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Effective Lagrangian for an SU(N) gauge theory with scalar fields
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We compute the one-loop contribution to the effective Lagrangian of an SU(N) gauge theory coupled to
scalar fields in the adjoint representation. We study the limit of small and large (constant) F„,' and discuss
the minima of the resulting effective Lagrangian.

I. INTRODUCTION

There have been recent suggestions on the pos-
sibility that the minima of the classical action
may have little to do with the quantum ground
state of different field theories. In particular,
Witten' has discussed, in the context of a class
of nonli'near [CP(N)-invariant] o models, an ef-
fective Lagrangian, obtained by means of the I/N
expansion, which depicts some correct features
of the quantum theory, but which does not exhibit
instanton solutions (that are present at the clas-
sical level).

Concerning gauge theories, Pagels and Tom-
boulis2 showed the nonexistence of finite-action
solutions to the field equations of an effective
quantum action that they proposed for Yang-Mills
theory. Although it has no instantons, their model
presents extremely interesting vacuums and the
possibility of confinement.

It is the purpose of this paper to compute the
effective action of an SU(N) gauge theory which
includes Higgs scalars, in order to study the
minima of the resulting effective Lagrangian. We
are able to do the calculations expanding the action
around covariantly constant gauge fields' ' and
constant scalar fields. We find that the one-loop
effective action changes sufficiently as to lose,
in some cases, the possibility of topological
solutions, which were present at the classical
level. We also get interesting changes in the
structure of the vacuum.

The plan of the paper is as follows: In Sec. II
we set up the general formalism, establish our
conventions, and compute the one-loop correction
to the classical Lagrangian of an SU(N) gauge
theory coupled to scalar fields (in the adjoint
representation). We then discuss in Sec. III the
limit of small I"&,~ which is related to the com-
putation of the effective potential for the Higgs
field. We study the minima of this potential and
discuss the Prasad-Sommerfield limit. '

We also study the limit of large E„,' which is
related to the already computed effective action
of a pure Yang-Mills theory. ' " In our calcu-

II. THE EFFECTIVE LAGRANGIAN

Let us consider the Lagrangian density for an
'

SU(N) gauge theory which includes scalar fields
in d space-time dimensions:

2Tr(—Fq—,&"")+ Tr(DqQD" 4&}

—
8

(p'Q' -a')' - —E[A] +2 gh. gt, (2.1)

where

+pl/ s pAll svAp fg[Ap tAp] p

D„Q = 9„Q —ig [A„,Q],

Ap =A~T, ,

(2.2)

(2.3)

and T, form some matrix representation of the
generators of the SU(N} group, satisfying

(V., 7,) = zC.„T„Tr(T.T,) = ,'5., -
We have chosen the potential V(Q),

V(Q) = +A.(Q'Q' -a')2, A, )0

(2.4)

(2.5)

in such a way that if we set a') 0, the symmetry
is spontaneously broken.

We will work in the background gauge"

E[A] =D„A" =0,
where

(2 8)

Dp =spI —ig[Aq, ]

andA& is a configuration which will be chosen
later. In this gauge the ghost term takes the
form

(2.V)

2,„.« = —2 Tr(cD„D"c), (2.8)

lations we are able to include the contribution
of scalars in the adjoint representation. We then
discuss the changes in the minima of the Lagran-
gian and how thi. s affects the structure of the
vacuum. Finally, in Sec. IV we give a brief dis-
cussion of the results obtained in the previous
sections.
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where

c=c T~q c=c Tg

are the ghost fields.
As usual, the effective action is defined as"

NI", = -i@in ~&a Bc'

xexp &S"]Ae, fe,'e, y, c, c]I,
I

I'[A;]]]]]= I'o+hl', +O'I', + ~ ~ ~

where

I'o=S,l = dx 2,

(2.9) (2.10)

where S" is the quadratic term in the expansion
of S,l around fixed classical configurations A„,

This expression is obtained writing

and 1 „ is the nth-order correction in the loop
expansion of the effective action.

