PHYSICAL REVIEW D

VOLUME 21, NUMBER 10

Path integral for gauge theories with fermions

Kazuo Fujikawa
Institute for Nuclear Study, University of Tokyo, Tanashi, Tokyo 188, Japan
(Received 28 January 1980)

The Atiyah-Singer index theorem indicates that a naive unitary transformation of basis vectors for
fermions interacting with gauge fields is not allowed in general. On the basis of this observation, it was
previously shown that the path-integral measure of a gauge-invariant fermion theory is transformed
nontrivially under the chiral transformation, and thus leads to a simple derivation of “anomalous” chiral
Ward-Takahashi identities. We here clarify some of the technical aspects associated with the discussion. It is
shown that the Jacobian factor in the path-integral measure, which corresponds to the Adler-Bell-Jackiw
anomaly, is independent of any smooth regularization procedure of large eigenvalues of B in Euclidean
theory; this property holds in any even-dimensional space-time and also for the gravitational anomaly. The
appearance of the anomaly and its connection with the index theorem are thus related to the fact that the
primary importance is attached to the Lorentz-covariant “energy” operator B and that B and ys do not
commute. The abnormal behavior of the path-integral measure at the zero-frequency sector in the presence
of instantons and its connection with spontaneous symmetry breaking is also clarified. We comment on
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several other problems associated with the anomaly and on the Pauli-Villars regularization method.

I. INTRODUCTION

As one of the important implicaticns of the Ati-
yah-Singer index theorem,' we have shown else-
where? that the Euclidean path-integral measure
for gauge theories with fermions is not invariant
under the chiral transformation, and it gives rise
to an extra phase factor corresponding to the
Adler-Bell-Jackiw anomaly.3"® The derivation
of “anomalous” chiral Ward-Takahashi (WT) iden-
tities by means of the variational derivative is
thus made consistent in the path-integral formal-
ism.®7? The basic observation involved is that
the transformation of basis vectors in the func-
tional space from the “Heisenberg picture” to the
“interaction picture” does not lead to a unitary
transformation of the chirality index associated
with the functional measure, and thus leads to the
anomalous behavior of WT identities in pertur-
bation theory.

In the present paper, we first clarify several
technical aspects associated with the discussion,
and then show that many of the known properties
of the anomaly are reproduced in a compact man-
ner in the present approach. It is shown that the
summation of a conditionally convergent series
appearing in the index factor gives rise to a cor-
rect result of anomaly for any smooth regulari-
zation of large eigenvalues in Euclidean theory.
We then comment on the consistency of the Pauli-
Villars regularization scheme with our analysis,
although the measure becomes invariant under
the chiral transformation if one includes the re-
gulator ghost field into the functional measure.
The appearance of the 6 vacuum and its connec-
tion with the spontaneous symmetry breaking in
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the presence of instantons is also clarified. We
finally comment on several other problems such
as the ordinary anomaly cancellation mechanism
in the case of parity-violating coupling of Yang-
Mills fields to fermions, and the gravitational
anomaly.

II. ANOMALOUS CHIRAL WARD-TAKAHASHI
IDENTITIES

Path-integral formalism

We recapitulate the basic aspects of the path-
integral approach?® to anomalous WT identities. We
start with the SU(z) Yang-Mills field coupled to
fermions,

hin 0 e 1 v
eB:ll)Z')’ DadJ—-meP‘l‘ é;z- Tr F* F“v, (21)

suitably continued to Euclidean space-time. After
the Wick rotation x°— —ix* and A —~4A,, the op-
erator J=y*D, = y*(s, +A,) becomes a Hermitian
operator

P =¢y°D, +y*D,
=y*D, +y*D,, (2.2)
where our y-matrix convention follows that of
Bjorken and Drell®: y° is Hermitian and y* (%

=1,2,3) are anti-Hermitian. The Hermitian v,
matrix is defined by®

vs=tyOyly By iy iy Yty Sy ly By iyt (23)

After the Wick rotation, the metric becomes g,
=(-1,-1,-1,-1).

We consider the fermions in the n-dimensional
representation of SU(x) in (2.1), and
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iA,=gA%(x) T,
[T“,Tb]=ifabcTc ,

Tr(T°T %) =45%,
Fu,=0,A,-8,A,+[4,,A]

(2.4)

To define the path integral precisely, we change
the basis from the “x representation” to the ‘“n
representation” by’

B(x)=D a,0,(%) =D a,(x|n),

_ _ _ (2.5)
V@)=Y @ax)'h, = 3 (|00,

in terms of the complete set of eigenfunctions of
the Hermitian operator (2.3),

Do, (x) =x0 (%),

fd4x(p"(x)7(pm(x) =6m m>J

where, for simplicity, all the eigenvalues are
treated as if they are discrete.® The coefficients
a, and b, are independent elements of the Grass-
mann algebra in the classical level. The trans-
formation (2.5) is formally unitary and we have
the path-integral measure

dp=J][DA,. (0 DFE)DY(x)

- [ 4. @] 45, [T4a.

by choosing the arbitrary normalization factor
to be unity. Here and in the following we include
the Faddeev-Popov factor into [DA ,] whenever
necessary; for example,

(2.6)

(2.7)

[DA ,(x)] =DA ,(x)5(a “A ©(x))det [% a“A,“j(x)] .

