, N=1

FIG. 1. Charge-multiplicity pattern within a genera-
tion (ignoring -the missing helicity components of the
neutrino) .

(5b)

%hen the potential B" is varied, the change in the
field strength is given by

normalized so that

5E„„=D„5B —D„5B„,
with D„the covariant derivative defined by

(6)

tr(7'7~) = 25N~

The T's satisfy the algebra

Ta-'Tb = abc-'Tc,

(2) D„W= „W+ig[B„,W]
8

~X

when acting on an arbitrary quartet operator

W = ZV'2T'.1

(7)

~ abc —
~bca —

~
cab

~obc 1 abc
2

q
abc g abc-z

2
1&a,b, c &3

and obey the completeness relation

(3)
From the Jacobi identity for the commutator, it
is readily verified that E„„satisfies

D~E..+D.E~~+D.E.~ = 0~

[D„,D„]W=-ig[E „,W].

For the dynamical equation I take'

(9)

AB CD AD BC P
Ev p, J.v J.v jav 1 Ta (10)

AB CD AC~BD '

TABLE II. The Harari (Ref. 3)-Shupe (Ref. 4) assign-
ments for composite leptons and quarks. The funda-
mental spinors U and D have charges Q=1, Q=O, re-
spectively, in units of e/3.

Qj[y Q2y Q3

i~ d2~ d3
~e

U(U2U3

D~U2U3, U~D2U3, UjU2D3
U jD2D3B DJU2D3B DgD2U3

D(D2D3

Since the algebra of Eq. (3) is just the algebra of
quaternions, the theory which I am about to de-
scribe can be viewed as a quaternionic general-
ization of spinor quantum electrodynamics —whence
the name "quaternionic chromodynamics" —and
in fact is similar to the quaternionic quantum me-
chanics proposed in 1962 by Finkelstein et al.'
However, I will adhere to the Pauli matrix reali-
zation for quaternions, since the use of Hamil-
ton's abstract notation obscures the central role
which spinors play in the theory. To proceed, I
introduce a quartet gauge potential or connection
operator b„', and the corresponding field strength

with the source current j'" constructed from a Di-
rac spinor field X„(with two internal components
labeled by A= 1, 2) according to

i'"=XA(- '~")' r"x =x(--2~*)'r "x.

Using the completeness relation of Eq. (4), Eq.
(10) can be written in the equivalent form

(12)(~ )AB 2 2 (~ )AB 2XAy XB '

For the fermion equation of motion I take (with

m, a bare mass)

XB(/+imo) = igB„Bcxcy-"=-igB„Xy",

igy XP cA igr XB

8 = y "9/sx".

(13)

Taking the covariant derivative of Eq. (10) and
using Eq. (9), one finds that the source current is
covariantly conserved,

D J"=0
v

and this may be verified directly from Eqs. (7),
(12), and (13), checking the consistency of the
field equations.

It is now straightforward to show that the above
system of field equations is covariant under gen-
eral operator- valued gauge transformations. That
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is, defining the gauge variations 5, of y, y, and

B„by

(15)

xa=&x.'a~ x~=-x.'g~ ', c&"& '=-&"'. (15)

~,X=-&XU ~,X=iUX, ~, &„=-g 'DvU,

one can show that the field equations are gauge
covariant, zvithout eve~ reorderin operator terms.
The details of this calculation, and the construc-
tion of an appropriate action principle for algebraic
chromodynamics, are given in Ref. 5. The signif-
icance of operator gauge covariance is that the
gauge invariance of the theory does not depend on
the assumption that operator factors with space-
like-separated arguments commute. In fact, in
the calculations of Sec. II I will explicitly violate
the conventional microscopic causality postulate
by letting the gauge potential components b„' be
noncommuting matrix-valued variables. It is this
freedom for the gauge potential components to take
on matrix values that permits the generation of
effective gauge interactions for composites, such
as sn SU(3)„„,interaction, which involve gauge
groups not explicitly appearing in the formulation
of the underlying field equations.

Because quaternionic chromodynamics is a
nonlocal field theory, one suspects that the TCP
theorem will be violated. To see explicitly that
this does happen, let us calculate the action of
P, T, and C conjugations on the equations given
above. Since the space-spin structure of the
theory is that of standard Yang-Mills quantum
chromodynamics, calculations identical to those
for the Yang-Mills case show that quaternionic
chromodynamics is P and T invariant. To check
C invariance, let us make the charge-conjugation
substitutions (with superscript T indicating the
Dirac- spinor-index transpose)

qabc —
q

bca —
q

cab

pbc — j abc
2 LJ

q''= i&'' 1-a,b, c-3
(20)

and involves the structure constant q
'" appearing

in the multiplication law for conjugated quantern-
ions. Hence quaternionic chromodynamics is C
violating (and in a sense, maximally C violating),
and since it is P and T conserving, it is CPT
violating as well. To see that this is consistent
with the usual CPT theorem for local field the-
ories, we note that the C violation and CPT vio-
lation come entirely from the term

~obc(b bye pic )
L [5b 5b] (21)

in Eq. (5b), which would vanish in a, local field
theory, and which can be nonvanishing in quater-
nionic chromodynamics only because the micro-
scopic causality postulate has been dropped.

