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We present Monte Carlo studies of Z(N) and U(1) lattice gauge theories in three space-time dimensions.
The Z(N) gauge theory is analyzed via its dual spin system. We find that Z(N) has one phase transition
that moves to zero temperature as N~ oo. The U(1) theory has only a single, confining phase. A study of
Wilson loops in Z(8) shows that the coefficient of the area law vanishes for all temperatures below the
critical temperature. No such zero is seen in the string tension for U(1) gauge theory. We also study the
U(1) gauge theory in five dimensions and see a clear signal for a first-order phase transition.

I. INTRODUCTION

Lattice gauge theory was introduced by Wilson'
as a method of understanding quark confinement.
The lattice formulation of field theory preserves
local gauge invariance as an exact symmetry on
the lattice and the lattice spacing provides an ul-
traviolet cutoff, rendering the theory finite. One
feature of the lattice theory is that in strong cou-
pling the theory confines charge. If it can be
shown that quantum chromodynamics (QCD) has
only a single phase, the lattice theory explains
the absence of quarks and gluons in final states of
hadr onic interactions.

However, this same property of confinement
proves to be an embarrassment for the lattice
version of QED, for we know that QED must be
able to describe unconfined electrons and photons.
The theory must find a way out of this dilemma by
undergoing a phase transition at finite coupling,
separating a strongly coupled, confining phase
from a weakly coupled phase without confinement.
It is known' that if the dimensionality of space is
high enough, a phase transition always occurs
for any lattice gauge theory. Recent Monte Carlo
studies' have shown that the lattice U(1) theory
in four dimensions has two phases. It is be-
lieved ' that d=4 is a critical dimension for the
lattice U(1) theory. For D(4 the theory exists
only in a confining phase, whereas for d ~ 4 there
are at least two phases.

Rather strong theoretical arguments indicate
the absence of phase transitions in three-dimen-
sional U(1) lattice gauge theory Polyakov .has
suggested that the excitation of extended topolo-
gically nontrivial configurations will preclude the
occurrence of an ordered low-temperature phase. '
Drell, Quinn, Svetitsky, and Weinstein have re-
phrased this argument in a Hamiltonian variational
formalism. ' Thus, this model represents a sim-
ple but nontrivial example of confinement for all
values of coupling, analogous to the expected be-
havior of non-Abelian gauge theory in four dimen-

sions.
We have performed a Monte Carlo study of the

U(1} lattice gauge theory in three Euclidean di-
mentions both directly as well as via the limit
N- ~ of a Z(N) lattice gauge theory Th.e Z(N)
theory was studied by analyzing its dual —which
is a Z(N) spin theory We. use the hysteresis cycle
of Ref. 3 as our signal of the phase transition.

Hysteresis cycles of Z(N) theory for N=2, 8, 4,
5, 6, 8, 10, 12, and 20 show clear evidence for a
phase transition at a, temperature T,(N) which
vanishes as N- ~ roughly as I/N'. ' A similar
hysteresis cycle of U(1) gauge theory shows no
evidence for a phase transition. Finally, a hys-
teresis cycle of U(1) gauge theory in five dimen-
sions unearths a mell-defined first-order phase
transition.

We have also studied Wilson loops in Z(8) and
U(1) gauge theory. We calculate the coefficient
of the area law' as a function of the inverse tem-
perature P. For Z(8}, we find that this coefficient
is consistent with zero for P greater than the crit-
ical temperature of the Z(8) theory In the.U(1)
theory, the coefficient of the area law is the string
tension times the lattice spacing squared. ' Our
results suggest that the U(1) string tension does
not become zero for any finite P. This analysis
is evidence that the U(l) theory in three dimen-
sions has only a single phase.

This paper is organized as follows: In Sec. II,
we define the Z(N) and U(1) theories. Section III
provides an explanation of the Monte Carlo pro-
cedure and the hysteresis cycle. Section IV A

reviews known results from Z(N) duality for
N (4. In Section IVB, we enumerate the duality
results we use in our analysis. Section V is a
discussion of our results and Sec. VI contains a
brief summary.

II. THE MODELS

Z(N} lattice gauge theory is defined in terms
of the elements U,. & of the gauge group. These
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(2.6)

(2.1), (2.3), and (2.5). The U, s are now para-
metrized by an angle 8„(j),

U,. „- = exp[i8„(j)], 8„(j}e [- v, m].

