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Supersymmetric Dirac particles in external fields
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A classical Lagrangian is proposed for a relativistic particle with spin. It is supersymmetric under
transformations between position and spin variables. The theory can be quantized and becomes identical
with conventional Dirac theory. This correspondence continues to be valid when the particle interacts with

external electromagnetic or gravitational fields as long as its coupling to these fields conserves the
supersymmetry.

I. INTRODUCTION

In classical physics essentially all dynamical
variables are bosonic since they can be represent-
ed by ordinary commuting numbers. On the other
hand, in modern theories of elementary particles
one is tempted to speculate that all the really fun-
damental particles in nature are fermions and all
bosons are composite. Anticommuting quantum
fields do not have a classical limit in terms of
ordinary numbers but must be represented by
antic ommuting Grassmann numbers.

Supersymmetry strikes a middle road between
these two extreme situations in that it demands
complete equivalence between bosonic and fer-
mionic variables. This requires that a super-
symmetric theory has operators which connect
these two types of variables and hence are them-
selves fermionic. A supersymmetric quantum
field theory describing particles with different
spin must have the same number of fermionic and
bosonic degrees of freedom. Transition operators
therefore have half-integer spin and the simplest
ones have spin &.

One can also imagine a different kind of super-
symmetric theory where one does not have transi-
tions between integer- and half-integer-spin par-
ticle operators with the corresponding Bose or
Fermi statistics, but where one has transitions
between operators with the same spin but opposite
statistics. This could, for example, be the case
in gauge theories where the ghosts resulting from
quantization have the wrong statistics. We will
see that the supersymmetry we shall discuss here .
is of this latter type. -

Spinor operators are the basic building blocks
in most supersymmetric theories. This intimate
relationship between spin & and supersymmetry
makes it natural to look for such a symmetry in
ordinary Dirac theory. In contrast to the Klein-
Gordon theory for spin-0 particles, the Dirac
theory exists only as a quantum theory. So far it
has not been obtained by quantization of a corres-

ponding classical theory, as can easily be done
for the Klein-Gordon theory. This has to do with
the problem of giving a consistent description of
the spin degrees of freedom for a classical point
particle in terms of ordinary bosonic variables.

A way out of this dilemma was originally sug-
gested by Martin' who showed that anticommuting
Grassmann variables can be used for this purpose.
This gave rise to the so-called pseudoclassical
mechanics which has many interesting properties
and has been studied by Casalbuoni and his col-
laborators. ' It can be generalized to relativistic
mechanics as shown by Berezin and Marinov. '
When these theories are quantized the Grassmann
spin variables become operators which can be
represented by ordinary spin matrices.

A most important observation was made by Brink
et al.4 who demonstrated that one could construct
such a pseudoclassical theory for a spinning par-
ticle which had a new type of symmetry. It in-
volved transformations relating ordinary position
variables to the new spin variables and was a real-
ization of supersymmetry. ' Unfortunately, this
formulation of the theory turned out to be very
complicated for particles with mass and one had
to invoke a fifth dimension in order to describe
them properly. This complication has recently
been circumvented with the proposal of a very
simple Lagrangian for a massive, spinning rela-
tivistic particle which is also supersymmetric. '

Here we will discuss the supersymmetric as-
pects of this new theory and how it ties up with
the well-known properties of quantized Dirac par-
ticles. This becomes especially illuminating when

we consider the particle moving in an external
electromagnetic field. We then know what results
our new theory has to reproduce. It can then be
used to investigate the motion of the particle in
an external gravitational field of which less is
known.

In Sec. II we give a short summary of the rela-
tivistic mechanics of a spinless particle and how
the proper-time formulation can be quantized to
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give the ordinary Klein-Gordon equation. The
scalar propagator can be obtained in this first-
quantized theory by using a Feynman path inte-
gral7 or the equivalent Schwinger operator meth-
od. ' This is done in the Appendix.

In Sec. III we present the corresponding Lagran-
gian description of a relativistic particle with spin
and demonstrate that it is supersymmetric. In-
troducing a new position variable for the particle
which we call its superposition, we can write
the Lagrangian in a very compact and explicitly
supersymmetric form.