To make a connection between the two-inter-
nal-component spinor of quaternionic chromo-
dynamics and the U, D states of the Harari-Shupe
scheme, I take

Xc&=U

X..=D. (22)

Referring to Eq. (17), we see that the charge ma-
trix acting on the spinor

(23a)

However, Eq. (19) is not an invariance of the field-
strength-potential relation of Eq. (5), which is
changed to read

Working in an operator gauge in which the fermion
fields obey canonical anticommutation relations, '
the source current becomes

is
a — &a1

2 (23b)

while the corresponding charge matrix acting on
the antispinor

I 1 ax v — & a v
~ B~2~ ~BA~ X A ~ 27~ X (17) (24a)

where I have dropped an infinite internal-sym-
metry singlet c-number piece'. Since ls

iD

,'T'= e,(-2r*') (a n—ot summed),

eP, ,=-1, &2 =+ 1,
(18)

the gluon-fermion interaction term is left invari-
ant in form if we make the substitutions

qa — 1
& ga (24b)

I will do all the calculations for the case of com-
posites formed from three spinors, and then in-
fer results for the antispinor case by using the
fact that

Qo Qo 1 ToQog 2

(a not summed). (19)
Q+=ToQ+Yo g=] 2 3

(25)
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That is, in quaternionic chromodynamics, anti-
spinor charges are related to spinor charges by
a rotation of the vector formed from the a =1,2, 3
components by the angle m about the internal a
= 2 axis, followed by a shift in the a =0 component
of the charge by -1; these operations are easily
implemented in the color-charge algebra calcu-
lations of Sec. II. Since the theory is not C invari-
ant, one of course cannot use C conjugation of the
gluon field to relate the spinor and antispinor
calculations.

Before turning to the detailed calculations which
follow, let me conclude this section with a simple,
heuristic argument which shows that quaternionic
chromodynamics gives the U, D states the elec-
tric charge assignments needed for the Harari-
Shupe scheme. Consider the lowest-order Feyn-
man diagram for the interaction of two spinor
lines (Fig. 2}, which gives the matrix element

(26)

The sum over the internal index a can be rewritten
in the form

a a 0 3 0+3+ 03 03
2 (2) (1) 2 (2) 2 (1) 2 (2) 2 (1)

course an undesirable feature of the symmetric
limit of the theory; a discussion of symmetry-
breaking mechanisms is given in Sec. III.

II. STRUCTURE OF THE LEADING RESIDUAL
INTERACTIONS ACTING ON THREE-SPINOR

COMPOSITES

In this section I analyze the internal-symmetry
structure of the leading residual interactions
acting on three-spinor composites in quaternionic
chromodynamics. In order to obtain a problem
which can be studied using existing computational
machinery, ""l consider only the (unphysical)
symmetric static limit of the theory, in which
the gluons are massless while the two components
U, D of the fundamental spinor have equal, infinite
masses. In the static limit with three spinor
sources present, the source current may be re-
presented in the form"

(28)

where the 7',. are three independent sets of U(2)
matrices,

+ 1~1+ i2 1~1-i2+ 17-1-i2 & ~1+ i2
(2) 2 (1) 2 (2) 2 (1) P (27) [T,, r,'.]= 0, i ~j

which can be regarded as consisting of four dif-
ferent types of vector particle exchange. The
1+i2 gluons are flavor changing, and in the more
detailed analysis of Sec. II contribute to the weak
force. The 0+3 gluon is a photon, coupling to the
U with charge 1 and to the D with charge 0, as
postulated in the Harari-Shupe rules. The 0- 3
gluon is a second photon, coupling to the U with
charge 0 and to the D with charge 1." The ex-
istence of two photons with these coupling patterns
will emerge again from the analysis of Sec. II,
where the residual interactions acting on three-
spinor components are calculated in a careful way
so that coherence effects, such as color, can be
seen. The existence of a second photon is of

—,'~'. -'w ~=q"'-'~'. (i not summed).
(29)

(30)

The current of Eq. (28) is evidently an operator
acting on the 8-dimensional Hilbert space spanned
by the 8 states

yP ~a(2)
FIG. 2. Lowest-order Feynman diagram for the inter-

action of two spinor lines.