Under the local chiral transformation
P(x) =y’ (x) =e @M p(x)
()= (x)=P(x)e s

the Lagrangian (2.1) is transformed for infini-
tesimal a(x) as

(2.8)

=1 o, o-Op/ 17
A =1im (3 0,0 00 2,0))
) ]’:Ilfrl< Z @ a(x)Tyse -(;D/M)2¢ "(x))

4 2
=1imTrf(;—7r—)k—4‘yse'”"‘e“”/”’ oi?*

THEORIES WITH FERMIONS 2849
L(x) =L (x) - 8,2 (X)P(x)y “y, ¥(x)
= 2mia(x) P(x)yd(x) . (2.9)

The coefficients in (2.5) are then transformed as

P @)=Y alp,x) = D a,et* s ()

o)y
ap=2 [ axg ey (va,
n

= Z Cm;nan *
n
Thus

I1 da;, =[getc,,,]-* ] da,,
m n :

where the inverse of the determinant appears due
to the fact that the translation-invariant integral
measure over the elements of the Grassmann
algebra is defined as the left-derivative® da,
sa/aa,,. The translation-invariant measure en-
sures that the Feynman path-integral formula
satisfies Schwinger’s action principle.

The Jacobian factor in (2.11) is evaluated for
infinitesimal a(x) as

[detC,, ,I-* =det[5m +i f a(x)e m(x)vys(p”(x)dx]-
= exp [—zz”: f dx a(x)e ,(x) f'y5<p,,(x)]
exp [—i f dxa(x)A (x)] ’

(2.10)

(2.11)

1

(2.12)

where
A=Y 0,0) v0,(x) .

The Jacobian for DE gives rise to an identical
factor, and thus leading to

(2.13)

dp.—du exp[—Zif dx a(x)A (x)] )

A(x) in (2.13) corresponds to our primary de-
finition of the “anomaly, ” and it is an ill-defined
conditionally convergent quantity. We may evalu-
ate it by regularizing the large eigenvalues (i.e.,
| X,| <M) and changing the basis vectors to
“plane waves” as

(2.14)

ey

M‘Q
=1i f d*k -1 ; 24yt vl
=lim Tr | oo vsexp(gpre {2k, +Du@)]? + 1y, v 1P ()}
1\2 1 d*k
=1i o v 552 a1 @m*
];EIlTrys{[Y v IFy, (ZMZ) 21J (2m)*

1/-1
=3 (81r—2) Tr*F “'F, (x).

(2.15)
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Namely,
A(x)=l ol Tr*F*F , (x)
2 81,»2 By

gy ¥
with F %= %E MVaBFaB (612305€1234 =1).

(2.16)

The trace in (2.15) runs over the space of y matrices and internal

SU(n) indices, and the trace in (2.16) over internal SU(x) indices.
The generating functional of complete Green’s functions in Euclidean space is given by

205,005 [ awesp( [ [e+7p+Tn-s%,1a5)

(2.17)

with Z(0,0,0) =1. The WT identities are then collectively represented by the variational derivative’

=0.

=0

5 —
m’ Z(n, n, Ju)

(2.18)

By combining the contributions from (2.8), (2.9), and (2.14) with (2.17), we obtain the WT identity, e.g.,
8, (L2 0(9) B(2)], ) =2mi ([5,(0) $(3) Bz) 1,) = 86 (x = ) { [ys3(3) B(2)1,)

—i6(x - 2) ([W(9) P@)ys 1,) = (/872 ([ Tr*F*'F ., ()0 (9 (2)],) .

The Minkowski version is obtained by a Wick
rotation which removes the imaginary factor i
from the last three terms in (2.19), and one re-
covers the familiar result.® [The result for the
Abelian theory is obtained by just discarding the
trace operation in (2.19).] The gauge-invariant
currents are defined from (2.9) as

FEx) =P(x)y “ysd(x) ,

M (2.20)
3s(®) =p(x)ysd(x) .