The action for the U(1} theory is

4E A

g„„,((8})= g [1—cos 8,„(i)],
(f~ Q~v)

where

8,„(i)= 8„-(i)+8„-(i+p) —8;(i+ 8) —8„-(i).

(2.7)

(2 6)

8„„ is the lattice version of the curl of the 8
field. The partition function for the U(l) the-
ory is

FIG. 1. The plaquette {i,p, v).
(2.9)

S„((U}}= Q [1—Re(U,. „-U,,„- „-U,*,„- „-U,. „-}].

(2.2)

The set (i, j, , v} defines a plaquette in the lattice
as shown in Fig. 1. The sum in (2.2) is over all
plaquettes in the lattice, each plaquette being
counted only once, and U* is the complex conju-
gate of U. To minimize boundary effects, we en-
force periodic boundary conditions.

A more convenient way of writing the action is

with

2v

(g jv) N )
(2.3)

U's live on the links of a hypercubical lattice.
The set of all possible U's on a link is an Abelian
group under multiplication. The U's are paramet-
rized by an integer n (mod N) according to

t'. 2v
U~ g= exp~ i—n~ a ~, n~ - =0, 1,2, . . . , N —1.

I, N ' )
(2.1)

The index j labels the sites of the lattice and p,
= 1,2, ~ ~,d is the unit vector in the p, direction.
The action is chosen to be invariant under Z(N)
transformations and as local as possible. It is
given by

The free energy per plaquette is given by

F (p) =—ln F(p), N~= number of plaquettes.
1

We define our order parameter F(P) as

~(p) »(P)

(2.10)

1-cos —n „ for 8 N,(2g

(1 —cos (8,„)) for U(1) .
(2.11)

An nth-order phase transition is a discontinuity
in the (n-l)th derivative of E(P).

The P in (2.9) may be interpreted either as the
inverse temperature or the inverse coupling con-
stant squared of the corresponding continuum
theory. If the theory has a phase transition for
finite P, the coupling-constant interpretation ap-
plies in the phase which includes the point P= ~.
To see this, consider the limit of large P. The
action (2.7) is minimized by configurations for
which the 8 field varies slowly over the lattice.
For such configurations, 8„„is small compared to
2v and the cosine in (2.7) may be expanded to low-
est nontrivial order. This gives the partition
function Z(p) of the U(l) theory in the spin-wave
approxxmatxon,

/~W
Spv(l j —Sg g+ Sf g v —Sg+v p —8f & (2.4) Z(p} lim ZU(y)(p)

The partition function z„ is a sum over the
Boltzmann weights of the lattice configurations = g exp —— g 8,.'(i)

(e} - (f, k, I )
(2.12)

(2.5)Z„(P)= +exp[ PS„([n})].
(e}

In (2.5}, P is the. inverse temperature.
The U(1} theory is defined as the N- ~ limit of

To define the continuum limit, we introduce the
gauge field A, (i) through
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J dk „(x)

with

xexp~ —
2

d x p F,„F,„~ (2.14)
)

F,„=B,A„-Bg„. (2.15)

(2.14) is immediately identified as the usual "sum
over histories" for the U(1) theory if we identify
the U(1) coupling constant e' as

Since the range of 8 is (-w, w), the range of the
A field is ( v/a, v/a). In the continuum limit a 0,
the range of A is unbounded. It is clear that I/a
also acts as a momentum-space cutoff. The field
A on the lattice has Fourier components up to 1/a
but not higher. The lattice may be viewed as a
mechanism to introduce a gauge-invariant momen-
tum-space cutoff in the theory. '

In terms of the A field, the partition function
becomes

or zero P.
Once the lattice has been set in an initial config-

uration, we sequentially change each variable to
a new value chosen from the gauge group in the
following manner: Let x denote the variable be-
ing processed. Define the function

f( ) = xp t.
- p 8(,f4))], (3.1)

where (&g is the set of variables which directly
interact with x, and S(x, (g)) is the action from this
interaction. The function f(x) defines a probability
distribution for x. We replace the variable being
processed by another distributed as f(x). This
procedure is repeated for each variable in the
lattice. While one variable is being changed, all
others are kept fixed. One such sweep of the lat-
tice is called an iteration. The lattice approaches
thermal equilibrium at a given P when several
iterations are performed at that P. This proce-
dure has been shown to give rapid convergence to
statistical equilibrium in regions far from phase
transitions. "

e 2 (pg4-lg)-1 (2.16) B. Hysteresis cycle

There is an interesting inference that can be drawn
from (2.16). The theory described by (2.14) is one
of free, massless photons. The analogy (2.16)
states that for d&4, the spin-wave approximation
(2.12) survives the continuum limit (a-0) only
for P =~. This suggests that the spin-wave phase
is absent in the continuum limit of U(1) lattice
gauge theories for d ~ 3. This argument is merely
suggestive and should not be construed as proof.
It is important to note that the same argument
cannot rule out a spin-wave phase for d=4.