where I have labeled the states to correspond with
Table II. A key feature of algebraic chromo-
dynamics' is that the field equations with sources
can be solved in terms of operators acting on the
finite-dimensional Hilbert space of Eq. (30), by
expanding the potential b'„and the field strength
f;„in the form
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fl'= g bi30
i

f aa =Zf a.~i ~

(31)
with [, ] the commutator of its arguments

[ul v] =uv —vu . (35)

Here the b'„, f'„„are c-number fields, while the
2via form a complete basis for the (3, 0) color
charge algebra, defined as the minimal algebra
of quartet operators containing the three spinor
source charges

qa- ya qa — 7 a qa-1 1 1

Since the computation which follows makes ex-
plicit use of the structure of the (3, 0) color charge
algebra, I will pause briefly at this point to review
the isomorphism" between the general (N, O} al-
gebra and the group algebra of the permutation
group 8„„.Letting 7,' denote the "carrier" ma-
trix which appears in Eq. (5), and using the fact
that

and closed under composition with the outer pro-
duct

7-aTb —2q ab c~c
0 0 0 t (36)

Pa(u, V) = 2qaaa(u V'- V u'). (33)
we can rewrite the outer product of Eq. (33) in
the matrix commutator form

For future reference, it will be useful to have
the following explicit form of P, obtained by sub-
stituting Eq. (3) into Eq. (33) and regrouping into
0 + 3 and 1 + i2 components:

PO+3(u vl —pu0+3 v0+3l+ ul-i2vl+i2 vl-i2ul+i2

'(u, v)=[u ', v ']+u +' v i'-v +i2u

(34)
Pl+i2( )

— 0-3 1+i2 1+i2 0+3

0-3 1+j2 + 1+j2 0+3

Pl-i2(u v) u0+3vl-i2 vi-i2u0 3

-V0+3u' 32+u' "V' '

P= [u, v],

P = T,' P'(u, v),

u=T u0

V = &aVa

(3V)

q —~al Tai 02' (38a)

with matrix elements

In this form, the source charge q;. = 27.a corr-es-
ponds to the matrix

(qi)A0' "A B " B ( 0)A B ( 1)A B ( i-l)A, B. (2 j)A B( '+1}A. B.. (IN)A B.N 0 N 0 0 1 1 q-1 j-1 j Z )+1 g+1

~ ~ ~ Q Q Q Q ~ .o ~

A1B Ai 1Bi 1 A0B~ AiB0 Ai~lBi~l A. NBN & (38b}

permutation in
cycle notation

color charge algebra
element

(Om) —q: =2T:—
(Oi i ~ ~ ~ i ) —2"-'(q xq x ~ ~ ~ xq. )'

1'~

(i,i, ~ ~ ~ i ) —2"6a0(q, xq,. x ~ ~ ~ xq, )',
(38)

with the indices i, ~ ~ i all distinct and with && de-
noting the outer product"

where I have used the completeness relation of Eq.
(4}. Clearly, the effect of q& is just that of the
permutations (Oj), in cycle notation, on the num-
bers 0, 1, . . . , N labeling the spinor indices. This
permits one to set up an isomorphism between
elements of the (N, O) color charge al'gebra and
the permutations on the set of %+1 objects, with
the algebra outer product P just corresponding to
a commutator of permutations. When worked out
in full, the correspondence (in the n =2 case")
reads as follows:

(u x v)'=qa"u'v'

which is associative by virtue of the identity

~abc~ cde —
~ daeva bee

(40)

(41)

As a result of this isomorphism, the problem of
finding the diagonalizing bases for the (N, 0) color
charge algebra is reduced to the problem of diag-
onalizing the group algebra of the permutation
group SN„, which is explicitly soluble using clas-
sical group-theory methods. " The results of this
calculation for the case of the (3, 0) algebra are
given" in Tables III, IV, and V. Note that al-
though 54 contains 24 elements, only 12 of these
are needed to provide a basis for the (3,0} alge-
bra.

According to Tables III-V and Eq. (31), the
bound-state dynamics of three massive spinor
sources is described by three independent aver-
lying classical field theories: a classical U(1)
(Abelian) gauge theory, a classical SU(2) Yang-
Mills theory, and a classical SU(3} Yang-Mills
theory, with c-number effective charges given by
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TABLE III. The 12 elements of 84, and the corres-
ponding charge matrix tensor products, which form a
basis for the (3, 0) color charge algebra.