Regularization independence of the “anomaly” factor

The evaluation of (2.15) is the transformation
of basis vectors from ¢,(x) in (2.6) to plane waves
¢*** o evaluate Try,e"®/*?, and it can be compact-
ly written as

A (x) =lim ( E (n|xyyse” ‘”/”’2(x|n)
e n

=lim Trf (2 )4 (klx)ys '(b/M) <x|k>

M=

(2.21)

This procedure may be regarded as the extraction
of the gauge field dependence of A (x) by using the
plane waves which have no gauge field dependence
by themselves.

We next show that A(x) in (2.16) is independent
of any smooth regularization of large eigenvalues.
We make the following replacement in (2.15):

exp[-(\,/M?]—f[(x,/M)?], (2.22)

where f (z) is any smooth function which rapidly
approaches zero at z =;

f (@) = f() =" () =2+ =0

(2.19)
I
and
£(0)=1. (2.23)
The calculation in (2.15) is now replaced by
A(x) =lim Try,{[y* uy 21 :
M=o
@r )4f"((k“/M)2) (2.242)
=-Tr{*F*F,} (2”)4 f"(k ) (2.24b)

after the rescaling 2" —~Mk"; all other terms either
vanish due to the trace operation over the y matrix
or contain the factor (1/M2)', 1>0. We note that
any finite-frequency sector k%= - k*%k, <L = con-
stant <win (2.24a) gives rise to a vanishing con-
tribution to A (x) after the rescaling (2.24b). The
integral in (2.24b) is evaluated by noting d*k
=m2%k*dk*, namely,

d
(2154 7= 1o I ek 7 ()

167[2‘[ dsz (kz)_ 16”2f(k2)

1
672 (2.25)

by (2.23). Incidentally, this property holds in any
even-dimensional Euclidean space, for example,
the two-dimensional space.'® This regularization
independence of the chiral anomaly allowed us to
define the chiral WT identity (2.19) without using
the detailed form of propagators.!! A related
property for the gravitational anomaly will be
commented on later.
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This regularization independence shows that
the summation in (2.13) is not divergent but ra-
ther conditionally convergent (a situation some-
what similar to +1 -1+1-1+--:). Any pre-
scription of summation starting from small eigen-
values of P (i.e., small in their absolute values)
always gives rise to an identical result.!! This
rather subtle aspect is also related to the fact
that y, and J in (2.2) cannot be simultaneously
diagonalized.'? When one diagonalizes the “ener-
gy” operator P, the chirality asymmetry appears
and the trace of the operator y, exhibits the ano-
malous behavior (2.15), contrary to the naive
expectation from Try,;=0. (The ¥; operator is
four-dimensional in the naive sense, but it actually
becomes 4 X © dimensional in the functional space
spanned by ¢, (x) due to [y, B]#0.)

Connection with the Atiyah-Singer theorem
From (2.13) and (2.16), one formally obtains®®
(2.26)

where 7, stand for the number of zero-eigenvalue
solutions in (2.6) with positive and negative chi-’
rality, respectively, and v the Pontryagin index
vs—l—Trf*F “R ., dx (2.27)
161[2 by . °
The left-hand side of (2.26) follows from the term-
by-term integration in (2.13) by noting that y, and
P anticommute. The relation (2.26) corresponds
to the Atiyah-Singer theorem® when one considers
the relation in compact space S* after the stereo-
graphic projection of (2.6) and (2.27) originally
defined in Euclidean space R*. Jackiw and Rebbi'?
examined the relation (2.26) in Euclidean space
R* by explicit calculations, and they suggest that
the relation (2.26) holds for those gauge fields
which rapidly approach the pure gauge confi-
guration at |x| =« so that the Euclidean action
is finite and the index (2.27) is well-defined. For
those well-behaved gauge fields, the relation
(2.16) is regarded as a local version of the index
theorem. In the path integral, all the quantities
appearing in the integrand are regarded as clas -
sical fields. The path integral therefore provides
a convenient means to relate the semiclassical
(local) index theorem (2.16) to the quantum-mech-
anical WT identity (2.19).

The important implication of the index theorem
on the path integral is that a naive unitary trans-
formation of basis vectors for fermions belonging
to different (local) indices, for example, a trans-
formation from the “standard” basis (2.6) to “plane
waves, ”

#gk(x) =A%),

(2.28)
f £,(x)'E, (¥)dx =5, ;

is not allowed for gauge theory. (For simplicity,

we here treat all the eigenvalues as if they are

discrete.®) Under this change of basis vectors s
the path-integral measure is formally invariant:

1 da,d5, ={ detl(t, | o ) ]det[ (o, | £,)]} -
x[] da,a¥;
=[] da, ab,.

The Jacobian factor associated with the chiral
transformation (2.12), however, leads to

(2.29)

; £, () tyyEp(x) = kZ (£ @) @] Ea)
X P (%) Y5 (%)

=Y 000 =A(x). (2.30)

The left-hand side of (2.30) is independent of the
gauge field A ,, whereas the right-hand side func-
tionally depends on A ,.