We are interested in the one-loop correction,
I „given by the functional integral

~v =~@+acl

4 =Ad +I' e

(2.11)

and expanding the action in powers of the quantum
fluctuations a, p:

S[&f&„+y,A„+a, c, c] -S[]I]]„,A„, 0, 0] — dx cp(x) [Q, ,A„, 0, 0] — Ch a" (x) „)[Q],A,„O,0]
5S 5S

5 „x cl X

= S"[A,], Q,],a, p, c, c] + S '[A,],Q„;a, y, c, c], (2.12)

where S'"' contains the interaction (i.e., nonquadratic) terms in the shifted fields.
For simplicity, we will choose the background field A. „equal to A'„'. Then, if the fluctuations satisfy

D„"0," = 0, the classical field obeys the condition B&Acl= 0. Now, inserting the explicit form of S" in ex-
pression (2.10) and performing the path integration, we obtain

AT, [$,],A„]= —i@in Det[- iD'„'D,",] + ~ ih ln Det[i(D~dD "i + & &(Q;]Q;]—a') + &]Ie],& ]8] Q,] )]

+—ln Det(-i LD"D ]'g&„+(I/a —1)D&]D ] + 2igF&', +g'gi ']}&„

+g'[2(D&g,]) -D&Q.]][D'„'D,"]+—,'A(Q;]Q;] —a )2+A/. ]]3p],]] '[2(D'„'Qe])+@]D']Jj),
(2.13)

where

(0]8' 0')"= 0"0' (2.14)

resentation of the Lie algebra satisfying

n n 1 p (2.19)

is an (N' —1)x (N' —1) matrix, q„, is the metric
tensor, and all the fields are in the adjoint rep-
resentation. We henceforth suppress the "cl"
designation.

Expression (2.13) is rather complicated. We
will simplify the computations by considering
covariantly constant fields' ' defined by the

, equations

and f~„ is a constant antisymmetric tensor. For
simplicity we will take a pure "magnetic" field
in the 3rd direction:

tv Opp3 t

and we will discuss other possibilities later.
Furthermore, we will choose Q to be parallel

to n,

DqQ =0.
(2.15)

(2.16)

Q =yn.

Then condition (2.16) reduces to

(2.20)

The general gauge-invariant solution of Eq.
(2.15) is'

A~ = ——'Fp, x'+ig U B„U. (2.1V)

If one assumes U-I as ~x~ —,then the con-
dition B&A" =0 implies U=I. ln this case &&„ is
constant and it can be written as

Epu= fpvn, (2.18)

where n is a constant element of the adjoint rep-

(2.21)

Conditions (2.18) and (2.20) will allow us to ob-
tain the first term of the expansion in powers of
external momenta of the effective action. For
example, for the Higgs scalar we will obtain the
effective potential but not the correction Z(Q) to
the kinetic term. In order to obtain Z(Q) one must
use a less restrictive condition than expression
(2.21).

Using conditions (2.15)-(2.21) one can now



21 EFFKCTIUE LAGRANGIAN FOR AN SU(iV) GAUGE THEORY. . . 2861

compute the different contributions to the one-loop term of the effective action, I', Eq. (2.13).
As an example we will describe in detail the computation of the second term in the right-hand side
of Eq. (2.13):

ln Det(i S ')= ln Det[i(D„D" + 2A. ((I()' —a') + A.p'n(3 n)]

= —Tr —exp( is-[D&D" + ,'A((I(-)' —a')+A@'n8n])+Kt
0

(2.22)

where K is an irrelevant constant and Tr means a sum over group (5) and space-time (x} indices. Now

since

[n, n(S n] =0

we will take both n and nS n in their diagonal form. . Then, expression (2.22) reduces to

(2.23)

g2

ln pet(igl ') = — I —esp[-isl[—'(p'-a )i re'n'et n]„]fdx(x[H„(s)]x),
1 0

(2.24)

where U(s) is the proper-time evolution operator of a particle in the presence of a constant magnetic
field II

U(s) = exp[is(P]' +gnA" ) (P„+gnA„)] . (2.25)