(01) T'

q, = (02)

q, = (03) +&a., =(23) a07-b 7-b

r, =(31)

r3 =(12) rf7'2

zo =(321)—(123) 2 5 {q —q

Sf = (023) —(032) —
2 (q' —q ) T 2& 3

z, =(031)—(013) —
2 {q'

s3 = (012) —(021) 2 (q' —q ') & f ~2

tf =(0312)+(0213) 2 (q -q )(q" -q" )73Tf~2
-(0123) —(0321)

t2 =(0123) +(0321) 2 (q -q )(q —q" }&f+27'3
—(0231}—(0132}

TABLE IV. A basis which diagonalizes the (3, 0)
algebra.

V(1):

Sv(2):

x =qf+q, +q, +~i+~, +~,

1
893

Z

2 ~ (SO Sf S2 SB)Sv3

y3= 24(qf+Q2 —2Q3+&f+&2-2&3+&i+2t2)

the projections of the charge matrices Q»,
along the diagonalizing bases. I have developed
elsewhere" detailed ideas on how a confining po-
tential may appear in such a classical system, as

TABLE V. Initial charges Qf 2 3 expressed in terms of
the diagonalizing basis.

1
f

=
6 x +y3+v 3yi+ z3+2z4- z8V3

q2=6x+y3-&3yi- Z3-2Z6- ~ z83

Q3=6 x —2y3-2zf+ ~ z83

Qg+Q2+Qs =k'z —2(zg- z4+zs)

a result of the action of monopolelike background-
field solutions associated with the SU(2) subgroups
of the overlying classical fields. I will not pursue
these ideas further here, beyond remarking that
the postulated role of SU(2) monopoles in confine-
ment gives an automatic mechanism for the pro-
duction of several quark-lepton generations, if the
quarks and leptons are three-spinor composites.
The reason is that according to Wilkinson and
Bais" and steinberg, "a classical SU(N) Yang-
Mills theory contains at most N- 1 fundamental
SU(2) monopole solutions; hence, the U(1) x SU(2)
x SU(3) overlying classical field theory describing
the internal dynamics of three-spinor composites
can contain 0+1+ 2= 3 fundamental monopole back-
ground solutions, permitting the presence of three
or more topologically inequivalent quark-lepton
generations as different combinations of these
backgrounds are excited."

Without doing any of the detailed bound-state
dynamics, what can one say about the form of the
residual interactions acting between a pair of
three-spinor composites? Because the direct pro-
duct of three SU(2) doublet representations does
not contain any singlet states, that is, because

[ya~ ybl Z&abcyc 2 x 2 x 2 =4+2+2/1, (42)

sv(3): z, =-~4(q, —~3)

Z

Z2 =- —
(Sp —Si- S2+ S3)8

z3 =
8 (Q f-Q2+xi —r2 —tf)

Z4=4 (Qf-~f)

Z

Z5 —— (SP + Sf —S2 —S3)8

Z6=-

it is plausible to postulate that the matrix-valued
components of the gauge field mill not in general
be screened to zero at large distances from a
three-spinor composite. Motivated by this re-
mark, I will further postulate that the leading
residual interaction between a three-spinor com-
posite (1) and a three-spinor composite (2) has
the phenomenological charge && propagator && charge
form

Z

Zv =— (SP —Sf + S2 —S3)8
gab a b +Bah a b +Cab a+ (1)+(2) ~ jj3 (1)j3 (2)j ~$ j~(1)j ~(2)j t (43)

1
zs= —(-Qf -Q2+2Q3- &f-&2+2&3+tf+2t2)Sv'3

[z„aq] =if'~&z,

with A'b, B,,'. , C,', functions of the momenta of the
composites. In the absence of symmetry breaking,
one expects the coefficient tensors to be diagonal
in their indices,
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TABLE VI. Action of the g =0+3 component of the elements of the (3, 0) color charge algebra on the basis states, with
a=1/(4&3), P=~»q, y=f. Defining Tr=tr»tr2tr3, the matrices x', yf, and z'; tabulated in Tables VI-IX have the following
trace norms: Tr(z'z') =108, Tr(y~') =f6», , Tr(z»z&) =» &», , Tr(z'y») = Tr(z~z»)= Tr(y»z&)=0.

Q2 Q3

0+3

0+3
X2

0+3
S3

0+3
Zi

ZO+ 3
Z2

z"'Z3

Z"'Z4

Z"'Z5

z"'Z6

0+3
zv

0 3
Z8

0'

0+3 6 +

y(u2- ui)

—Zyu3

yQ3

—yQi

iy(u2 —u3)

y(Q3- ui)

ZyQ2

0.(2Q2 —Q3)

y(ui —u2)

ZyQ3

y(u2 —u3)

—ZyQ i

iy(u3- ui)

0.(2uf -Q3)

iy(ui —u2)

y(u2- ui)

y(u3- u2)

y(gi Q3)

ZyQ2

—n(uf+Q2)