The more interesting case of a spinning particle
in an external electromagnetic field is considered
in Sec. IV. Again we find that the particle has an
additional constant of motion which is due to the
inherent supersymmetry of its dynamics and we
find the equations of motion. The theory is quan-
tized in Sec. V using proper-time methods. We
find the Feynman propagator for the particle and
derive its quantum-mechanical equations of mo-
tion in an electromagnetic field. These agree with
Schwinger's results. ' In Sec. VI we consider the
particle in a gravitational field. This interaction
can again be made in a supersymmetric way and

gives directly Papapetrou's equation of motion. '
It is also pointed out how one can obtain a quan-
tum-mechanical description of a Dirac particle in
curved spacetime from this supersymmetric for-
mulation. Finally, we show that there are good
reasons for interpreting the Grassmann spin vari-
ables as classical coordinates of the quantum-
mechanical Zi tterbemegun g.

(2.5)

we find the equation of motion

x~=0, (2.6)

which says that the particle moves with constant
veloc ity.

Constants of motion can in general be found from
Noether's theorem. If the Lagrangian changes by
a derivative 5L=A under the infinitesimal coor-
dinate transformation x "-x "+6x ', then

E = Bx~p„—A (2.7)

is a conserved quantity, %=0. Since J. in Eq. (2.4)
has no explicit dependence on. the proper time s,
the action is invariant under the translations

metrization of the evolution parameter X. On the
other hand, because of the square root it can only
describe particles moving along timelike trajec-
tories. It can therefore not be used for processes
where a particle turns around, moves backwards
in real time, and effectively becomes an anti-
particle moving forward in time. This was first
emphasized by Stuckelberg" who proposed instead
to use the Lagrangian

(2.4)

The time evolution parameter X= s can no longer
be freely reparametrized but is proportional to
the proper time of a massive particle. This is the
Lagrangian we will use. From the canonical mo-
mentum

II. PROPER-TIME METHODS FOR SPINLESS PARTICLES

'7he dynamics of a relativistic particle is de-
terjr~ined by the action

der. (x, x),

where A. is a time evolution parameter. Inspired
by the geometric content of the theory of relativ-
ity, it is usual to choose the Lagrangian

( ~ x g ~ v)1/2 (2.2)

for a free, spinless particle where g~„is the Min-
kowski metric with positive signature. Since the
four-velocity is x ~ =dx "/dX, the action now be-
comes

a=x ~p„L,=p~p, . (2.9)

Its constant value is given. by the mass m of the
particle:

&=p = —m2 2 (2.10)

Notice that the Lagrangian (2.4) is valid both for
massive and massless particles.

In an external electromagnetic potential A, (x)
the interaction is obtained from letting one of the
x's in (2.4) be changed into

x, -x, + 4eA „(x) . (2.ii)
This leads to the Lorentz equation of motion

s s+8 ~

The corresponding conserved quantity is then the
Hamiltonian

8= ds (2 3) x„=2eF~„x", (2.12)

and the particle moves so that its proper time s
is maximal.

The Lagrangian (2.2) has the useful property
that it makes the action invariant under repara-

where F~„is the electromagnetic field tensor

F „=8A, —B„A„. (2.is)
Similarly, in a gravitational field g„„(x)the La-
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grangian (2.4) becomes

f. = -',g„„(x)x "x".
This gives the geodetic equation of motion

(2.14)
b,~(x, m) = gl' dse " 'n~(x, s)

"dk -i
~ (2w)' k'+m'

(2.24)

(2.25}

where

(2.15)
This can also be obtained directly from the matrix
element (2.22) of the time evolution operator as
shown in the Appendix.

and
1

1 vn8= 2(sa, R'vg+ sigma, —avgas) (2.16)

are Christoffel symbols.
In the quantized theory x„andp„become opera-

tors satisfying the canonical commutator

[x, p.]=iq,. (2.17)

i s ~4(s))=&~4(s)). (2.18)

%hen II is constant, it can be integrated to give

~@( )) = '"' ~@(0)). (2.19)

An eigenstate
~
$(0)) of the Hamiltonian with eigen-

value -m' mill satisfy

(p'+m') ~4 (o))= o, (2.20)

which is just the Klein-Gordon equation.
The scalar boson propagator is given by the

amplitude to find the particle at point x~ at proper
time s when it was at x„when s = 0:

a~( x, s) = (xs(s) Ix„(0)) (2.21)