It is now easy to compute (x ~U(s) ~x), using the well-known result for the matrix elements of the evolu-
tion operator of the harmonic oscillator and performing the appropriate analytic continuation in the
metric:

d"x x U„s x = d"x x expis P„+gn,A„ I'"+gn, A." x

n"lg .f„l
(47[)" '(detq)' ' sin(s)I "~ gn, f„~)

' (2.26)

Now we can perform the remaining integration over s getting

lnDstiD =
2 t T(1 —d/2) fdxTr[(g Hn') i(;(1—.d/2; '+—'1[—'{{s'— )+-P' na][g*Hn* n]' )},n (2.2V)

where f is the Hiemann zeta function defined as a matrix through the formula"

r(s, B)=g (kI+B) ', Res&1
4=0

(2.28)

for a nonsingular matrix B.
In a completely analogous way we can compute the contribution of the first term to 1", in expression

(2.13). The result is

lnDet[iD„D"] = t 1'(1 —d/2) fdxi(1-d/2; —')Tr[[g H n'] i]. (2.29)

Finally, using conditions (2.15)-(2.21), the third term in expression (2.13) reduces to

ln Det[- i(D„D q„„+(I//n —1)D„D„+2igF„„+g' Q'q„„

+g'[2(D„Q) -D„f][DSDs+pk($'Q'-a')+A/(3 tt)] '[2(D, Q)+QD ] }]

=lnDet[-i(D„D q„„+(Ijo.—1)D„D„+2igHeD„„,n

+g'P'q&, n~+g P'n'D&[DHDs+HA(P~ —a2)+A+'n(sn] 'D„)]. (2.30)

We can now compute expression (2.30) following the procedure developed in Ref. 3. The final expres-
sion for 1, is
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r, = —,'[r(1-d/2)/(2w)"]

x d"g Tr II'n' "~ —2$ 1-d 2; —, +g 3. -d 2; —+—A. —, P'-a' +P'nSn 'II'n'

+ (d —1)f(1—d/2 ~ +—'g'cp'n'(g'H'n') ' ')

4(2i) —d/2[1 g4(p4n4(g2H2n2}
—1](1-2)/4

x sin{(d/2 —1)arctan[i(g H'n')'/'(g'p'n') '(I+ic)]}]}

+ ,'il—nDet[i(D„D"+og'P'n [1-D,D"[D D" +'A(y'-a') +Ay'n gCn] '})]+irrelevant constant terms. (2.31)

The last term in Eq. (2.31) is the only one which depends on the gauge parameter o.. This reflects the
well-known dependence of the effective action on the gauge choice." Setting u = 0 (the background gauge},
this last term simplifies considerably; defining the effective potential as

I = dxg, g = dx 2+kg + ~ ~ ~

we finally have

R~(p, H)= — «, Trf(g H'n')" '/[g(1 —d/2; —,'+2K[2(p'-a')+p nn](g'H'n') '/')1 r(1-d/2)

+(d —1)g(1 —d/2; —,'+ ~g'p'n'(g'H'n') '/')

g(1 d/2 —') 4(2i) ~/ [I g y n (g3H n ) ]&~

x

sin{�

(~d —1)arctan[i(g H n )'/ (g P n') '(I+ if)]}g. (2.32)

inspection of Eq. (2.32) shows that the only divergences in 2, come from the I' function for even d. It
is easy to compute the divergent part of the effective Lagrangian by performing an e expansion (e = 4 —d).
It takes the form

g'H'+ —,Tr(A.'[—'(p' —a')+ p'nS n]'+3g p n }1C G)22 —1 1 1
e 16w' 6 c 32w' (2.33)

-1 C, (G)
y6&2

(2.34)

From this expression one can easily obtain the

P function'4 from the residue of the simple pole
of Zg. '.

P(g) = — 6, (, ——,')g'+O(g ')

= --,'bog'+O(g') . (2.35)

We have explicitly separated the + factor which
gives the contribution of the scalars (in the ad-
joint representation) to the P function.