3ui+u2+u3 3u2+uf +u3 3Q3+Qi+Q2 2df +d2+d3

o.'(df -d3)

i~(d2 —d3)

P(d f+d3-2d2)

i'yd2

ydi

yd3

-Zyd3

-agf

2d2+d i+ d3

~(d3-d2)

i&(d3 —df)

P(d2+d3-2d f)

zydi

-'yd2

yd3

iyd3

—Ad2

2d3+di+ d2

~(d2-df)

i&(df -d2)

P(di+d2- 2d3)

-yd2

-Zyd2

Zydi

3V8

yV

yVe

yV

0

Aab -A &ab
symmetr i c limit

~ah gab
i j symmetric limit i j

Cab gab
fj symmetric limit C jj~

(44)

while when dynamical symmetry breaking is in-
cluded, their structure will probably be more
complicated. According to the above-stated as-
sumptions, the internal- symmetry character
of the residual interactions acting between com-
posites can be inferred by computing the action
of the diagonalizing bases x', y,'. , z',. of Tables III
and IV on the basis states of E»I. (30).

This calculation is entirely straightforward, and
the results are summarized in Tables VI-IX.
From the entries in these tables, one can also in-
fer the action of the diagonalizing bases on the
conjugated states e, u, 2 3 d, 2 3 vg by using the
relation between antispinor and spinor charge
matrices given in E»I. (25). According to E»I. (25),
the change from spinors to antispinors is accom-
plished by changing the sign of the a =1, 3 com-
ponents of all operators in the color algebra,
while leaving their a =0, 2 components invariant,
followed by a shift in the 0 components of the
source charge matrices (»)0», by -1. Since from

TABLE VII. Action of the a =0-3 component of the elements of the (3, 0) color charge algebra on the basis states,
with &=1/(4v3), p=f2, y=4.

Q2 d2 Ve

0-3

y0-3

0-3

2gi +Q2+Q3

&(uf -Q3)

«(Q2-Q3)

2g2 +gi +Q3

&(Q3- Q2)

i&(Q3- gi)

2Q3+ gi +g2

&(Q2- ui)

i~(uf;u, )

3di +d2+d3 3d2+di+d3 3d3+df +d2 6'
0 0

0

0-3 p(uf+Q3 —2Q2) p(Q2+Q3-2ui) p(ui+g2 —2g3)

z' '
Zf

ZO-3
Z2

0-3
Z3

ZO-3
Z4

ZO-3
Z5

ZO-3
Z6

0-3
Z7

0-3
Zs 0

yQ2

ZyQ2

iyQ3

—+ui

yQi

-iyui

yu2

—yu3

ZyQ3

yQ2

ZyQ2

ZyQ i

2 NQ3

y(d2 —di)

-Zyd3

iy(d2- d3)

y(d3-df)

iyd2

e(2d2 —d3)

y(di- d2)

iyd3

y(d2 —d3)

-iyd 1

yd2

iy(d3- d f)

n(2di- d3)

zy(di —d2)

y(d2 —d i)

y(d3- d2)

zyd f

y(di- d3)

-Zyd2

-~(df+d2)

0
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TABLE VIII. Action of the a =1+i2 component of the elements of the (3, 0) color charge algebra on the basis states,
With A=1/(493), P =~i2, y=+4.

Q2 Qs di Ve

i+ i2

i+ i2

i+ i2
X2

i+ i2
Xs

Zi+ i2
Zi

z""Z2

Zi+i 2
Z3

i+ 2
Z4

i+ i2
Z5

zi+ i2
Z6

zi+ ~2
Z7

i+ '2
Z8

ice+ —i'Ye

-ye+

ice -ice+

ice+

2 cLe

Q2+ Qs

&(ui- us)

i&(u2- us)

Qi+Qs

O.'(us- u2)

i(QS- ui)

Qi +Q2

io'(ui- u2)

YQ2

—iYQ2

—Yui

i YQ3

SYui

YQ2

'Yu 3

iYus

nu2

'YQ2

gYQ2

Pui

—i' i
-2 &us

p(ui+us- 2Q2) p(u2+us- 2ui) p(ui+Q2 —2us)

di+d2+ ds

Yd3

iy(d2- di)

y(2i- d2)

zy(ds- d2)

-'Yd2

iy(d, -ds)

&(2ds- d i-Z2)

Q. .. Q, , ~
—1~x'- x' —6, (45)

Eq. (34) we see that the 0 components of the oper-
ators u, v enter the outer product P(u, v) only
through commutators, but never through anticom-
mutators, we conclude that shifting the 0 cornpo-
nents of the charge matrices by a c number cannot
change the abstract structure of the color algebra.
In particular, such a shift can have no effect on
the non-Abelian diagonalizing bases y', , z'„and
therefore must result in only a shift in the 0 corn-
ponent of the Abelian element x. Referring to
Table 7, we see that

Ve Ve ]

y(%3 ~ @0%3

Z(%3 ~ ZQf3

X0%3 ~ X953 6

Ze"i2- —Ze'"2
7 ZV =X~ $i q Zi .