III. THE MONTE CARLO TECHNIQUE

A. Algorithm for the partition function

The idea is to generate configurations of fields
on a finite lattice in such a way that the ensemble
of such configurations simulates the partition
function. Once these configurations are at hand,
it is a simple matter to find the ensemble average
of any function of the field variables.

The procedure we use to bring the lattice to
statistical equilibrium at any given P is the heat-
bath method of Creutz, Jacobs, and Rebbi. ' This
will now be briefly discussed.

The lattice must first be set in an initial config-
uration. One possible initial configuration is to
set all the variables to the identity element of the
gauge group. This ordered configuration corre-
sponds to zero temperature or infinite P. Alter-
nately, the initial lattice variables are picked
randomly from the gauge group. This disordered
configuration corresponds to infinite temperature

Starting from an ordered configuration and a
large value Pp for P, the lattice is heated to P=O
in discrete steps and then recooled to Pp. A num-
ber of iterations are performed at fixed P until
the value of E(P) has stabilized. We go to the next
value of P in the cycle when the average value of
F(P) over two sets of three iterations does not
differ by more than a prescribed tolerance. If
the theory has a phase transition at some je be-
tween 0 and P„a hysteresis effect is seen in
E(P). This effect is much like the hysteresis in
the magnetization as a function of applied field
which is observed in ferromagnets near the Curie
point. It is caused by the slow convergence of the
Monte Carlo procedure because the relaxation time
of the near critical system is large compared to
the unit of time that corresponds to one iteration
of the lattice (or, alternately, when the relaxa-
tion time is large compared to the average time
scale of the interaction).

IV. DUALITY AND Z(N) GAUGE THEORY

A. N~&4

Geometrical duality' in d dimensions associates
q-dimensional manifolds with (d —q)-dimensional
manifolds. In three dimensions duality associates
links to plaquettes and sites to cubes. Thus, the
dual of the gauge theory, where the action is de-
fined on plaquettes, is a spin theory with the action
defined on links. The local invariance of the gauge
theory is reduced to a global invariance in the spin
system.
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FIG. 3. Iterations at the critical point for ordered
and random initial conditions in three-dimensional Z (2),
Z(3), and Z(4) gauge theory.
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Duality in Z(N} theory has been the subject of
numerous investigations in recent years. '0 " The
critical behavior of Z(N) gauge theory in three
dimensions for N ~ 4 follows from the known crit-
ical behavior of its dual spin system. We now
summarize these results:

For N ~ 4, the Z(N} gauge theory is dual to a
spin theory with action defined by

(4.l)

where the sum is over nearest neighbors and s,
is an element of Z(N) on the sites of a hypercubi-
cal lattice.

The duality relations relate the coupling k of
the spin theory to P, the gauge coupling. " Thus,

0.6

0.5

Q4

0.3 /2

e~s= tanh 0 for Z(2),

~ 3k/2

1+28

e '= tanh k j2 for Z(4) .

(4.2a)

(4.2b)

(4.2c)

0.2

O. I
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+
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FIG. 2. Hysteresis cycles of three-dimensional Z(2),
Z(3), and Z(4) gauge theory on a 16 lattice. Five itera-
tions were performed at each p before measuring &(p).

The critical points of the Z(N) spin theory for
N «4 are known. For R= 2, the spin theory is an
Ising model known to have a transition in three
dimensions at 0„=0.221 Vl." The Z(3) spin theo-
ry, or equivalently, the three-state Potts model,
has a first-order transition at k„=0.367." Final-
ly, the partition function of the Z(4) spin theory
in three dimensions factorizes into a product of
two independent Z(2) spin systems, each with
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half the coupling strength. " This gives k4, =2k„
= 0.443 42.