(2.22)

Inserting complete sets of states, one can rewrite
this as a Feynman path integral'

which is satisfied with p, = —i ~„.The relativistic
particle is described by a state vector ~C(s)) which
is governed by a covariant Schrodinger equation':

III. FREE PARTICLE WITH SPIN

The geodetic equation (2.15) is usually taken to
describe the motion of all particles, independently
of their spin. But we know that spinning macro-
scopic bodies feel an extra force due to their ro-
tation in a gravitational field. " It is natural to
expect the same to hold for a point particle with
spin. Such a modified equation of motion could be
obtained if we had a Lagrangian for the spinning
particle. The same Lagrangian could then be used
in the Feynman path integral (2.23) to give the
quantum-mechanical particle propagator.

A Lagrangian for a spinning particle has been
constructed by Berezin and Marinov'and Brink
et g/. 4 using anticommuting Grassmann variables
for the spin degrees of freedom. They chose the
parametrization-invariant form (2.2) for the or-
bital part of the Lagrangian. This was necessary
for the latter authors since they mere really inter-
ested in a one-dimensional supergravity theory
where this kind of local gauge invariance is es-
sential. Unfortunately, this choice makes it very
difficult to describe massive particles. One is
forced to invoke a fifth dimension and the formal-
ism becomes somewhat cumbersome.

For our purpose here it is natural to take the
form (2.4) for the orbital part. The proposed La-
grangian for a free spinning particle is then

f. =-.'(x "x„-i~'j„). (3.1)

b,~(x, s) = axe'""' (2.23)
We have here introduced the four Grassmann vari-
ables g" = $'(s) which anticommute

where S is the classical action. It is seen that
with the Lagrangian (2.2) the functional integral is
very difficult to do, if not impossible. In particu-
lar, it is not clear what to do with those paths
which make the argument in the square root in
(2.2) negative. This difficulty is related to the
lack of particle-antiparticle symmetry in this La-
grangian.

Using instead Stiickelberg's Lagrangian (2.4),
the functional integral is much simpler, being es-
sentially a product of Gaussian integrals. Fol-
lowing Feynman' we then project out the contri-
bution to a particle mith mass m and obtain the
standard result

so that the square of each equals zero.
From the canonical momenta

BL

x

and

BL
]~=48, ~

we find the Hamiltonian

II=x'p, + $'g, —L

(3.2)

(3.3a)

(3.3b)

(3.4)
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and the equati. ons of motion

x~=0,

(„=0.
(3.5a)

(3.5b}

The Hamiltonian is seen to be independent of the
spin of the particle and it is again a constant of
motiori p' = —m'.

By construction the Lagrangian is also invariant
under Lorentz transformations

V
~ gvx

5$, =«„f",
(3.6a)

(3.6b)

= «'"( x„P„+-.'i~„~„). (3 7)

This gives the six constant components of the an-
gular momentum

J v-Lgv+Sgv (3.8)

where q,„=—q„„areintinitesimal parameters.
Noether's theorem (2.7) states that there is a cor-
responding conserved quantity

X,(s, 8) =x„(s)+i8&,(s) . (s.14)

The supersymmetry transformation (3.13) is now
induced by the parameter transformation

position variables is a supersymmetry transfor-
mation. ' Mathematically it means that we must
accept that the position variables of a spinning
particle can contain a component which is an even
Grassmann variable. This generalization of the
coordinate concept is typical of all supersymmet-
ric theories. What it means physically is not
clear. In Sec. VII we will argue that the Grass-
mann part of the position variable has to do with
the quantum-mechanical Zi ttexbezoegung.

This new symmetry in the problem makes it
possible to write the Lagrangian (3.1}in a more
compact form which clearly exhibits the super-
symmetry. For this purpose we introduce the
superposition X,(s, 8) where 8 is a new Grassmann
parameter which is needed to describe the full
dynamical development of the system. X, con-
tains the ordinary position and spin variables in
its Taylor expansion:

where

I,„=x„P„-x„P, (3.9)

8 8+q,
s-s —i&8.