(46)

and so the rule for conjugating Tables VI-IX is as
follows

e'- e,
1,2, 3 1, 2, 3 P

Nfl 2 3 dl 2 3

TABLE IX. Action of the a =1-i2 component of the elements of the (3, 0) color charge algebra on the basis states,
with & = 1/(4&3), P =~i2, y =+4 ~

Qs di d2 ds

i-i2

i-i2

i-i2
P2

i-i2
3'3

i-i2
Zi

Zi-i 2
Z2

Z
i-i 2

Z3

Zi i2
Z4

Zi-i2
Z5

i-i2
Z6

Zi-i2
ZT

Zi-i2
Z8

ui+Q2+us

—Yu3

iy{Q2 —ui)

y(ui —u2)

iy(QS —Q2)

—'YQ2

iy{ui —us)

d2+d3

&(di —ds)

i o.'(d2 —d 3)

P(d i +ds- 2d2)

-z'Yd2

'Ydi

-yds

i7ds

ud,

di+ds

~(ds- d2)

i&(ds- di)

p{d2+ds —2d i)

Yd i

i/d i

'yd2

-g'yd3

d i +22

&(d2 —di)

i~(d, -d2)

P (d i +d2 —2d 3)

Vd2

i'Yd2

-yd,
—i Ydi

-2&ds

i Y Ve

YVe

0 iy Ve

YV

AVe

Ve

ig Ve

Z YVe

2 Ave 0
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TABLE X. Operator matrix elements requiring a shift under charge conjugation, as indicated in Eq. (46) of the text.
The operator [2 x —2(zi —z4+z6)] + plays the role of the conventional electric charge, and has the correct charge-con-
jugation properties.

0+3

[+2x —2(zi —z4+ z6) l
0-3

[2 x —2(z, —z4+ z6) l' '

6e+

Be
Be+
0-

3Qi +Q2+Q3
2gi
2gi +Q2+Q3

-Qi

Bu2+ ui+ u3
2Q2

2Q2 +Qi + Q3

Q2

3Q3+Qi+Q2
2Q3

2Q3+Qi+Q2
Q3

Q3

2di +d2 +d3
di
3di+d2+d3
2di

2d2+di+d3

Bd2+di+d3
2d2

d2

2d3+di +d2
d3
3d3 +di +d2
2d3

B~e
0
6~,
3"e

Ve

0+3

[+2x -2(zi- z4+z6)]"3

x' '
[2 x —2(zi z4+z6)

3e
—3e

0
0

—4Qi +Q2 + Q3
—2Qi
—BQi+Q2+Q3
—Qi

—4Q2+ Qi +Q3
—2Q2
—BQ2+ Qi +Q3
—Q2

—4Q3+Qi+Q2
2Q3

3Q3+ Qi +Q2
—Q3

3di +d2 +d3
—di
-4d i+d2+ d 3
—2di

-Bd2+di+d3 -3d3+di+d2

-4d2+di+d3 -4d3+di+d2
-2d2 -2d3

0
0

~BP
-BP

In Table X I have tabulated, for the three-spinor
and three-antispinor cases, the operators x"', as
well as the charge operators

it suffices to examine in detail only the structure
of Table VI. Grouping the 8 basis states of Eq.
(30) into an 8-component column vector,

(Q, +Q. +Q.)"'= [-'z —2(z, —z, +z,)]"', (47)

to which the shift of -6 in Eq. (46) contributes.
From Tables VI-X, the conjugation rule of Eq.

(46) and the assumed propagation formula of Eq.
(43), we can read off the following qualitative fea-
tures of the leading residual forces acting between
three-spinor and three-antispinor composites.

(i) There are two color-singlet, flavor diagonal
interactions, one coupling to

d2

q =- [-,'x —2(z, —z, +z,)]'",
and the second coupling to

q -=[-,'z -2(z, -z, +z,)]0-~.

(48a)

(48b)
the entries in Table VI can be rewritten as a set
of 8x 8 matrices acting on C. Using the notations

The charge Q has the correct eigenvalues, when
acting on three-spinor and three-antispinor com-
posites, to be the usual electric charge operator,
with the usual charge-conjugation properties. The
charge Q' is a "reversed" electric charge, cou-
pling to the neutrino but not to the electron. Since
a single linear combination of non-Abelian bases,
such as z, —z, +z„cannot self-interact, Q —Q and
Q' —Q' interactions will be mediated by massless
Abelian gauge field propagators. So, in the sym-
metric limit, quaternionic chromodynamics con-
tains a photon, and in addition, a "reversed" pho-
ton coupling to Q'.