As is seen in (2.15), the chirality asymmetry
(2.26) appears in the well-defined zero-eigen-
value sector for the standard basis, whereas the
asymmetry is transferred to the sector of in-
finite frequencies for plane waves as was noted
in (2.24). This gives rise to the failure of the
naive unitary transformation (2.30). - In fact, any
sensible evaluation of the left-hand side of (2.30)
gives a vanishing result in local as well as in in-
tegrated forms.

" The nonunitary transformation (2.30) therefore
induces an “index defect, ” and the missing ano-
maly term-in WT identities when the remaining
parts of the WT identities are correctly evaluated
by taking the effects of gauge fields into account
in interaction picture perturbation theory.

The present consideration suggests that the
anomalous behavior of chiral WT identities in
perturbation theory should be traced to the failure
of the naive unitary transformation of basis vec-
tors rather than to the failure of naive WT iden-
tities. If the naive unitary transformation fails,
the most natural choice of basis vectors which
preserves the characteristic properties (such
as the gauge invariance) of the gauge theory is
to utilize the standard basis (2.6), and then the
“anomalous” WT identity holds as an identity.
This also corresponds to the customary proce-



2852 KAZUO FUJIKAWA 21

dure in quantum theory® where the primary im-
portance is attached to the Lorentz-covariant
“energy” operator JJ over y,.

Pauli-Villars regularization

In the ordinary discussion of chiral WT identi-
ties, the Pauli-Villars regularization is often
utilized.® This regularization scheme preserves
the gauge invariance but breaks the chiral sym-
metry by the large mass term of the regulator
field. 2

We here briefly comment on this regularization
scheme from the viewpoint of the path-integral
measure. We consider

1

£ =Pi P - mPpp +¥iPY —MIT ¥ + 577

TrF*'F,,

(2.31)

instead of (2.1). Although the regulator field ¥
thus introduced, which obeys the Bose statistics,
does not regulate all the diagrams, it regulates
fermion loop diagrams.

" The path-integral measure (2.7) is now replaced
by ‘

ai=]1 [2A,)]]] da,ab,[] da.dB ., (2.32)
with

¥(x) = Z LRREI
_ " (2.33)
Y ()= B0,

where ¢, (x) is defined in (2.6), and @, and B, are
ovdinary numbers. Owing to the Bose statistics !
for ¥, the measure in (2.32) now becomes invari-
ant under the sémultaneous transformations (2.8)
and

¥ x)_.eia(x)v W (x
_( ° .5 ( )’ (2.34)
¥ (x) =¥ (x)efe &5,
The Lagrangian (2.31) is now transformed as
L—=& -d,a(x)jl(x) - 2mia(x)j(x)
—8,a(x) ¥y y U—2Mia(x) Ty, ¥ . (2.35)
Thus the WT identity (2.19) is now replaced by

8,74 ()( ) D)1,y =2mi ([, ()b (9) D(2)1,)
—i6(x —yX [ys0(9)(2)],)
—i8(x —2) ([W(9)PE)vs 1)

-0, ([T (@) v v ¥ ) (9 P(2)],)

+2M [T (%) y 2 () (9)9(2) 1,) .
(2.36)

The ordinary WT identity is obtained if
8, ([T @)y “ys ¥ (D(3)D(2)],)
—2Mi { [T(x)yr ()P ()(2)],)

B 8:72 ([Te*FF,, 9w y)()],), (2.37)

which should be proved in this regularization
scheme; (2.37) is implied in our analysis by the
fact that the regulator field gave rise to the extra
Jacobian factor to make the measure (2.32) in-
variant under the chiral transformation. If one
takes the limit M —« in (2.36) first, it may also
be regarded as one of the specific choices of

f(z) in (2.22).

The ordinary analysis on the basis of the Pauli-
Villars regularization is thus perfectly consistent
with our analysis. In fact, the Pauli-Villars re-
gularization may be regarded as an ideal pertur-
bative realization of the path-integral analysis
of the anomaly presented so far: the Green’s
function

8, (4 @p(»PE)],) ' 2.38)

in (2.19) defined by naive perturbative calcula-
tions does not satisfy the well-defined WT identity,
as one has to diagonalize JJ and “regulate” its
large eigenvalues to obtain the well-defined ano-
maly factor. When one considers the combina-
tion

([EE()DE)]) +( [ (x)y “v¥ (P(9)9(2)], )

, (2.39)
in (2.36), the contributions from large eigenvalues
of I cancel each other thanks to the Bose statistics
of ¥ and we have
C[EE(9PE)], req + [Ty * YD 9)T(2) ] Dreg -

