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We study the X-component scalar field theory with a general O(N)-symmetric interaction Lagrangian.
Performing a suitable reparametrization of the model we demonstrate that it is renormalizable in the limit
X~ 00 if the potential has the form of a quartic interaction perturbed by a bounded interaction. The nth
derivative of the perturbing term should vanish at infinity faster than the argument to the power 1 —n, We
calculate the effective potential, effective action and derive several Greens functions. Although the
technique of performing calculations requires modifications, the main qualitative features of our model are
the same as of the ordinary {1/N)(4')4 theory. In particular, there is no symmetry breaking. Spectral
properties of Green's functions are correct.

I. INTRODUCTION

This is the first of two papers which are a con-
tinuation of an earlier study ' of the application
of the 1/N expansion as a tool for investigating
field theories with nonpolynomial interactions
which are expandable in a Taylor series in powers
of field variables. The scope of Refs. 1 and 2 has
been restricted to models in one-, two-, and
three-dimensional space-time. It turned out that
the main properties of nonpolynomial interactions
obtained in the leading order' in 1/N were the
same as those in the ordinary (Ref. 3) (1/N) 4'
model. Next-to-leading-order results' resemble
those found in the standard (Ref. 4) (1/N)4' mod-
el. Up to three dimensions renormalization was
particularly simple because in the leading and
next-to-leading orders there is no need to perform
more than one subtraction in Feynman integrands.
In four dimensions, self-closing loops occurring
in the leading order require two subtractions.
This causes additional difficulties in arranging
counterterms into existing constants of the model.

By reparametrizing. our model with use of the
intermediate collective field (which we introduce
in a way which is different from that in Refs. 1-4),
we considerably simplify the renormalization pro-
cedure and show that arranging counterterms
causes no problems, if for large 4'/N the inter-
action Lagrangian (and all its derivatives) does
not increase faster than

N[-,'m, (o'/N) + —,'g, (c '/N)'+ w(c '/N)]

(corresponding derivatives of), where W&"&(4'/N)
= d "W/d(4'/N)" satisfies W'"'(x) = o(x' ") as x- ~
for n ~ 2. Then we derive renormalized expres-
sions for the effective potential and action for the
model with the interaction part exactly as above,
with coupling of the bounded term relatively weak

compared to g,. As in lower-dimensional space-
time the results do not differ much from what was
found in the (1/N)(4'), model. ' The effective po-
tential has two minima, one leading to the sym-
metric, the other to the asymmetric ground state.
For large values of classical fields the potential
becomes complex. Symmetry breaking is impos-
sible because the symmetric minimum is always
deeper than the asymmetric one. Expansion around
the correct ground state does not yield poles for
spacelike momenta.

This would be a rather uninteresting result, if
the similarity between (1/N)C ' and a general in-
teraction were model independent as was the case
in one, two, and three dimensions. In four dimen-
sions this is no longer the case. In the accom-
panying paper' it is shown that drastic changes
arise when the interaction is bounded. Then the
potential is everywhere real, there is only one
minimum, and for the positive sign of coupling
constant symmetry breakdown takes place.

II. RENORMALIZATION IN THE LEADING-ORDER

APPROXIMATION

Formal similarity of the leading-order results
for the model under consideration and of the
(1/N)(C'), theory' whose careful analysis is al-
ready available, allows us to neglect some details
of calculations which can be anticipated from the
existing findings.

The effective action 1"(y, G) is'

1 (y, G) =I(y)+-,'ikTrlnG '+-,'iv) Tra) '(y)G

+I'2(y, G),

where I is the classical action,

im '„(y) = 6'I(qr)/6y, (x)a p, (y),
and the implicit definition of G„ is
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5r(«, G)/5G, (&(;x,y) =0.

r, (&p, G) is the sum of all two-particle irreducible
vacuum graphs with propagators G and vertices
generated by the Lagrangian whose field arguments
C' are shifted by their classical values y'. In the
leading order the relevant Feynman rules for I'2
are generated by the effective interaction La-
grangian

L, , (q, e) = —N g —„, (C '/N)" V&'&(q'/N)
k =2

so that the relevant 2n-point functions are'

iN(2-/N)'V&'&(q'/N)

x (5, , ~ ~ ~ 5, , + distinct permutations).
/

The diagrams which contribute to I', are presented
in Fig. 1 and yield

&', (», G) = —&(Q —,(If(&() fd'x'[G, (x, x)]'
2

x v&"&(y'/N) .
Defining

G„(x,y) = N5„g(x,y) + O(1),

we have to leading order

g '(p'; x,y) =i[ —2V," (p'/N kg(x, x))]5—(x-y)

r(&(&) =I(p)+&¹8Trln&g '