(ii) The remaining 0 +3 components give flavor-
diagonal, color -changing interactions. Since
Table VI, giving the 0+3 components, is related
to Table VII, giving the 0 —3 components, by the
tr ansformation

0 0 0 0

(0) [0] [0] (0)

(0) [01 h', l (0)

0 0 0 0

0 0 0 0

(0) [V, ] [0] (0)

(0) [0] [D, ] (0)

0 0 0

g 123

i=1, .;., 8.

(52)

[0]= null 3 x 3 matrix,

0 =null 3 x 1 row vector,

(0) =null 1 x 3 column vector,

the matrix representations of the 0+3 operator
bases take the form

ZU =X~ g] ~8'g

In these expressions, 4, is a number,

a, =0, ix1, 4;6, (53)
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while Y, , U, , and D,. are 3x 3 matrices, which when written in terms of the standard Gell-Mann
X-matrix basis" for SU(3) take the form

1 1
F, = ~(A3 —A4+))6), Y3 = (I —))5+4), F3 = 13(-2A1+A4+A6+V 3X3), (54a)

li 1 1 1
U = —,

)
—, —X, —1, ——k, , U, = —,(1 —X), U = —, ——, —\, +X +~+),1 1 1 (54b)

1 1 1 1 1 1 j. 1
1 4 1) 3 4 t33 4 3$ 4 4 6) 5 4 7I 6 4 41 7 4 5) 3 4 3' (54c)

A simple calculation shows that

F,Y = —,'iY„, l, m, n cyclic (55)

and so the y'" piece of Eq. (43) gives a color
force acting on the three d states, coupling to an

SU(2) „,subgroup. Since the SU(3) structure
constants f;35U) and d6&35) are, respectively, even and

odd under the transformation

z z z 123
4- —6,
5-7,
6 4,
'l —5,

8 —8,

(56)

the matrices D,. are unitarily equivalent to the
matrices ——,'X4', and so the z"3 piece of Eq. (43)
gives a second color force acting on the three d
states, coupling to the full set of SU(3)„„,
charges. However, the matrices U, of Eg. (54b)
are not; unitarily equivalent to A. or X* matrices
[tr(U, )40, tr(U3U5) e0, etc.], and so the z'" piece
of Eq. (43) gives a nonstandard color force acting
on the u states, as well as a force acting between
the v, and the u states. By the transformation of
Eg. (49), the y' ' piece of Eq. (43) gives a. color
force acting on the u states, coupling to an

SU(2)„„,subgroup, while the z' ' piece gives an
SU(3) „„force acting on u states, and in addition
a nonstandard color force acting on d states, as
well as an e' —d interaction. To sum up, quater-
nionic chromodynamics generates SU(3)„„,forces
for composites, without the appearance of SU(3)
structure constants in the fundamental Lagrangian.
However, there are also nonstandard color forces
and nonstandard lepton-quark couplings, which
computationally are associated with the appearance
of the terms u' "v'+", etc. , in the expression for
P~3 in Eq. (34). It is also easy to see, by consult-

I

ing the tables and using Eq. (46), that the flavor-
diagonal, color-changing interactions are not
manifestly charge -conjugation-symmetr ic.

(iii) The 1 ai2 components produce a complicated
pattern of flavor-changing, color-changing inter-
actions. Since the 1 +i2 quanta have electric
charges of magnitude & in units of e, they cannot
be exchanged singly between color -singlet states
(which have integer charges in units of e). The
exchange of three 1+z2 quanta" can change a v,
to an e', resembling (apart from the fact that a
v, should be involved) the effect of the exchange
of a conventional weak boson, without necessarily
implying the existence of a very massive, narrow
state in this channel. In other words, the "inter-
mediate bosons" in quaternionic chromodynamics
may be broad, and possibly relatively low" mass,
continuum states, associated with a complicated
van der Naals-type of interaction. However, in
the symmetric version of the theory computed in
this section, even three-quantum exchanges cannot
convert a u quark to a d quark, or a v, to an e',
since these transitions require the action of a
charge conjugation.

III. DISCUSSION

The results of Sec. II suggest that the idea of
taking quaternionic chromodynamics as the dy-
namics for quark-lepton constituents is on the
right track. At the same time, there are clearly
features of the U(2)-symmetric, massive spinor
version of the theory which rule it out as a realis-
tic model. I believe that a correct quark-lepton
constituent theory may well be obtained by looking
for a symmetry-breaking solution to the equations
of Sec. I, and taking relativistic kinematics into
account, with the following points in mind:

(i) First, one clearly wants to break the U(2)
gauge symmetry down to a U(1) gauge symmetry
in such a way that only the a =0+3 components of
the gauge fields survive as massless excitations.
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e+ Q=B, N =3

Q=2, N =3

Q=), N =5

&e=&e Q=P, N =)

U Q= —2, N =5

FIG. 3. Charge-multiplicity pattern in a generation
including antiparticles, in a scheme with the D and the
D identified. Each dot represents two helicity states.