(3.15a)

(3.15b)

is the orbital angular momentum and

s„„=-,'i f„f,= -,'[$„(„] (3.10)

is the spin angular momentum. This is really a
pseudoclassical quantity with no definite size.

The Lagrangian (3.1) gives rise to one additional
conserved quantity. From the equations of motion
(3.5) we see that

(s.11)

is constant along the trajectory of the particle.
Since Q'=0, we can choose this constant to be
zero for all classical particles. As a consequence,
we than have

8 8D= 8 —+i—.
8g 88 (3.16)

This suggests the introduction of the covariant
derivative

It leaves invariant the differential form ds+i8d8
which defines a proper supertime for the particle.
Under this transformation the superposition is
changed to

5X„=5x„+i85$„
= —iqDX„,

where

p,S""=0. (3.12) 8. ~ 8D=8—-i-
8s 88' (3.17)

Thus, in the rest frame of the particle, the spin
tensor has only spatial components. In Sec. V
we will see that in the quantized theory Q x0.
Equation (3.12) then no longer holds.

This new conserved quantity (3.11}results from
a corresponding symmetry in the Lagrangian (3.1).
By inspection, we find that under the transforma-
tion

which anticommutes with the supersymmetry gen-
erator D:

ID&D)=0. (3.18)

On the other hand, we see that the anticommutator
of two supersymmetry generators is simply the
generator of proper-time translations:

5x„=i«$„,
5f„=«x„

(S.1Sa)

(s.lsb) &8, 5&= 2i —.8

8s (3.19)

it changes by a divergence. The parameter p is an
anticommuting number so that q'= 0. This trans-
formation which mixes the spin variables with the

We will see the significance of the relation in Sec.
V where we will quantize the theory.

The Lagrangian (3.1) can now be written as
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L =
& d~ q v X"DX" (3.20)

S""=2e(F"S"" S' F"") (4.9)

when we use the standard integrals

d8=0, „Id88=1. (3.21} (4.10)

In the rest frame of the particle where the spin
tensor has only spatial components S,.&= &,.z,S„
this equation can be written as

S=2eS &B.

Having a product of only supervariables in the La-
grangian we are guaranteed that the action is in-
variant under supersymmetry transformations. '

IV. SPINNING PARTICLE IN AN ELECTROMAGNETIC
FIELD

X„-X„+4eA„(X)

in the Lagrangian (3.20). Here

A „(X)=A„(x)+i8 $"A„„

(4.1)

(4.2)

When the spinning particle moves in an electro-
magnetic potential A„(x)we could get an interac-
tion from the Lagrangian (3.1) by the same mini-
mal substitution (2.11) as we used for the spinless
particle. But it is seen that such a coupling would
not give any interaction with the spin degrees of
freedom'and the particle would be without a mag-
netic moment. In addition, this coupling would
break the supersymmetry of the theory.

A satisfactory interaction with the external field
can instead be obtained from the very similar min-
imal substitution

A = pie(x„+4eA „)$" . (4.12)

The last term in (4.11) is zero because of Max
well's equation

=0 (4.13)

Thus, the change in I is a total divergence and
the corresponding conserved quantity Q follows
from Noether's theorem (2.7):

i&Q = 5x "p„+5$"f„-A

The spinning particle has therefore a gyromag-
netic ratio g=2. Notice that for a particle with
mass m our dot derivative is with respect to s
= r/2m where r is the more commonly used proper
time.

We will now demonstrate that the interaction
(4.3) is supersymmetric. Under the transforma-
tion (3.13}the full Lagrangian is changed by

bl = A+ piped $"]~F„„~, (4.11)

where

is a superpotential and the interacting theory will
remain supersymmetric. More specifically, the
interaction is given by

l.e.)

= pick„$",

(4.14)

L = e d8A„(x)DX"

= e(A„x"+i$ "f"A„„)
= e(A,x "+S""F„„}. (4.3}

It modifies the canonical momentum conjugate to
x'.

Q = eS""$"F~„„=O. (4.15}

The proper-time derivative

Q= j"rr„+~"ll„
should be zero. This is verified from the equa-
tions of motion together with Maxwell's equation
(4.13):

Defining a kinematical momentum

II„=~x„=p,—eA

the Hamiltonian becomes

a= rr "rt. —es""s„„.