III. LIMIT OF SMALL AND LARGE H

We have obtained in the preceding section the
one-loop effective Lagrangian for an SU(N) gauge
theory with scalar fields in the adjoint represen-
tation in d space-time dimensions. We have com-
puted its divergent part (in d = 4), Eq. (2.33), ob-
taining a very simple expression which shows that

The first term in (2.33) allows us to identify the
divergent part of the renormalization constant Z&
of the field-strength renormalization. Then we
can compute the coupling-constant renormalization

P, =- lim 2, .
H~O

(3.1)

Using the asymptotic form of the Riemann zeta
function

1-&

&(s, e)- (3.2)

we obtain

I

the only needed subtractions in order to render
g ff finite correspond to coupling- constant, mass,
and field-strength renormalizations.

We will proceed in this section to perform the
renormalization of the effective Lagrangian in
the two limits we are interested in. We will also
discuss the resulting expressions which can be
considered as defining a classical model which
incorporates contributions of the full quantum
problem.

(i) Limit of small H: the effective potential. In
the limit H-0 only the first two terms in Eq. (2.32)
contribute to 2,. Actually, in this limit one is
computing the one-loop correction to the effective
potential, V„
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V,(P) =- «, ((—,' A)" '[(N' —2)(p' —a')~ ' + (Sp' —a')' '] + (d —1)(g p') 'Tr[(n') ']) . (3.3)

As we stated above, for d = 4 we have to renormalize expression (3.3). We will use as normalization con-
ditions

8 2V Q
4TI'

= —A,a /2, ' =SR.
Q =0 9 y=&p

(3.4)

where p, is an arbitrary subtraction point. With these conditions, the renormalized effective potential
results:

Spo —a' 2 Spo —a' (3&o' —a )'&

-2a'e' (N'-2)I » . I-l I+31 » s
q
' -a' t,) f Sy' -a'

i '3 1 a'

pa 2 ) Sym a2+a' (8 -2)ln, ~+1n:, I+constant term.
P,'-a ) 3+, -a

In order to analyze expression (3.5) we write

am=2/ /A. .

(3.5)

(3.6)

We then have, at the classical level, the usual expression for the potential. Now, following Coleman
and Weinberg, "we will consider

X-g4.

Then Eq. (3.5) reduces to
I

V,a =,Xy' - 2 g'y'+, , g'y'[In(y'/y, ') —', ]
3Tr n

2'w'

&rp' ( aq' &,l t+, , —
2

(N' —2)] ln, —1[-2 [+3( ln 3 2
—12'v' g' ( 2y'

&
') ( 2V'

+ (N' 2)ln, , ~+ln, , 1 ~

+ constant term+0(A. ') .zq'/2p'-1& u,q'/2u'-I l

(3 'I)

(3.8)

y, '&2p, '/z. (3 8)

This relation forces the constant term to be real.
Now it is easily seen that V,«becomes complex
whenever

q '&2g'/x. (3.10)

Then, if we take p'& 0 in order to start with a
theory with spontaneous symmetry breaking, we
must impose conditions (3.4) only on the real part
of V,ff Concerning the imaginary part, it is given
by the expression

The constant term in Eq. (3.8) can be eliminated
by an appropriate renormalization of the zero-
point energy if the normalization point is chosen
satisfying

Imv.„=, [(N'-2)(q'-2~'/~)e(2I '/~-V')

+(Sym —2p. '/A)8(2p'/A. —Sy')] . (3.11)

CIIi ~i~Cbi~i3Cci3i4C~i (3.12)

which is rather complicated for the general SU(N)
group As an exa.mple we give its value for SU(2):

This imaginary part corresponds to an insta-
bility of the vacuum which has been already studied
in different contexts. ""'" We will return to it
later. We finally note that the only group-depen-
dent quantity in expression (3.8) is Tr(n') (apart
from the trivial N' —2 factors).

From Eqs. (2.18) and (2.19) we see that the
computation of Tr(n') implies the evaluation of
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Tr(n~) =2. (3.13) 2 & 2p2/y (3.14)

we will choose it as the minimum of the potential:
We can then study in this case the possible

minima of the potential, given by Eq. (3.8) with
Eq. (3.13). With p, an arbitrary subtraction
point, satisfying

~ jeff
8 P @2-g2

0

This equation reduces to

(3.15)

z 1 e%

3ZZ (1 —113 i4n'3) = 2+ (2(32n') 2 ln(Z - 1)+ * —-' + 3 ln(3Z —1) + * ——' I,Z-l, 3Z —1 (3.16)

with

(3.17)

We have studied expressions (3.8) -(3.15) nu-
merically. As expected, " radiative corrections
change the location of the minimum. Writing
a = llg'/4vk, when c( grows, we find that 2 be-
comes larger and lim, —Z = ~. For e & 1 there
is no real solution of Eq. (3.16).