(2.40)
The regulated quantity
([T)y “y @ (DP(9)D() ], e (2.41)

in the gauge-invariant calculation goes to zero

“for M —, and

8, [FEE(D)DE)], re (2.42)

in this limit satisfies the well-defined WT identi-
ty with the anomaly factor provided by the mass
term

2Mi { [(x) y T ()W ( )0 (2)],) (2.43)

for M —~«. The regulator field ¥ thus serves to
better define the perturbative calculation with-
out altering the physics.
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Adler-Bardeen theorem

Our analysis so far is on the level of formal
manipulation, and it does not tell much about ]
the graphical proof of the so-called Adler-Bardeen
theorem,'* which states that the WT identity (2.19),
for example, holds up to all orders in pertur-
bation theory and that each term in (2.19)
becomes separately finite for the vanishing
momentum transfer. Our derivation of (2.19)
by the formal variational derivative, which
gave rise to all other well-tested WT identities
in the past, may, however, make the Adler-Bar-
deen theorem more plausible. A characteristic
property of a renormalizable theory is that the
form of the Lagrangian is not altered by higher-
order corrections. Our derivation of WT identi-
ties depends solely on this invariant form of the
Lagrangian, and it is tempting to regard (2.19), for
example, as a barve form of the WT identity, al-
though this does not necessarily imply that all the
terms in (2.19) separately represent finite Green’s
functions. [A suitable choice of the composite op-
erator, for example, J By, - v, B in place of
9,75, may make the renormalization property of
the local WT identity more transparent.] We need
a better understanding of the regularization before
we establish (2.19) in the graphical calculation and
express the WT identity in terms of finite quanti-
ties for non-Abelian gauge theories.®

IIL. THE § VACUUM
. The 0 factor and chirality selection rule

The discovery of the instanton solution!® in non-
Abelian gauge theories and its interpretation as
tunneling phenomena in field theory gave rise to
an important notion of the 6 vacuum.!” In the
path integral, the sum over all the field configur-
ations is assumed at the starting point, and thus
the sum over ‘““all” the topological configurations
naturally appears. In gauge theory, one sums
over all the gauge inequivalent set of field con-
figurations; the definition of different field con- -
figurations thus crucially depends on the definition
of allowed set of gauge transformations. In the
following, we classify the field configurations by
means of the “localized” gauge transformations,
which approach unity at space-time infinity. This
restriction of the allowed set of gauge transfor-
mations is necessary to render a well-defined
meaning to the topological index for gauge fields.'”
[In this respect, we have implicitly two kinds of
boundary conditions in mind: The first is the true
(or strong) boundary condition on the path-integral
domain at space-time infinity where all the gauge
fields are assumed to approach a pure gauge

transformation, and the second (weak) one cor-
responds to the ordinary Lehmann-Symanzik-
Zimmermann (LSZ)-type condition, which is in-
corporated by a limiting form of Green’s func-
tions generated via localized source functions. ]

In the presence of instantons, the measure (2.14)
splits into a sum of terms for a global parameter
a (by assuming the smooth transition® from local
to global a)

Y dp e (3.1)
14

or for the N-flavor case in quantum chromo-
dynamics

Zd“ we e ' (3.2)

under a chiral U(1) transformation, and the mea-
sure is invariant under any chiral flavor SU(N)
transformation, as can be seen by diagonalizing
the traceless SU(N) generators. Here v stands
for the Pontryagin index (2.27), and it corres-
ponds to the number of instantons in the “dilute-
gas” approximation.”

For the chiral-invariant action, (3.2) gives rise
to the ordinary chirality selection rule as is spe-
cified by the index theorem?® (2.26) with v on the
right-hand side replaced by Nv, and withthe iden-
tification 6 = -2Na we have

D du et (3.3)
v

which coincides with the ordinary prescription
of the 6 vacuum.'” Qur derivation of (2.19) sug-
gests that the WT identity holds without modifi-
cation in the 6 vacuum. In general, the parameter
0 has a definite physical meaning only relative
to the chirality phase of the fermion mass term.
It should be noted that not only the gauge field
but also the fermion variables in (3.3) depend on
the index v (at least in the WKB approximation)
in our approach. [In the path integral with an in-
finite number of degrees of freedom, however,
one has to integrate over rather singular bosonic
field configurations (or at least over suitable
limiting configurations of regular fields) for which
the Euclidean action in general diverges’ and the
index theorem in the proper sense (2.26) has not
been checked in Euclidean space R%. As a result,
the validity of the chirality selection rule stated
above beyond the semiclassical WKB approxima-
tion is not known at present in Euclidean space R*.
In comparison, the local index theorem (2.16) and
the local WT identity (2.19) are more general as
they can be established without referring to the
global topological structure of field variables.]
The 6 factor for pure gauge fields (or for scalar
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fields coupled to gauge fields) does not arise in the
present manner. This reflects the fact that all

the gauge-invariant operators are automatically
chiral invariant for those theories, and there
exists a superselection rule for the 6 parameter.
The vacuum structure of the scalar gauge theory
with spontaneous symmetry breaking such as the
Higgs-Kibble model, however, becomes more
involved due to the fact that the Kronecker index
associated with the scalar field correlates with the
Pontryagin index of the gauge field if one imposes
a finite Euclidean action.!®