Using (3.2), this gives the critical points for
Z(2}, Z(3), and Z(4) gauge theories:

Thus,

exp p cos —n~ „(i)
~1

P„=0.7613 (Ref. 16), P„=1.085,

P4, = 2P„=1.5226.
(4.3)

I, (P) exp (2sin„„l„„/N) . (4.5)

The inverse transformation is
We present Monte Carlo results for N=2, 3, and
4 in Figs. 2 and 3. Figures 2(a)-2(c) are hystere-
sis cycles for the Z(2), Z(3), and Z(4) gauge theo-
ries and the hysteresis effects in the regions of
the critical points of (4.3) are clearly visible.
Figure 3 shows plots of E(P) versus iterations at
the critical points in these theories starting from
ordered and disordered lattices. The plotted
points are the average value of E(P) over five
iterations. The rapid convergence of E(P) to an
equilibrium value for Z(2) and Z(4) indicates a
continuous transition. The Z(3} data show a much
slower convergence in agreement with other ex-
periments which have shown this transition to be
a rather peculiar kind of first-order transition. "

B. Arbitrary N

The reason why a Z(N) spin theory is preferable
to working directly on the Z(N) gauge theory is the
following. We shall see that as N increases, the
critical point of the Z(N} theory moves out to
large p roughly as N'. For very large p, the lat-
tice is highly ordered (very cold) and the hystere-
sis effect that we use as a signal of the transition
is very weak. In particular, on the cooling cycle,
the lattice converges very slowly to equilibrium
beyond the critical point and the hysteresis loop
tends not to close for high P. As a consequence,
the critical region is not well defined. The dual-
ity transformation, roughly speaking, maps low
temperatures into high temperatures and vice
versa. Thus, the highly ordered, slowly converg-
ing configurations of the gauge theory near its
critical point are mapped into highly disordered,
high-temperature configurations of the spin the-
ory by the duality transformation. It is then very
easy to get a good hysteresis signal for the tran-
sition because the hot dual lattice converges rap-
idly to equilibrium on both sides of the critical
point.

We now review duality in Z(N) gauge theory. "
The partition function is

(2~I, (P)=—g exp Pcos~ n,„—
(, N

& exp(-2 win, „1„„/N)

and the partition function becomes-

(4 6)

I(((P) .g. , l&~j(P) [E& Al» ((),0(mod(I(&]
1) (i p, v)

(4.8}

The constraint on the l„,'s in (4.9) is as follows:
Each link of the original lattice is connected to
four plaquettes. These plaquettes each have $„„
associated with their dual link. These four l, „'s
form a plaquette on the dual lattice. The con-
straint in (4.8) requires the vanishing of the sum
of /„„'s on all plaquettes of the dual lattice. We
represent this pictorially in Fig. 4. The dots in
the figure represent the sites of the original lat-
tice and the crosses define the dual lattice sites.
When we perform the sum in (4.7) over the link

Zgp) = g g I, ((&(p) exp [2vil „(i)n „(i)/N].
foal) (&) (i.&. &)

(4.7)

At this stage, we introduce the dual lattice. It is
defined as a set of points shifted from the points
of the original lattice by half a lattice spacing in
every direction. With each plaquette of the orig-
inal lattice we associate the link of the dual lat-
tice that intersects it. We further imagine the E

variables in (4.7) to live on the links of the dual
lattice. Now perform the sum in (4.7) over the
link variables ln). The result is

zN(p) = g „„exp pcos —n, „(i) (4.4)
(nf (i, iA, V)

with n„„defined by (2.4).
We perform a finite Fourier transform on Z„.

~ LATTICE SITES
DUAL LATTICE SITES

FIG. 4. Showing the constraint of Eq. (4.8) pictorially.
The dots are the sites of the lattice and the crosses
are sites of the dual lattice.
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FIG. 5. Hysteresis cycles in three-dimensional Z(N) gauge theory for N=5, 6, 8, 10, 12, 20 on a 16 lattice.

l„„= .ln(s„s„ '),2rl (4.9)

where s, is an element of Z(N) on the sites of the
dual lattice. The proof that (4.9) solves the con-
straint is clear from Fig. 4. We have

1»+ 1»+ 1,4+ 14, = .ln(s, s, 's, s, 's,s, 's4s, ') = 0.
2' i

(4.10)
The partition function is now a sum over configu-
rations on the dual lattice

Z (p(= +exp Q ieI, (p)),
fs) (g v)

(4.1i)

where the sum is over all nearest neighbors (gv)
on the dual lattice, I,„„is an integer valued field
(l„„=0, 1, . .. , N —1) defined from the Z(N) spins
at the sites of the dual lattice by (4.9), and I, (p)

AB of Fig. 4, we generate the constraint l»+l23
+134+1~,=0 (modN). The solution of the constraint
isis

is defined by (4.6). The action on the dual lattice
is therefore

(4.12)

Notice that the form (4.12) of the action is local
and therefore well suited to the Monte Carlo pro-
cedure we described in Sec. IIIA.