—N Jt d'x[V, (y'/N+ f&g) —V, (y'/N)

and the unrenormalized effective potential

eff(9', X0) = N[ V(&(X()) —
(X(&

—y /N) Vo (XO) ]

P 2y() X

Two subtractions are required to renormalize the
divergent integral in (5). The first derivative of
(5) is

sX. ' '" N ' (2)' '-2V"'( )

On the physical orbit defined by the gap equation

(2v)' p'-2V&'&(X, )

we obtain for the second derivative of (5)
2

cff N v&2) ( )0 XO
X0

(2) 2 d P 1
SNAB [VP (XP)]

(2 )4 [ 2 2 V&&&( )]z

(8)

Now the problem is how to arrange counterterms
into the definitions of X, and Vo&~)(0) in such a way
that expressions (6)-(8) will be finite. We shall
see that the solution is not as immediate as in the
ordinary (1/N)(C'), modeL Dimensionally regu-
larizing the integrals occurring in (6)-(8) and in-
troducing an arbitrary mass scale p.

' we obtain
—agV &'&(q'/N+ Ig)].

Introducing

X
= p /N+hg,

d '-'p 1 V&'&(X.) 1
(2&&)' p'- 2V,"'(X,) 4&&' e

V(~)'(X,) Vvv '(X(&)
i

we observe that to leading order our model can be
equivalently replaced by the "comparison the-
ory"" with the Lagrangian

I.(c, x.) =-'(s.+)'
—N[ Vo(xo) —(X.-@'/N) Vo&" (x.)],

and

d ''p 1 11
(2&&)' [P' —2 V&'&(X,)]' 8&&' e

the unrenormalized effective action

r (», x.) fd *&!(&, &
l'=

—N[v. (x.) —(x.—~'/N) v!"(x.)]]
+ Nih Tr ln[ +2V&'&(X,)], (4)

y(&)

+16, ln ', , (10)16~'

so that the conditions of renormalizability are

X = X, ——V&/'(X&&) = finite

and

+ + + ~ ~ ~

FIG. 1. Leading contributions to I'2.

V,"(X,) +—[V,"'(X,)]' =finite,

where we have introduced c =8/8&& .
In two and three dimensions only the mass re-
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normalization is required in the leading order,
so that the second condition in (11) is not neces-
sary. In that case the renormalization condition
can be equivalently represented in the form'

(9) calculated in two- and three-dimensional
space-time. Let us adopt the formula

v"'(0) = v."'(x.—x) (12)

(~ & (0) —V(~ ) (C)

, C»V,"'k'(0) =finite for all j+k

a=o &t

where C stands for the pole part of the integral

for our purposes, remembering that now (12) is a
bare definition of the coefficients V"&(0) as a pow-
er series in (2c/e) V,"&(X,), and not a renormaliza-
tion condition. The coefficients V"&(0) must not
be finite. Substituting (12) into (11) we obtain

X =Xo ——V' '(X) =fimte2c

V( )(X) + [V( )(X)j g VP+k&(0) +
i

V(i+ 2) (0)V(k-(+2)(0) Xk —fimtek' - ~ (0

The solution of (11') offers no problem if the the-
ory is renormalizable, i.e. , if V'k'(0) = 0 for k
)2." In our case the infinite number of nonvan-
ishing coefficients V'k'(0) makes it much harder
to represent V'"'(0) in the form of the power ser-
ies in 1/e,

V(k ) (0) V(k )(())

+ Q (I/e)(A, » (V„))(0)), all j
1=1'

such as to ensure the finiteness of (11'). With all
nonrenormalizable theories our model seems to
share the distinction of having an infinite number
of counterterms so that any renormalized action
or effective potential depends on an infinite num-
ber of arbitrary parameters.

Things look much better if the interaction La-
grangian has the form of the renormalizable in-
teraction perturbed by a bounded interaction.
Then as indicated in Ref. 2 one can hope that only
a finite number of parameters of the model require
subtractions, so that the number of arbitrary re-
normalization conditions is also finite, as in renor-
malizable theories.