(4.4)

(4.5}

(4.6)

Surprisingly enough, this new constant of motion
is also conserved in the quantized theory as we
will see in Sec. V.

V. QUANTUM MECHANICS FOR SUPERSYMMETRIC
DIRAC PARTICLES

The last term obviously represents the interaction
with the magnetic moment of the particle.

We now find the equations of motion:

= 2eF,)", (4.7)

One can easily quantize this supersymmetric
theory for spinning particles by canonical methods.
The operators x„andp„have the commutator
(2.17) which can be written as

(5.1)
x~

= 2eI'"„„x"+2eS~"E~„„.
Hence, the spin S""varies according to

(4.8)
when the particle is in an external electromag-
netic field. This spin variable $„and its canoni-
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(5.5)

we see that we are actually dealing with a spin--,'
particle.

In an external electromagnetic field the Hamil-
tonian describing the time evolution of the par-
ticle is given by Eq. (4.6) which now can be writ-
ten as

H=— 2 (5 6)

where P] = y"II,. Here we have used the commu-
tator

[II„,II„]=ieF„„. (5.7)

We see that the Hamiltonian is simply just minus
the square of the new conserved quantity Q = Pf.
Another way of expressing this property is by the
antic ommutator

IQ, Q)= —2H, (5.8)

which is so characteristic for a supersymmetric
theory. '

The quantum-mechanical equations of motion
for the particle now follow from the fundamental
operator equation

i=i[a,~]. (5.9)

cal momentum f„(3.3b) are similarly quantized
by the canonical anticommutator

(5.2)

so that

(5.3)

Thus it is possible to represent the quantized spin
variables by ordinary Dirac matrices:

(5.4)

Since the spin (3.10) of the particle now becomes

Q = y"II,+ y'll
„

= ~sr"(-F„",.+ .r'—r"F„.„). (5.12)

where
1

&,.p, = —~~Ps, r,rpr,

= —(n..np. n.—pn, + n..n.p) (5.14)

Using this relation together with Maxwell's equa-
tion (4.13) one is left with the identity

r "x'r "+...= 2r "& ",. (5.15)

which in Eq. (5.12} makes Q =0. This result could
obviously be obtained much more directly from

Q= —&lQ' Q]=0 (5.16)

but that would be less illuminating compared with
the above analysis which has a close classical
analog.

The state vector ~4'(s, e)) of the system now
depends on two evolution parameters, s and 8.
Translations in proper time are generated by the
Hamiltonian H which gives the Schrodinger equa-
tion (2.18):

f—, i~(s, e)) =aim(s, e)). (5.17)

From Sec. III we know that supersymmetry trans-
formations which are generated by the operator Q
will change the state vector by an amount deter-
mined by the operator D in (3.16):

iD ~4'(s, e)) =Q~4'(s, e)). (5.is)

Combining this with the Schrodinger equation
(5.17) we find the differential equation

In order to calculate the last term on the right-
hand side we use

(5.13)

We find —,e ie(s, e))=(- Q+ ea}~e(s, e)). (5.19)

g = 2II„,
II„=e(F„„II"+ II"F„„)+eS~"F„„,

(5.10)
It has the solution

i@(s,e)) = e ' i+(s, p)). (5.20)

F~ II —~e+~ +~5

& ~= 2&F~v&" ~ (5.11)
i@(s e))—

&
iHS-Q8 ~+(0 0)) (5.21)

The full development of the state vector is now
given by

Except for the divergence of the field tensor in
Eq. (5.10), these operator equations are identical
to the classical equations of motion we found in
Sec. IV. Equation (5.10}is identical to the equa-
tion obtained by Schwinger. ' He also derived it
from the covariant Hamiltonian (5.6) which can be
obtained from conventional Dirac theory.

We can now check whether Q = Pf is still a con-
stant of motion in this quantized theory:

(pf + m)
~
p(0, 0))= 0, (5.22)

which is just the Dirac equation. This state will
now vary according to Eq. (5.21):

~
y( e)) sam s-m8

l
y(p p)) (5.23)

which replaces Eq. (2.19) for a scalar particle.
When the particle is in an eigenstate ~P(0, 0))

of the operator Q = Pf with eigenvalue -m, we have
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The Schrodinger equation (5.17) then gives simply
the mass-shell condition

In the absence of external fields this can be re-
duced to give the standard result

(-gf'+m') ~g(0 0)}=0 (5.24) S (x, m) = —(ig+m)4 (x, m), (5.32)

X(s 8) & fH(seQ()X(0 0)e EHs -Q8-

with corresponding eigenstates

~x(s, e))= e'&"Q' ~x(0, o)).