Spontaneous symmetry breaking

As is well-known, the anomaly term provides
an explicit chiral breaking term for the gauge-
invariant current (2.20) in the presence of in-
stantons.'” The effects of instantons and the
6 vacuum may, however, be regarded as a kind
of “spontaneous” symmetry breaking. We now
briefly comment on this point. We first define
the “conserved” current by

JE(x)=j¥(x) +iS*(x) , (3.4)
with
S*(x)=(N/8m2)e"*® Tr[F ,A, - 3A A A, |.
(3.5)

By using J&, one can pretend as if (2.9) and (2.14)
(for m =0) were replaced by

£—-L-9,ax)JIE(x),
(3.6)

D dug,—Y dig, exp{i J’dx o lax)s “(x)]},

which give the same expression for (2.17) in the
form of the generating functional.

For local a(x), on which WT identities are
based, the functional measure as defined in (3.6)
is invariant as the surface terms vanish. [In-
cidentally, this partial-integration procedure cor-
responds to the definition of T*product in the
functional formalism.] For global a, however,
the measure is transformed nontrivially in the
presence of instantons. Namely, the zero-fre-
quency sector of the integral measure behaves
abnormally, thus leading to the mismatch be-
tween the local WT identity and the global sym-
metry relation of the theory. This is the typical
situation of spontaneous symmetry breaking and
it generally gives rise to a Nambu-Goldstone
pole for the gauge-variant current J; (3.4) if the
quantum corrections to the instanton are suitably
included. The chiral property of the gauge theory
thus exhibits the behavior similar to the spon-

taneous breakdown of other symmetry transfor -
mations if one uses the conserved current (3.4).

In the ordinary treatment of general continuous
symmetry, this abnormal behavior for the global
transformation is produced by the wave functional
which specifies the boundary condition. In the
present case, the boundary condition is already
incorporated in the definition of the path-integral
domain.

IV. OTHER RELATED PROBLEMS
Parity-violating gauge coupling

When one considers a gauge model for weak
interactions,!® the parity-violating gauge cou-
pling appears. We here comment on the treat-
ment of such a case by considering the simple
model

£ =9, (x)ilY,(x) + —5 TrF*F,, (4.1)
in place of (2.1), with ¥, (x)=[(1 -7,)/2l(x).

By noting that y,¢,(x) belongs to the eigenvalue
- X, if ¢,(x) has an eigenvalue A, in (2.6), we
define®

¢,f(x)z<1—:l5—>qo,,(x) i, >0

V2
-E(l—:ZZi)(p"(x) ifa, =0, (4.2)
oE(x)= <ﬁ )(p (%) ifr,>0
E(1+ )(p(x) ifA,=0. (4.3)

Note that ¢ ,(x) with A, =0 can be chosen to be the
eigenvector of ,. The basis vectors ¢ and ¢F
thus defined form a complete orthonormal set.
We then expand

ZPL(x)EAZ a9k, (4.4)
by (x)= Z b X(x)t. (4.5)

Under the local-chiral transformation
V() —e ey, (x),
by () =P (et

the Lagrangian (4.1) changes:
L=L+8,a(®, (K)y P, (x). (4.7)

The path-integral measure then transforms as

(4.6)
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ap=]] [®A4,I]] da. I 45,

. —du exp{ifa(x)z [oZ(x)'k(x)
1"30
- oR(x) o R(x)] dx }

=du exp{—zfa(x)z @ X)y0, (x)dx}

. allAy,

=du exp { -1 f a(x)A (x)dx} (4.8)

by using (2.13). Namely, the phase factor be-
comes one-half of the previous example (2.14).
The current defined from (4.7) [in accordance
with the phase convention in (2.9) and (2.20)],

F ()= =y (x)y Py (x)

= T (152)e00, (4.9)
thus satisfies a WT identity similar to (2.19) with
an anomaly factor which is one-half of the previous
example. It should be noted that we still sum the
series in (4.8) according to the eigenvalue of J,
although we transformed the eigenvectors to those
of y; in (4.2) and (4.3). This prescription of sum-
mation according to the eigenvalue of J is essen-
tial to obtain a well-defined anomaly factor.