The argument hinges on the particular property
of the effective Feynman rules of the 1/N expan-
sion, in which conventional Feynman diagrams are
partially resummed and produce effective vertices
which are derivatives of the bare interaction La-
grangian. As we have just seen, the arguments of
these derivatives involve contributions from the
self-closing loops which are divergent in the limit
of the removed regularization (& -0). In contra-
distinction to the general polynomial case, now

orily a few low-order derivatives tend to infinity
in this limit, so that the structure of counterterms
may be the same as in the case of renormalizable
theories.

The derivatives of the bounded term should

V ff(p, g) = N V(&(f(&(g) }—(fo($) —qP/N'}

( )

Veff(y, g) N ()) . d Pfo (g)+2ih
(2 )4 (p& 2 )k

Dimensionally regularizing we obtain

= N[qP/N-fo(q) + (2c/e)y

+ c(i)(in(p/q') —I)] (16)

I

vanish at infinity fast enough as to ensure the fi-
niteness of all derivatives of the effective poten-
tial, so additional constraints must be imposed on
the shape of the interaction Lagrangian. In order
to find these constraints we shall again repara-
metrize our model. The merit of the new repara-
metrization is that it considerably simplifies the
procedure of arranging counterterms. In the case
of the (I/N)C model our reparametrization re-
duces to that used in Refs. 3 and 5 and other pa-
pers on a similar subject. Let us return to the un-
renormalized expression (5) for V(y, Xo) and in-
troduce the new field variable f,

~= v!"(x.), x.=f.N) (14)

If the classical potential V(()P/N) has only one ex-
tremum the function g(X,) is monotonic, so that

f,(P) is single valued. If not, we have to consider
all branches of f,(P).

In terms of the new variables we have
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= —N[fo&'& (g) —2c/e + c ln(g/p, ')]. (17)

Expanding f, (&1&) in powers of r/r,

f, (&I&)
= g (1/n!)f &"&(0)4",

and in general

lim Vo&»'(A)[1+(A/M) V"'(0)]» '=0, k~ 3

so that

V,"&(A)=o(A'-") as A-~for k~ 3. (24)
we find that the renormalization prescription
should be

f&&"(0) =f0 '(0) + (2c/e)5 (19)

where all f&'&(0) are finite. The fact that we need
not renormalize f&'&(0) is due to the dimensional
regularization. Dimensionally regularized theo-
ries are void of power divergences. Comparing
(19) with (14) we find that

x = x+ (2c/~ )4 = x+ (2c/~) V"'(x),

where y is finite and we have introduced

v"'(x,) = v.'"'(x.) .

(20)

(21)

Let us note that in changing the field variables
according to the definition (14) we have dodged the
problem of how to ensure the finiteness of V"'(x),
given finite coefficients V~&»&(0). Now V"'(X) is
known to be finite, but the definition (21) is only
formal and it should be separately verified under
the additional conditions that the requirement
V'"'(0) =finite is satisfied for all k. To this pur-
pose we expand the expression

There is an essential difference between the con-
ditions (23) and (24). The former results from
the renormalization procedure [also in the ordi-
nary (1/N) g44 theory we have g,(1+ (A/M)g~) =

g&&]

and allows us to make an arbitrary choice of the
value of the finite coefficient V"'(0)~ The latter
condition should be understood as a restriction
on the asymptotic behavior of the interaction
Lagrangian. The examination of the equation for
the third and higher coefficients that we have done
above, has led us to the equations which involve
only Vo»'(A), k ~ 3, and not the coefficients V"'(0).

The constraints on Vo»'(A) are conditions on the
asymptotic behavior in the limit of the infinite
value of A. The condition (24) is satisfied by a
large class of functions whose coefficients Vo& &(0)

of the expansion in power series are finite.
Therefore we are allowed to write

Vo&'&(0) = V'»'(0) finite for k&2,

and restrict ourselves to interaction Lagrangians
of the form

V,'"(X+ (2c/~) V"'(X))= V"'(X)

in powers of g. Equating the first coefficients of
the expansion we obtain

V,"'((2c/~) V"'(o) ) = V"' (o) .

V, (C '/N) = ,' m, '(e'/N) + (g,/—aN) (e'/N)'

+ W(c '/N),

where

W&"'(x) =o(x' ") as x-~ for n&0 ~

(25)

Denoting

V' '(0) =M and (2c/e)M=A,

we have

v&'&(A) =M .
Comparing the second coefficients we get

v&'&(A) [1+(A/M) v&'&(o)] = v&'&(o),

so that in the limit A- ~ (i.e. , » 0)

(22)

Such Lagrangians can be considered as renor-
malizable in the usual sense because in (25) only

m, and g, require renormalization conditions, the
term W(x) being irrelevant in the large-x region.