In the Prasad-Sommerfield limit, '

I

the effective potential has no stable minimum.
This shows that one must be very careful in
studying the Prasad-Sommerfield limit: In the
domain (3.21), in agreement with the relation
(3.7), there are no minima to ensure the exis-
tence of topological solitons (Bogomolny-I)rasad-
Sommerfield monopoles') at the one-loop level.
[The existence of finite-energy solutions requires
that

(3.18)

with

a' = 2g'/A. - constant, (3.18)

(3.20)

Expression (3.20) shows the general behavior
we discussed above. For

4 4m
g ) A. =3.59k. , (3.21)

the minimum of the potential can be worked out
analytically. The result is

1lg'/4)T'X = 1. (3.22)

with po a nontrivial minimum of the potential. ]
If condition (3.21) is not fulfilled, then the ef-

fective potential has a real minimum at p,') a'
given by Eq. (3.20). The quantum fluctuations
have only changed the position of the minimum.
Of course, for a2 & 0 a similar analysis leads to
dynamical symmetry breaking for g'& (4v'/11)X,
etc.

Moreover, had we started with a2 = 0, that is,
no mass term, the result would have been that
of Coleman and Weinberg": dynamical symmetry
breaking for the particular relation

(ii) Limit of large H(gp /H-o, N' /H-0) From Eq. . (2.32) it is easily seen that in this limit the ef-
fective Lagrangian reduces to

g, =—
„&2 Tr((g' H' 'n) ~4(f (1 —d/2; —,') + (d —2)g (1 —d/2; —,') +4(2i) t2sin[(d/2 —1)v/2]}) . (3.23)

ImC = ' g'H'
16m

(3.24)

This imaginary term has been already obtained
for a pure Yang-Mills theory by Nielsen and
Olesen. ' They have associated it with an un-
stable mode, showing that its vacuum polariza-
tion corresponds to the self-energy of a tachyon

The first term in Eq. (2.23) corresponds to the
contribution of the scalar fields.

In order to renormalize this expression we make
an e expansion. We then obtain an imaginary,
finite contribution coming from the last term in
Eq. (3.23). This imaginary part takes the form

RGCnfflaa=A4/ZZ -A /2g 1

where [A] = [mass]. Then we get

(3.25)

I

in 1+1 dimensions. They have also discussed
the relation of the unstable mode with asymptotic
freedom and its dependence with the particular
configuration, Eq. (2.18), adopted for the gauge
field. ' Because of this imaginary part, the pos-
sible minima of the effective action are not really
associated with stable vacuums but with unstable
ones.

Since the divergent part of expression (3.23)
is real, it can be eliminated by counterterms.
We will use the normalization condition
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., '"'g H"0(, ). (3.26)

Defining

Z",,',"'=--,'-H' 1+ ' (~ --')g'in(g'H2/A4)c t'c&

le

menon also happens in the presence of scalar
fields. The only change is given by the different
value of &0.

From the real part of our effective Lagrangian
we can obtain. the trace anomaly of the energy-
momentum tensor. Using

t = in(ga/A'), (3.2V)

we can rewrite expression (3.26) in the form
and

0„"=g"'O™„,=2 „,q""-d Z,ff
Bg eff (3.33)

& ff = —2 lz/g(t)1'H'+ ~
' g'H' (3.28) Q2 1~ CPU.