By considering a general chiral transformation

(bL(x)—’e‘“(")"STaz{)L(x) =g-ia (x)T“sz(x) (4.10)

with T ¢ the generator of the gauge transformation,
the covariant derivative of the current

Jax)= =9, (x)y “T %, (x) (4.11)
has an anomaly factor:
A%(x)=D @, ()Y, %0 (%)
= ; (8" 1) Tr{T“*F o 2 (4.12)

This relation (4.12) gives rise to the well-known
rule for the anomaly®’; for SU(2) Yang-Mills
fields, for example, (4.12) vanishes.

For a general gauge model such as the Wein-
berg-Salam model, the ordinary result follows
if one uses basis vectors which diagonalize co-
variant derivative operators by taking the index
theorem as a guiding principle.

Anomaly for Einstein gravity

The anomaly for the gravitational field was first
discussed by Kimura,?! and it has been later clari-
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fied by many authors.??2® For the sake of com-
pleteness, we here briefly comment on the gra-
vitational anomaly.?* As the renormalization of
the Einstein gravity is not well understood yet,
we consider only the case of the external gravi-
tational field.

We start with the fermionic part of the La-
grangian

£ =h(x)(Piy “D 3 — mpyp) (4.13)
with
Y*(®)=h)(x)y®, {ve,v%=2G°,
Du=8,-3iA, . (x)S™, S™=1i[™ 4", (4.14)

{y*,v*} =2n b0} G = 2g “(x), h(x)=det(rn?).

The metric for the local Lorentz frame is G%®
=(1, -1, —-1). After a suitable Wick rota-
tion in the local Loventz frame, e.g., hé —ink,
h—~—ih, and y°—-iy? with y, = 74'y1)/2'y as before
[the Euclidean metric is G®=(-1,-1,-1,-1)], w
consider a complete set of bases belongmg.to the
Hevmitian operator D=y"D,:

Do (%) =00 (%) ,

(4.15)
f R(%)@ ,(x)' (¥)d *x =5, . '

The discussion from now on parallels the pre-

vious one. We obtain the chiral transformation
law

d —du exp [_ 2i f a(x)A (x)dx} (4.16)
with
A(x) =Y RE)P,(0) 40 () (4.17)

which can be evaluated as usual:

A(x)

lim 3 ho,(x)tyse On/%g (x)

M=+ n

= lim lim Tryhe" "’/”’22<p X (x)

M=o x' ~x

: 1
lim lim Tryhexp|-(D*D, + M?
lm im Teyhex|(0°D, + £/

(4.18)

X0(x-x'),

where the limit x’ —x is inserted to specify that
the differential operator acts on x, and R is the
scalar curvature. The covariant derivative D,
from now on stands in general for the full co-
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variant derivative with the Christoffel affinity
included. We represent the invariant § function by

1 b(x—x')= 1 ——d‘lk'e

h(x) T h(x) J (2m)*
with the geodesic biscalar 2125 (x,x’) [a genera-
lization of 4(x — x’)? in the flat space] defined by

ikuD olx,x') , (4.19)

olx,x’) =3g*Y(x)D 40 (x, x")D,0o(x, x")
=1a*"V" (¢ )D'o(x, 5" )Dlo(x, x") (4.20)

J

and o(x,x) =0. It can be confirmed that (4.19) de-
fines a biscalar function, and it reduces to the
left-hand side of (4.19) after the integration over
k, by noting

lim D, D% (x,x’)=g". (4.21)

' ~x
In (4.19) %, is just a numerical parameter, and
we regard (4.19) as a biscalar function formed
of 1% (x) and 8“s(x,x’). By inserting (4.19) into
(4.18), we obtain

A(x) = lim lim f(?d;% Try,exp{-[(a* +D*)(is, +D,) +iR]/M %}

M= x' ~x

d‘k

= lim lim M* f———— Try,et"su(e-2"suexp{-[(ia* +D*/M)(ia, +D,/M) +R/(4M?)]}) (4.22)

M=o x' ~x (217)4

after the rescaling 2, —Mk,, with A*(x,x’') =k, D"D%(x,x’). By expanding the quantity inside the bold
parentheses in powers of 1/M in the last expression of (4.22) by imitating the Dyson expansion, we obtain

4
A(x) =Try, f % ekuku{éD“DuD“Da +3k,k k kD" D'D*DP +3k k [D*D*D,D® +D“D,D*D® +D*D*D"D, |}

_ hx)
19272

- 1
~ 384r?