Finally, we discuss the Wilson loop operator as
a correlation function on the dual lattice. The
Wilson loop is defined as the expectation value
of the product of U's around a closed curve C.
Thus,

(4.iS)

Consider an arbitrary surface bounded by C and
made up of z pla(luettes p„p„... ,p„. Let l, „(m),
m = 1., 2, ... , ~ be the variables on links dual

x (p)=( j[.[p)

p) exp {-pe({eB].
'

ZN P {nI c
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to these plaquettes. It is shown in Ref. 11 that
x

theory, however, we work with the gauge theory
on the original lattice.

W (p) ly, x(tn)+1(p)

tn I Ig
& &(P) (4.14) V. RESULTS

where the expectation value is evaluated in the
dual lattice using the partition function (4.11).

In particular, when C is the boundary of a sin-
gle, plaquette, we get

W, (P) =1 —E(P) = (I,„„„(P)/I,„„(P)& (4 15)

It is easy to see that (4.15) is physically sensible.
For large P, the dual lattice is hot and the l,„'s
random. Hence, W, is near unity and E(P) near
zero. Conversely, for small P, the dual lattice
is cold and most I,„'s vanish. Hence W, -I,/I,- P/2 for small P [except for Z(2), where W, - P
for small P j, which means that E(P) is near unity.
This is indeed what one expects for E(P) and
W, (P}. In our computer simulations of the Z(N)
gauge theory, we use the dual form (4.11}of the
partition function and evaluate Wo(P) directly
from the spin theory using (4.14). For the U(l)

In Figs. 5(a)-5(f), we present hysteresis cycles
of E(P) for Z(5), Z(6), Z(8), Z(10), Z(12), and
Z(20) gauge theory. These cycles were obtained
on a 16' lattice from the dual spin theory. The
smooth curves in the figures are obtained from
the leading terms in the high- and low-tempera-
ture expansions for planar loops Wo(P) for the
Z(N) theory. These leading-order results are

Wc(p) -(
exp(-PNe~e[I, (4P) -I,(4P)]}, P- ~

exp -A ln ', P-0I,(p)
(5.1)

where I' and A are the loop perimeter and area,
respectively. ' Figures 6(a) and 6(c) are hysteresis
cycles of the U(1) theory in three dimensions (12'
lattice) and five dimensions (4' lattice). The solid
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FIG. 7. Iterations from random and ordered lattices
at the critical point of the U(l) gauge theory in five
dimensions. The figure suggests that the transition is
first order.

lines are leading high- and low-temperature ex-
pansions. For completeness, we also include the
hysteresis cycle of U(1) theory in four dimensions
from Ref. 3 [Fig. 6(b)].

The hysteresis effect in five-dimensional U(1)
theory is clearly visible. There is also a well-
defined hysteresis effect in the Z(N) theories of
Fig. 5 which moves out to large P as N increases.
The U(1) theory in three dimensions [Fig. 6(a)]
seems to be free of a hysteresis effect. This
suggests that there is no phase transition in three
dimensions in the U(1) theory. Figure 7 is a plot
of E(P) versus the number of iterations startinr g
from random and ordered configurations for U(1)
in five dimensions at the critical point, which we
estimate to be at P= 0.736+ 0.005. The two phases
remain clearly distinguished after 100 iterations
suggesting that the transition is first order. To
study the approach of Z(N) to U(1), as N-~, we
plot E(p) versus p for Z(2), Z(6), Z(20), and U(1)
in Fig. 8. In the critical regions, the plotted
points are averages of the heating and cooling
cycles. The solid line is the low-temperature
U(1) result E(P)-1/3P; P-~. Except for Z(2),
one expects all these theories to look alike at low
P where the high temperatures and consequent
near-random assignment of link variables blurs
the discreteness of the Z(N) theories One ex-.
pects that the Z(N) curves will start deviating
substantially from U(1) only when P exceeds the
critical point P„, of the Z(N) theory. For P beyond
this point, the Z(N} theory suddenly plunges into
an ordered phase. The transition occurs when the
temperature is low enough for the discrete nature
of the Z(N) field to be apparent. The U(1) theory,