2 JlP (3.34)

where g(t) is the running coupling constant given
by

g(t) = g —32, (, —,)g't+0(g ') .C, G (3.29)

We then obtain the correct expression for the P
function:

P(g)= d,
=-lb.g'+o(g''), (3.30)

ga =&'exp[- (1/b, g ) -2]
=A'exp(- 1/b, g') . (3.31)

We see that the effective action of an SU(N)

gauge theory with scalar fields (in the adjoint
representation} develops a minimum away from
the classical one. This result has been already
obtained for a pure Yang-Mills theory in Refs.
2-5, and 8. Because of the imaginary part, it
corresponds to a metastable state. The value
of the effective Lagrangian at this point results:

RaC, ff(H )=~ g boH &0, .(3.32)

thus showing that g(t) has become imaginary.
This situation corresponds to "spontaneous mag-
netization" in the vacuum as discussed for pure
Yang-Mills theory by Pagels and Tomboulis. '
From our computations we see that the pheno-

with bo given as in Eq. (2.35).
Equation (3.29) gives the transformation law

of the renormalization group at the one-loop
level. Although we have obtained this result for
(covariantly) constant fields, they are generally
valid. We see from Eqs. (3.29) and (3.30) the
relation between the effective Lagrangian for an
intense field and the behavior of gauge theory at
small distances, controlled by the P function.
In fact, the derivation of asymptotic freedom by
considerations of external fields has been dis-
cussed in detail in the literature (see Refs. 8,
17, and 18).

If we discard for a moment the imaginary part
of @ ff and seek for a minimum of the energy den-
sity we easily obtain

we obtain in the limit we are considering

e„"=(P(g)/2g(t))&„, E"' for gp'/H -0. (3.35)

Of course, a complete result should take into
account the contribution to 0„,of the Callan,
Coleman, and Jackiw improvement term neces-
sary" because of the presence of scalars. How-

ever, in the limit we are discussing,
cp = constant, gp'/H - 0, there is no such contribu-
tion since the improvement term depends on de-
rivatives of the scalar fields which vanish in our
case."We would like to note that the nonvanishing
trace for the energy-momentum suggests that
soliton solutions of several field theories which
satisfy conditions of the form e„"= 0 (Ref. 21)
disappear if one considers the contribution of
quantum fluctuation to the effective action and
then studies the resulting equations of motion.

IV. DISCUSSION

We have studied the effective action for an SU(N}

gauge theory with scalar fields. The underlying
viewpoint was to investigate if the minima of the
classical action coRd be drastically altered be-
cause of quantum corrections.

This possibility was first considered by Cole-
man and %einberg" in their study of the effective
potential of several scalar and gauge theories.
More recent investigations' ' discussed the ef-
fective Lagrangian of pure Yang-Mills theory,
finding that this Lagrangian is likely to have a
nontrivial minimum away from the "perturbative
ground state. "

For an SU(N) gauge theory which included scalar
fields, our results point in the same direction:
Both in the limit of small and large II, the one-
loop effective Lagrangian differs qualitatively
from the classical one.

In the II - 0 limit, we have found that the ef-
fective potential could lose the minima that it had
at the classical level. In particular, for the
Prasad-Sommerfield limit this means that quan-
tum corrections do not ensure the existence of
monopoles.
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In the II -~ limit we have found the pheno-
menon of "spontaneous magnetization" in the
vacuum, already discussed for pure Yang-Mills
theory, ' but our result incorporates the contribu-
tion of scalar fields. We have done all our com-
putations for pure "magnetic" field II. If we
include an electric field E, the results remain
valid by replacing H' by (H' —E') (in Minkowski
space). Of course, for E'&H' the effective La-
grangian develops an imaginary part, a situation
discussed by Euler and Heisenberg" in QED.

Moreover, as was first pointed out by Nielsen
and Olesen, ' even for a pure magnetic field the
effective Lagrangian has an imaginary part. This
implies that the new minimum that one obtains
corresponds to a metastable state.

Thus, we have seen that in various situations
the effective action of the SU(N) theory with
scalars differs sufficiently from the classical

action as to change completely the nature of the
minima, changing the structure of the vacuum.

A more complete analysis should be done in
order to clarify different aspects of this investi-
gation. In particular one should try to expand
the action around nonconstant gauge and scalar-
fields. One should also study intermediate cases
between the two limits that we have discussed.
We shall return to these problems more thorough-
ly elsewhere.
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