TABLE XI. Assignments for composite leptons and

quarks, with D and D identified. The 15 states to the
left of the solid line are obtained when one adopts the
rule of Harari (Ref. 3) and Shupe (Ref. 4) that the states
should. be representable as either three-spinor or three-
antispinor composites. If this rule is relaxed, mixings
with the additional states on the right of the solid line
are possible.

Qg, 2, 3

di, 2.3

Vg = P~

+1,2, 3

e

UUU

DUU, . . .
UDD, . . . UUU, . . . (1 3-component state)
DDD = DDD UUD, . . . (6 1-component states)
UDD, . . . UUU, . .. (1 3-component state)
DUU, . . .
UUU

This would give a single photon with the correct
couplings and a single set of flavor-conserving
color gluons.

(ii) Second, one wants the symmetry breaking to
give the correct counting of neutrino states and to
permit d- u or v, —e' transitions to occur through
three exchanges of the massive 1 +i2 component
of the gluon field, while at the same time elimina-
ting nonstandard and charge-conjugation asymme-
tric color couplings to the 0+3 components. I be-
lieve that these objectives may be simultaneously
accomplished by a symmetry-breaking scheme
which treats the U and D components of the funda-
mental spinor asymmetrically, by keeping the U

as a 4-component spinor, which acquires a mass,
while identifying the D with the D state, so that
the D becomes a 2 component, and very likely
massless, Majorana spinor. " This gives precisely
15 three-spinor/three-antispinor states, as shown

in Fig. 3 and Table XI. With D —5 identification,
exchanges of 1 +i2 quanta can now connect the
states on the left- and right-hand sides of the cen-
ter line in Table I, and in particular, three-quan-
tum exchange processes can change a v, to an e'
and a d to a u, as required to give the weak inter-
actions the correct structure. [Parity violation
would have to appear as an appropriate selection
rule governing the couplings of left- and right-
handed helicity states, with the details of the
relativistic bound-state dynamics very likely
playing an important role here. '4 Similarly, the
observed SU(2) x U(1) gauge symmetry of the weak
interaction effective Lagrangian would have to be
sought, in this scheme, as a dynamical conse-
quence of the underlying U(2) operator gauge in-
variance. ] Furthermore, with D and D identified,
the anomalous couplings of the v, to thez,"4,
charges will be suppressed. Since these couplings
appeared in association with the anomalous action
of the zo" components on the u states, it is plausi-
ble that D —D identification will also eliminate
the nonstandard and charge-conjugation asym-,

metric color couplings to the 0+3 components.
If all this works out as conjectured, it would
amount to starting from a skewed (C-violating,
CPT-violating) set of field equations, and looking
for a skewed [U(2) gauge symmetry violating,
U- D asymmetric] solution, in such a way that
the effective long-range components acting on
composites are made fully C, P, and T invariant,
with residual symmetry violations appearing only
in the short-range, flavor- changing interactions.

(iii) Since quaternionic chromodynamics can be
formulated' using axial- vector couplings to the
spinors as well as vector couplings, there are
alternative ways of implementing the reduction
from two four-component spinors to one four-
component and one two-component spinor. For
example, one could introduce parity violation
directly into the kinematics, by building the model
from chiral spinors as in the Weinberg-Salam
model. Clearly, it would be very useful to have
a general analysis of the various forms of the
theory, obtained by coupling a U(2) connection
through vector and axial-vector couplings to
two-component spinors.

(iv) Since it is straightforward" to extend quater-
nionie chromodynamics so that the gauge connec-
tion is coupled to a complex scalar field Q„with
two internal-symmetry components, it should be
possible to implement the various symmetry-
breaking schemes described above by using the
Higgs mechanism. It should be kept in mind, how-
ever, that symmetry breaking may not require
the introduction of scalar fields, a point which I
will discuss in more detail elsewhere.
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(v) Finally, in order to thoroughly investigate
the ideas sketched above, it will clearly be essen-
tial to understand the quantization rules for quater-
nionic chromodynamics, and in particular those
aspects of the quantum field theory in whi, ch non-
locality plays a role. Among other things, such an
analysis wiQ indicate whether the form of the lead-
ing residual interaction postulated in Eq. (43) is

correct, or whether additional terms, not in-
cluded in the analysis of Sec. II, are present.
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