III. THE EFFECTIVE POTENTIAL

Let us integrate (18) using (19) to get the re-
normalized effective potential

For the third coefficient we have

V&'&(A) [1+(A/M) V&'&(0)]'

+ v," (A) (A/M) v"'(0) = v '
(o) ~

Then, making use of (23) we obtain

lim V&'&(A)[1+(A/M) V"'(0)]'=0,

V (q, y) =N (q'/N) —
Jl f(x)dx

0

+ (c/2) g' Qn(g/!&') ——,')
while after renormalization the gap equation (7) is

(&& '/N) =f(4) —ck(»(4/!&,') —l)
Both formulas are manifestly p,

' dependent and
should be reexpressed in a renormalization-in-
dependent manner. First we remark that

f(0) —4f"'(o)
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is a renormalized-independent quantity, so is a
defined by

z' = p,
' exp[f"'(0)/c].

Then we rewrite the effective potential and the gap
equation in the p,-independent manner:

a}

P~2
V„,(p, g) =N —g — (f(x) —xf"&(0)}dx

o

+ cy'(In((1)/~') ——,')

0'/N=f (&I)) —4f"'(0) —eton(4/&') —4
(28)

(27)

Eliminating y'/N from (26) with use of the gap
equation we obtain the constrained effective po-
tential V„„(g)2

V,.„(g)= N gf(P) — f(x)dx ——,'(I)'f ('& (0)
nn 0

—
~ c(E)'(In(g/z') —

~ )

=N x(f"&(x) -f('&(0)) — cg'(In(g/v')}

(28)

From now on we shall focus our attention on inter-
actions of the form which is strictly the same as
(25}, i.e. , to the massive 4' theory "perturbed"
by the bounded interaction. The line of argument
will not suffer qualitative alterations with change
of the actual form of W(4'/N}, so we shall, to il-
lustrate general considerations, make recourse to
the specific example, namely

FIG. 2. f {g)vs g. {a)for A, &0, g&0; {b) for X&0,
g&0; {c) A, &0, g&0; {d) A, &0, g&0. In cases {c)and {d)
parameters obey constraints {31).

m'& (g/2E) In(-g/4eE2A. ) [case (d)]. (31)

For ~E'A.
~
«g (this is what one should mean when

stating that g4' is perturbed by bounded interac-
tion) lower branches in case (c) and (d) are un-
physical i.e. , p'/N& 0 for all P. This allows us to
consider in what follows only upper branches of f.

Differentiating (28) with respect to g we have

defined at (&)
= 0 we ask parameters m, g, A. to satis-

fy additional constraints'.
rn'& (g/2E) In(-g/4eE'X} [case (c)],.

—V(e'/N) = —,'m(C '/N)+ (g/8) (e'/N)'

+A. exp(-E4'/N), E & 0 .
The first derivative of (29) equals

(29)

f"&(y) -f"'(0) = c In(g/&(') . (33)

V' „(g)=NP[f"'(() -f"'(0) —cln(g/v')]. (32)

Hence V „has extrema at )=0 (minimum) and
possibly at &E) =(E), , where )E),

's are solutions of the
equation

—V"'(I '/N) = —,
' m' —(g/4) (4'/N)

N

-E&(. exp(-E4&'/N) (30)

and can not be explicitly inverted. However, we
shall not need the actual expression for f(g). The
behavior of f is visualized in Fig. 2. We have to
distinguish four cases: (a) A & 0, g& 0,f increa-
ses; (b) A. &0, g&0, f decreases; (c) X &0, g&0;
(d) X & 0, g & 0. In cases (c) and (d) f has two bran-
ches, one of them increasing, the other decreasing.
Above the g axis the asymptotic behavior of f is
linear while under this axis it is logarithmic.
Since our procedure requires both f and f"& to be

The expression in brackets in (32) is the deriva-
tive of the gap equation (27) so the gap function
g(p') has branch points at each (/) where V „has
an extremum If y'(g.= 0) & 0, the ground state
can possibly exist at $= 0 [symmetry breaking
if qP($ = 0) & 0] or at zeros of (»'((E)), i.e. , at p, sat-
lSfylIlg

(no symmetry breaking). If there are two such
zeros g» & g», say, separated by a maximum of
p (g) and V „(p) at g = g2 then V„„(A)02)& V„„(go2).
Indeed,

&o2(' .(2 ) —(c .(2 ) )/I- I'/(c) —2/'"(2))2c+2=, /(2..) 2. /(2. ) (2. * 2. ')—/"'(o)—-
&ox

—(c/2)2, '()n(2„/c') ——,') c (c/2)2, '(1n(2, /c') —-',

)I .
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Eliminating g„f(go,-) with the help of (34), we get

r .((t, ) —I' .((t„)=ÃI- f [f(x)- /d' (0)(dh+(c/2)d, .'()n(d.,/~') —-'.)- (c/2)d„'()n(d. /» ) ——,')I.
It'0).