(5.25)

(5.26)

Under a supersymmetry transformation this posi-
tion eigenstate is changed into

in the form of a Klein-Gordon equation.
It is important to notice that in this quantized

theory Q = Pl and 8 continue to anticommute with
each other When the variables f„arerepresented
by Dirac matrices, 8 must be represented by a
matrix which anticommutes with all these rnatri-
ces.

In the Heisenberg picture Eq. (5.21) can be used
to construct a superposition operator

where the scalar propagator is given by Eq. (2.25).
The actual calculation is very similar to that ori-
ginally done by Schwinger' and can be found in
the Appendix.

VI. SPINNING PARTICLE IN A GRAVITATIONAL FIELD

The coupling of a spinless particle to an external
gravitational field was obtained by the minimal
substitution )}„„-g„,(x) in the Lagrangian (2.4).
Similarly, for a particle with spin we can find an
interaction from the minimal substitution

}U )s gtltl (X) (6.1)

in the Lagrangian (3.20). As in the electromagnetic
case it will conserve the supersymmetry.

Making the Taylor expansion

eQ' ~x(s, 8)}= ~x(s —ice, 8+ e)}

when we use

(5.27) g„,(X) =g„„(x)+ie~"g„.&
and doing the 6 integration in

(6.2)

and

8 Q&e Qe —e Q &6+8)el Q& Qai/2

(5.28)
f. = I deg„„(x)X~Dx", (6 3)

=i@f„+ieqx„. (5.29)

Both this result and (5.27) are in full agreement
with the supersymmetry transformations discussed
in Sec. III.

This quantum-mechanical framework can be
used to calculate the Feynman propagator of a
Dirac particle. In analogy with Eq. (2.21) for a
scalar particle, it is now given by

S (x, s, e) = &X,(s, e) ~X„(0,0)&

(5.30)

From this we project the contribution to a par-
ticle with a definite value Q = -m using the wave
function (5.23):

S (em)= f dse '"'f des 'S (s s, e)

ds e '" '(xs
~

e '"'(Q -m) ~x„).
0

(5.31)

[Q~, Qe] = - fQ, Qk 8

= 2Hq8.

The corresponding change in the dynamical vari-
ables is given by

5X„=5x„+i85$,
= [A». l

we find the new Lagrangian

I. = g„,(x "x' —ig('g ') —,'ig, „~—x"$"&~, (6.4)

The canonical momenta become
Z

58 s

1 ~ j. $V
Pq = 2xq —pS I')„„,

(6.5a)

(6.5b}

which means that they are parallel transported
along the trajectory of the particle. The position
coordinates satisfy the modified geodesic equation

x "+I"„Hxx ~

=ig [I',g ( g -2(g„8„„—g~ ~)x"$"g ],
(6.7)

which is seen to depend on the spin of the particle.
When using Eq. (6.6) it simplifies to

~ ~ ~ ~

x ~+ r ~.,x 'x '= -a~...x "S', (6.6)

where $ is the spin tensor and p"„8the Rie-
mann curvature tensor. It is given by

o8 & n
)l. )sn8 2t 5 (leak 8, (s ss (g(s 8, k(s

2(gP(si X(si u8) (6.9)

where the Christoffel symbol is given in Eq. (2.16).
It is now pretty straightforward to find the equa-

tions of motion. The spin variables change accord-
ing to

a+I.u $ "x =0, (6.6)
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q =-,'$ "x, (6.10)

is a constant of motion. In fact, we find from the
equations of motion

Equation (6.8) has previously been obtained by
Papapetrou' by considering the motion of a macro-
scopic body in the limit where its size went to zero
for constant spin angular momentum. More re.-
cently it has also been derived by Barducci et al."
in a vierbein extension of their classical theory of
spinning particles. In their more complicated way
of obtaining this result no use has been made of the
supersymmetry in the problem. Indeed, it is not
at all obvious that there is such an extra symmetry
in their formulation of the theory.

