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An infinite sequence of conserved quantities follows from the Lax representation in both the
Korteweg—de Vries and sine-Gordon systems. We show that these two sequences are related by a simple
substitution. In an appendix, two different methods of deriving conservation laws from the Lax

representation are presented.

I. INTRODUCTION

In this note we point out a connection between
conserved quantities in a pair of two-dimensional
field theories: sine-Gordon and Korteweg-de
Vries. They are among the simplest of the com-
pletely integrable models that have been attracting
a great deal of attention in the literature,'-* and
from that point of view it is perhaps not surprising
that they should somehow be connected.

Nevertheless, the structure of the two theories
is quite different, and the existence of any direct
connection is certainly not apparent upon casual
inspection. The Korteweg—de Vries (KdV) equa-
tion arises in the study of shallow waves,* and is
a nonrelativistic nonlinear evolution equation, with
one time derivative and three space derivatives.
The sine-Gordon equation, on the other hand,
possesses relativistic invariance, and it first
arose in a purely geometrical context.’

Thus, it may be of some interest to uncover a
link between these two seemingly unrelated
evolution equations. In Sec. II we briefly review
the Lax form® of these equations, and in Sec.

I we derive the connection between the respective
conservation laws. In an appendix, somewhat

off the main line of argument, we present two
methods of proceeding from the Lax form to con-
servation laws. One, perhaps excessively naive
but straightforward, we believe to be original;
the other is a summary of some work that has
appeared in the mathematical literature,” and is
included with the intention of introducing the
machinery of pseudo-differential operators into
this branch of the physics literature.?

II. LAX FORM FOR SINE-GORDON AND KdV
EQUATIONS

The Korteweg—-de Vries equation is
(e, t) =6uu’ —u" ,

where it =98u/3¢, u’ =du/8x. It can be recast in the
Lax form

L=[L,B], (1)

where
32
L——-—-—2+u(x,t),
98 ] 9
B=4—- —+ —u) .
o 3(” ox - ox u)

The advantage in so doing is that the solution to
Eq. (1), viz.,

L(t) =S()L(0)s™(#), S=-BS (2)

immediately implies that the spectrum of L is
conserved. That is, consider the eigenvalue prob-
lem

L()$(2) =ro(?) .

Clearly, if ¢(0) is an eigenfunction of L(0) with
eigenvalue X then

o(2) =5()$(0)

is an eigenfunction of L(t) with the same value
of \. The conservation of the spectrum of L is
the origin of an infinite sequence of conserved
quantities in the KdV system. These may be.
viewed as the traces of powers of L:

C,=Tr(L?), p=1,2,... (3)

where Tr denotes the operator trace taken inthe
space on which L acts. Since this operation is
not well-defined, a little care must be used in
extracting meaningful functionals from Eq. (3).
This is treated more fully in the Appendix.

The sine-Gordon equation, written in light-
cone variables,

' ==sinv

[here f =8f/0x, , f’=8f/0x_, Where x,=%(x )] also
possesses a Lax representation, Eq. (1), where
now the operators L and B, in addition to acting
on a suitable function space, are endowed with a

2 X 2 matrix structure®:

[}
L =20, et 0,0,

B =3[0, cosv+o0, sinv)]L 1,
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Once again, the Lax form implies an infinite
sequence of conservation laws. (Actually, since
we are using light-cone variables, the conserved
quantities will be integrals of functions of v over
the variable x_, which will then be independent
of x,.) What we shall see in the next section is
that this sequence can be obtained at once from
the corresponding KdV sequence by means of a
simple substitution.

III. THE CONNECTION

Let us look at the eigenvalue problem for the
sine-Gordon case

Ly p=2p. (4)
Here y is a two-component object

lp]_

()
and Eq. (4) becomes, explicitly,

2] -, =AY,

=25+ 0Py =NYy .
Let

=ty X=h—Yp.
Then

2"+ ivy =0,

20 —iv'p =y .
From these equations we eliminate x to obtain a
single second-order equation for ¢. It is

- =5[v? =279 == .
This is identical in form to the corresponding
KdV eigenvalue problem

Lyavd =20,
provided we let

ulx,t) ~= 2 @")? = 2iv"] (5)
and set

N=—h2,

This does not imply that if v satisfies the sine-

Gordon equation then —3[(v’)? - 24v”] will satisfy
the KdV equation. But it does imply that if v

satisfies the sine-Gordon equation, then @,=Tr£?
will be conserved, where

32
L== '5? - %[(’U’)z— Ziv”] .
However, &£ is the KdV Lax operator with the

replacement given in Eq. (5). Thus, these traces
are exactly the conserved quantities associated

with the KdV equation, with the indicated substi-
tution. ‘

For example, the first few KdV conserved quan-
tities are®

C,= f udx ,

C,= f wPdx
Co= [ [+ 3w,
and
C,= f [u? + 2u(u’)? + 5" dx . (6)

Letting
u=- ('Y -2"],

we obtain a corresponding sequence
Q=-1 f : (v'.)zdx- ,
Q= [ [ - 4Pl
.Qa =—(3) f: [@")° = 20(*)*(v")? + 8(v ™)’ Jdx_ ,
Q=@ [ [0 -3 07 - 5607 0"

+ 2 (P (o) - & (v™)Pdx. .