In the interval (&&» &$&go2, y'(g) &0; therefore

x — "' 0 dx&c x ln x K

't'01 ~01

and performing the integration we get

V „.(g, ) —V „(g»)&0. (35)

(left) of [t). Finally, in case (d) f(g) decreases on
the upper branch, and so does f"&(P). To the right
of the branch point f goes out of existence but if
~&). l') «g the solution(s) of (34) exists. The de-
crease of f"' implies the position of zeros is the
same as in case (c).

To the right of g =0, V&'((I&) increases while (»'(p)-—~ for g —~; therefore p'(p) must have a max-
imum at some g & 0, and if f(0) & 0 a zero at g, & (t).

V„„(i[)= 0) = 0, while V„„(P,) &0 by the same argu-
ment as above.

Concluding, the vacuum is always symmetric
because its site is at the deepest of the minima
of V „. At the ground state

IV. THE SPECTRUM

The effective action is

r (r*, d) = f d x[ rrp ——rp'd —Nv (/ (d))+Nf ld)t))

+ ,'N&h Tr ln( —+2().
Shifting the field variable g by P„

——(y,) =fo &(&I),) -f"&(0) —c ln(y /K') & 0, (36)

because (&&, is situated to the right of a maximum

«q '/N(P). Let us show that in our specific ex-
ample one encounters only one zero satisfying
the condition (36). First let us prove this for
cases (a) and (b). From (27) it is apparent that
maximum occurs for g»c' because f(f) -f"'(0) is
an increasing function. To the right of K' both
sides of (34) are increasing but the second deriva-
tive of the left-hand side (lhs) of (34) is negative
while that of. the right-hand side (rhs) is positive;
therefore for go &K the lhs intersects the rhs in
no more than one point. One can not have two in-
tersection points to the left of K' because then the
lhs increases while the rhs decreases.

In case (c) the upper branch of f increases
while its first derivative decreases and so does
the lhs of (33). The rhs of (33) increases from
minus to plus infinity; hence (33) has only one
root and the gap equation has only one minimum
at g. There is no more than one zero to the right

54 g=o
g2 0

=N fo((I)0)+ ik

= N[f(y, ) —g f"'(0) —cg (In(ii) /z') —1)]

which vanishes in view of the gap e(luation (2V).
The propagator of the y field equals

(p'-2P. ) '. (39)

There are no mixed y-g lines in the Feynman
rules and the g-g propagator D&&(k } is given by

we obtain

r(r', d)= Jd'x[ der —)dd —(dd,

—NV, (f,(y +(I,))

+Nf ($+)I) )g+Nf (P+g }g ]

+ 2¹kTr In(Cl+ 2g+ 2/0} . (38)

This yields for the g tadpole diagram

=N([f" & (g,) —f"& (0) —c In(g, /K') ]—[(c/2) B(k', 2g,) —2]], (40}

where

B(k', m') =2(1 —1/x)' ' ln((1 —x)' '+ (-x)'~') for x= k'/4m' «0,

B(k,eP) =2(1/x-1)'~' arctan(x'~'(1 —x)'/') for 0& x & 1,

B(k', m') = (1 —1/x)' ' [- i&[+ 2 ln((x- 1)'~'+ x'~'}] for x& 1.

(41)
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The first expression in square brackets in the
second line of (40) is negative in view of (36); fur-
thermore, B (k' = 0, 2g, ) = 2 and increases if k' in-
creases so that D&&(k') has no (tachyon) poles for
spacelike momenta. This conclusion ends our dis-
cussion which has shown that bounded perturbation
of the (1/N)4' theory results in the leading order
only in the, need to modify some details of the
computational technique. Essential features of the
model remain unchanged: Symmetry breakdown is
impossible and expanding around the symmetric

minimum does not lead to ghost poles in the inter-
mediate field propagator.

In the accompanying paper' we shall show that
the above conclusion is not model independent.
Changing the interaction potential we may obtain
essentially different results.
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