Only in very rare astrophysical situations in-
volving extremely large curvatures will the spin-
dependent term in Eq. (6.8) affect the motion of the
particle. But in principle, a spinning particle will
always move along a trajectory slightly different
from a particle with no spin.

The supersymmetry of the Lagrangian (6.3)
means again that the quantity

where S=S(x) is a local transformation matrix.
The anticommutator (6.15) is invariant under these
transformations. But as pointed out by Schro-

. dinger, " this gives well-defined solutions only
when the curvature of spacetime vanishes. This is
so because Eq. (6.6) is not invariant under these
similarity transformations.

A consistent quantum theory can be obtained by
observing that the local similarity transformation
(6.16) is really a, gauge transformation consisting
of a local Lorentz transformation of an orthonor-
mal vierbein which can be chosen freely at every
point. It is then possible to couple the spinning
particle to a gravitational field in both a super-
symmetric and gauge-invariant way similarly to
what we did when coupling to electromagnetism.
This must be done within the vierbein formalism.
One can then derive an operator equation of motion
of the same form as Schwinger's equation (5.10).
It is a quantum-mechanical generalization of
Papapetrou's equation (6.8) involving additional
couplings to the curvature of the gravitational
field. "

VII. DISCUSSION AND CONCLUSION

which is zero from the Bianchi identity

"pr.as],=-~t u a+&gevn+Q ev

(6.11)

(6.13)

and the canonical commutators are

[Il„,x„]= -ig„„, (6.14)

(6.15)

where g~, =g„,(x). Hence the quantized spin vari-
ables g„will vary with the position of the particle
according to the operator version of Eq. (6.6). In
the neighborhood of every point one can then find
solutions satisfying the anticommutator (6.15} in
terms of ordinary Dirac matrices. Equivalent
solutions should be related by similarity transfor-
mations

(6.16)

Papapetrou's equation (6.8) would not result in this
theory if the coupling to gravity was not made to
be supersymmetric.

A quantum-mechanical description of the spin-
ning particle in a gravitational field can be ob-
tained from the Hamiltonian which follows from
Eqs. (6.4) and (6.5):

(6.12}

The kinematical momentum is now

a
i—rP =Hg,
3T

where g = g(x, r) and 7. is ordinary proper time.

(7.1)

It is of some interest to understand the origin of
the simple supersymmetry we have found in this
classical counterpart to Dirac's theory. A consis-
tent description of the spin degrees of freedom can
be obtained at least formally with the use of anti-
commuting Grassmann variables. The supersym-
metry of the dynamics is an expression of the pos-
sibility for the position coordinates of the spinning
particle to vary along these spin directions. This
is reminiscent of the Zitterbezvegung in ordinary
quantized Dirac theory. " It leads to the introduc-
tion of the superposition of the particle in Eq.
(3.14) where the last term then would be the clas-
sical representation of this Zitte~besoegung.

The supersymmetric coupling to electromagne-
tism in Eq. (4.1) where we take the superposition
as the argument in the electromagnetic potential
is also very similar to what is done in order to
calculate the energy shift of a Dirac particle in an
electromagnetic field. It corresponds to a certain
lack of localizability of the spinning particle and
also gives rise to the spin term in Papapetrou's
equation (6.8). This is perhaps not so surprising
because this equation was originally derived from
considerations of the motion of an extended object.

We can try to quantify these analogs by consid-
ering the ordinary Dirac equation. It can be writ-
ten covariantly as
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The Hamiltonian is now

(7.2)

For a particle with definite mass mthe wave func-
tion will be

q
—y(x}el wT (7.3}

and the position operator will vary according to

x„=f[a,x„]=y„. (7.4)

Its momentum p„is a constant of motion while

y. =2'(-y. P. )— (7.5)

This equation can now be integrated to give

P 't
(T) = ~+

~
y (0) -~~e""'

m &" m)
(7.6)

The full trajectory then follows from the integra-
tion of Eq. (7.4):

&„(~)=g(0)+ ~~+2. y„(0)—~ le""" .p 1 P (7.7)

The first two terms describe the smooth motion of
the "center of mass" while the last term gives the
rapidly oscillating Zitterbe~egung. Its amplitude
is of the same size as the Compton wave length of
the particle. Averaged over time this term gives
zero.