Tr{y[D*,0*][D,, D, I}
%faBMRuvasRuuxp P

where

€ = he S NN, (4.24)

and R,, ¢ is the Riemann-Christoffel tensor
(€%**® is normalized as €230 =¢!234=1),

By combining A (x) with the variation of the
Lagrangian under the chiral transformation, we
obtain the relation

0, {Je(x)) =2mi(j;(x))

i
38472

MR R Loy (4.25)
with
7§ ) =h(x) P(x)y “ysd(x) ,
75(%) = (%) Pla)ys P(x)

thus recovering the familiar result®~?* jj the
background gravitational field.

We emphasize that the anomaly factor (4.23)
does not depend on the detailed properties of
o(x,x’) except for the basic requirement (4.21).
Moreover, only the integration over the parameter
k, in the form

(4.26)

f d4kf”(k2) , f dk k?‘f"'(kz) , f a‘e (kz)zf (iv)(kZ)

(4.27)

(4.23)

r

contributes to the anomaly factor (4.23) if one
uses the notation in (2.24). These integrals (4.27)
are independent of the detailed form of f(z) as
before. "Also, we note that the unit bispinor2!-23
I(x, ') is not required in our calculation (4.22),
as the result is automatically gauge invariant
after the symmetric integration over %,. The
regularization independence of the gravitational
anomaly is confirmed, for example, by choosing
a suitable local coordinate so that

hE(x)=8%, 8,h,,(x)=0. (4.28)

A direct contact with the perturbative calcula-
tion®" 2% is achieved if one replaces the right-hand
side of (4.19) by

1 da‘r

W) @nr T (4.29)

lim
x'~x
which corresponds to the use of “plane waves, ”
and the simultaneous replacement of (J/M)? by
(n B/M)? in the exponential factor in (4.18). We
still obtain the same anomaly factor as before.?®
The anomaly for the supergravity can be simi-
larly treated®™?* and the Faddeev-Popov ghost
fields contribute to the chiral anomaly, a situa-
tion similar to the Pauli-Villars regularization
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(2.36). The property as an identity appears very
clearly in this example: If one exponentiates the
Faddeev-Popov determinant by using the auxiliary
fields, both the axial-vector current and the ano-
maly factor receive the contribution from the
Faddeev-Popov fields. If one does not exponen-
tiate, neither of them receive the contribution
from the Faddeev-Popov determinant.

V. CONCLUSION

The present investigation shows that the change
of basis vectors in the functional space should be
clearly recognized when one formulates the per-
turbation theory in the path-integral formalism.
This change of basis vectors is apparent in the
operator formalism when one transforms the
Heisenberg (or Schrédinger) picture to the inter-
action picture, and it is realized by a formal uni-
tary transformation. The corresponding change
of basis vectors in the path-integral formalism,
however, does not lead to a unitary transforma-
tion of the “chirality index” associated with the
functional measure. As a result, the missing
chirality index leads to the anomalous behavior of
chiral WT identities when one calculates other
parts of WT identities correctly in the interaction
picture. The nonunitary nature of the transforma-
tion must also exist in the operator formalism,
but it appears in a more clear-cut way in the path-
integral formalism with the aid of the semiclas-
sical index theorem. We also note that the Wick-
rotated Euclidean theory, when looked at in mo-
mentum space, renders the time-ordered product
at the coincident-time limit more manageable and
thus allows us to see the basic mechanism of the

anomaly.

In quantum theory, it is customary to attach
the primary importance to the Lorentz-covariant
“energy” operator® JJ. The fact that JJ and ¥, do not
commute provides an intuitive way of seeing the
origin of the anomalous behavior, although it does
not necessarily imply the appearance of the
anomaly.!?

We finally note that WT identities are based on
the local symmetry transformation specified by
the parameter a(x), and the anomaly factor always
appears in the combination [ a(x)A (¥)dx in (2.14).
As a result, they are not sensitive to the precise
boundary condition at space-time infinity, and
they hold irrespective whether the symmetry is
spontaneously broken or not. As was noted in
Sec. III, the spontaneous symmetry breaking is
characterized by the mismatch between the local
WT identity and the global symmetry property
of the theory (or the ground state). A general
treatment of the spontaneous symmetry breaking,
in particular the dynamical symmetry breaking,
requires a more careful treatment of the boundary
condition in the path-integral formalism. A dif-
ficult aspect of the dynamical symmetry breaking
resides in the fact that the field variables appear-
ing in the path integral and the effective field var-
iables after the spontaneous symmetry breaking,
which are generally accompanied by Nambu-Gold-
stone bosons, are not quite identical. In compar-
ison, the “effective” field theory such as the Higgs
model (and to a certain extent the instanton phe-
nomenon) allows a basically WKB-type treatment,
and it can be readily incorporated into the path-
integral formalism by imposing a suitable con-
straint on the functional domain.
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