O.O I

O. I

I I I I I I I I

I Io

P

FIG. 8. E(P) vs P for Z(2), Z(6), Z(20), and U(1).
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FIG. 9. Square Wilson loops in Z(8) gauge theory.
We plot 8' vs loop side for various values of P.

on the other hand, remains disordered for arbi-
trarily large P because of long-wavelength exci-
tations. The data of Fig. 8 support this intuitive
picture. There is a significant deviation of Z(2)
and Z(6} from U(1}beyond their critical points
P„=0.7613 and P„-2.8. The Z(20) theory has
its critical point at P», -30 and shows no devia-
tion from U(1) up to a P of 10.

The hysteresis effects of Fig. 5 are rather weak,
particularly for large ¹ To convince ourselves
that they really signal a phase transition and are
not artifacts of our calculation procedure, we have
studied Wilson loops in the Z(8) theory. Large
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loops can be used to signal a phase transition.
For large loops, W-exp(-P) in the ordered phase
and W-exp (-A) in the disordered phase (P and
A are the loop perimeter and area, respectively).

In Fig. 9, we present values for square loops
W~ versus loop side S for various values of P in
Z(8). W~ was calculated at each point as the av-
erage over 20 iterations of a 16' lattice after 100
iterations at fixed P. The solid and dashed lines
are least-square fits to the form

I.O

3.47

O.I—

w, ( p) = em[~, (p)s'+ n, (p)s+ ~,( p) ]. (5.2)

We fit to loops of side 1 through 4 and extrapolate
to larger S for comparison with data.

Note that the extrapolated curves fit the data
points- for large S better as P increases. The
statistical error is also small once S'&0.2. For
P=4.0, 5.0 we plot loops starting both from ini-
tially ordered and disordered lattices. One no-
tices in Fig. 9 that for P= 5, the curves for ini-
tially ordered and initially disordered lattices
deviate more from one another than for P=4.
This is what one would expect if there were a crit-
ical point near P= 5. Notice also that this devia-
tion is larger for larger loops. Thi.s is because
a local action such as the one we use here needs
progressively more iterations to bring larger
loops to equilibrium.

Figure 10 is a plot of o.,(P), the coefficient of
the area law, as a function of P. The phase tran-
sition in Z(8) is signaled by the vanishing of o.,(P)

2.44

OOI I I I

0 I 2 3 4 5 6 7 8 9 IO

LOOP SIDE S

FIG. 11. Square Wilson loops in the U(1) gauge theory.

beyond P-5. Had the gauge group been continuous
instead of discrete, this would have signaled the
vanishing of the string tension as a function of the
coupling, implying a transition from a confining
to an unconfined phase.

We have also studied Wilson loops in the U(1)
theory. Figure 11 is a plot of W~ versus S for
U(1) on a 16' lattice for some representative val-
ues of P. Included in this figure are least-square
fits to the form in Eq. (5.2). The coefficient of the
area law is plotted as a function of P in Fig. 12.
Notice that it does not seem to go to zero over the
range of P studied.
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FIG. 12. The string tension o, ~ (in units of inverse
lattice spacing squared) vs p for U(1) gauge theory in
three dimensions. Note the absence of a zero in n& over
the range of P studied.

FIG. 10. Coefficient of the area law e& in the three-
dimensional Z(8) gauge theory as a function of P . Note
the zero in this coefficient at P~= 5.
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FIG. 13. Critical values P&~ of P for three-dimen-
sional Z(N) theory as a function of N. The figure
shows that P z (3/4m 2)N2 for large N.

disorder transition at finite temperature. Our
estimates of the critical values of P for various
N are plotted in Fig. 13 along with known results
for ¹ 4. The critical point P„c in Z(N) seems
to move off to P=~ roughly as N' for large N.
This implies that the V(l) theory has only one
phase. We have also studied the V(l) theories in
three dimensions directly and have found no evi-
dence for a phase transition. Five-dimensional
U(l) theory, however, has a critical point at
P=0.736+0.005 which seems to be first order.

In closing, we wish to remark that it is encour-
aging that the zero in the "string tension" at the
critical point of Z(8) is seen using fits only to
loops of side 4. This may mean that it is not nec-
essary to analyze very large loops to get convinc-
ing evidence of a single phase for SU(3) gauge
theory.
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