Let us compare these conventional results with
what we find in the supersymmetric formulation.
Equation (3.3a) gives by integration

point particle is instead given by the superposition
X„(s,8) which then includes the ~itterbesuegung

The supersymmetric theory we have presented
here helps to complete the understanding we have
of spinning, relativistic particles in that it gives
a classical counterpart to the conventional Dirac
theory and ties naturally up with it when quantized.
It is certainly somewhat surprising that this for-
mulation is endowed with the additional supersym-
metry which is realized here in the most simple
way. But traces of this extra symmetry could
also have been seen in other formulations like
Schwinger's proper-time description where g is a
constant of motion. After this realization it could
then be natural to look for the underlying symmetry
giving rise to such a conserved quantity. It would
then have been not too difficult to unravel the su-
persymmetry of the problem which we found in the
classical formulation of the theory.

The supersymmetry transformation (3.13}mixes
the commuting position variables x„with the anti-
commuting spin variables $, . Both transform as

.four vectors under the Lorentz group. In a quan-
tum field theory this would correspond to super-
symmetry transformations between fields with
opposite statistics but with the same spin. Exact-
ly this kind of supersymmetry has recently been
observed in gauge theories" and theories for spin
glasses. " It represents a new and exciting appli-
cation of supersymmetric ideas and concepts and
could lead to new physical insight of fundamental

significance.
x„(~)= x„(0)+ (7.8)

APPENDIX
since 7 = 2m'. This obviously represents the first
smooth term in Eq. (7.7). When we now consider
the superposition (3.14), the last term can be con-
sidered as a classical expression of the quantum
mechanical Zitterbeme~ng. The fact that 8 is an
odd Grassmann variable with 8'= 0 may be a re-
flection of the extremely rapid oscillations in the
ZitterbemegMng which makes it average out to zero

-over finite time intervals. The correspondence is
even better in the quantized theory where $„canbe
represented by Dirac matrices. If one could at-
tribute a size to the variable 8, it would have to be
something of the order I/m which is seen from the
wave function (5.23}. So this would also set the
correct scale for the Zitterbe~egung.

From Eq. (7.4} we see that a conventional Dirac
particle moves with the velocity of light. Much of
this velocity goes into the very rapid Zitterbemeg-
zcng so that the particle on the average moves
somewhat slower. The position variable x„(s}in
the supersymmetric theory is therefore not really
the position of the particle but rather of its "cen-
ter of mass". The actual position of the spinning

&PIP') = (2&)'5(P -P'),
so that plane waves are given by

&xlP) = e'""

Making use of the integral
t' 7724 kux2 z u

d xe u' lul '

we then find

(A1)

(A2)

(A3)

g ix l
hz(x, s}=

(4 },exp 4 (A4}

where x=x~ -x„.
The propagator for a particle with a definite

mass m is now obtained from Eq. (2.24). This
integral is most easily done by making a Fourier
transformation to momentum space:

The Feynman propagator for a scalar particle is
given by the matrix element in Eq. (2.22). It can
be calculated by inserting a complete set of mo-
mentum eigenstates ~P) normalized according to
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A (P, m)= d4xb, ~(x, m)e '~'"

d4 ~ $p'g $51 S X /4$S
(4z)' s'

~

~ ~

00

Sz(x, m) = ds e '" '(x~(s)(g -m(x„(0)). (A8)
0

Thxs matrix element can be calculated from the
equations of motion 0& =0 and x„=2D„.They give

Again using (A3), this gives the result

(p m)= f d&& '*
0

(A6)

(A6)

II„=—[x„(s)—x„(0)],1

so that

(x~(s)iI(ix„(0))=—(x~(s)ix„(0)).

(A9)

(AI0)

P +m -ie (A7) Equation (A8) then becomes

where the ic is needed to make the integral well-
behaved when s-~.

Similarly, the propagator for a free Dirac par-
ticle is given by Eq. (5.31) which can be written as

S~(x, m)= dse '"'
2

—m~A~(x, s)
p

= —(iy'+ m)b, ~(x, m),

which 'is the desired result.
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