It is straightforward, although tedious, to check
explicitly that @,,...,Q, are conserved, provided
v obeys the sine-Gordon equation.

At first glance, it might seem that each C, gives
rise to a pair of conserved quantities in the sine-
Gordon system since the argument of the func-
tional, Eq. (5), is complex, and thus

=0 0 G
Q’_Qpr)_‘_zQpl)_

However, it isageneral property that (" vanishes
identically for all p. The reason for this is given
in the Appendix.

In another sense, though, there are a pair of
conservation laws for each @,. This is because
Q, satisfies :

49, _,
dx, ’

and there are two inequivalent ways of going to
ordinary space and time. For example,

@ = ./‘dx-_",?'u & =40y,

. . . )
Q,==30'v' =30’ sinv =—3 —a?-(cosv) .
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Thus,

2 1(31)2]__8_( 1 cos)
ox, L4 \ox.) )~ ox, \2COSV-

If we identify, as above,

5 _ 8
ox,

*

9 9 9 9

——+———- — — —
9x ot’ o9x_. ox at’

this then reads

8 1(312 l(i’v_ﬂlaﬁ?ﬂ 1
ot |~ 4 \at) " 4\ox 2 Bt ax_ 2008

-2y i(y e,

“ox |4\%7) T2 \%x) T2z ax 299
However, it is equally permissible to reverse
the roles of x, and x_, since the sine-Gordon

equation treats them symmetrically. We then
obtain

2 [ 1/8wy 1(3_1’)2 100 80 4 oo
ot | 4\ oz) “4a\ex) T2 0t ox °

_ 8 [ 1/8w\® 1/8v\? 18w 8w ,

= E[‘Z(EZ’) -z(z‘;) -zvsrzwsv] :
Thus, @, leads to two conservation laws in ordi-
nary spacetime which turn out in this case to be
proportional to the sum and difference of the en-
ergy and momentum. A similar result will hold
for @,, p>1.

In this paper, by means of rather straightfor-
ward arguments, we have provided a direct cor-
respondence between infinite sequences of con-
servation laws in the Korteweg—de Vries and
sine-Gordon systems.” Whether this is merely
fortuitous, or whether it bespeaks a more pro-
found connection between the two theories remains
an open question.
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APPENDIX

In this appendix we discuss two methods of de-
riving the conservation laws [Eqs. (6), etc.] from
the Lax representation of the KdV equation [Eq.
(1)]. The first method demonstrates how to go
directly from the éxpression Tr(L?) to C,. The
second is more rigorous, and introduces another
“trace” operation which is better defined.

1. Naive method

We have

L(x,y)= —:—;2 0(x —y) +u(x)0(x —v),

L2(e,y)= [ dzLx, 2)L(e, )
=§—; 8(x —y)

32
—[u(x)+u(y)]5?5(x~y)+u25(x—y),
etc. The traces are then defined as

TrL=fdxdy 5(x —y)L(x, y)

=_V6”(0)+5(0)fdxu(x)
and

TrL2=V5"(0) - zo"(o)fdxu(x)

+5(0) fdxuz(x),

Clearly these expressions are ill-defined, and
succeeding traces will contain even worse singu-
larities. With a little imagination and the willing-
ness to throw away irrelevant additive and multi-
plicative infinities, one can extract the well-de-
fined conserved quantities

C,= jdxu(x),

C,= fdxuz(x)

from TrL and TrL? respectively. But as soon as
the conserved functional contains more than one
term, as it does in the case of C,,

C3=fdx[u3+é(u’)2],

it becomes impossible to compute the relative
weights of the terms because of the infinities.
However, from the structure of L we can extract
the following rule: Each power of # is equivalent
to two derivatives. So we start with, say, «* and
add all independent equivalent terms, each term
carrying an arbitrary coefficient

C4=fdx[u“+au(u’)2+ﬁ(u")2],

the meaning of “independent” is that in each term,
the highest derivative must occur to a power
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greater than one; all other terms can then be ob-
tained from these through integration by parts.
For example, ’

fuzu”dx=—2 fu(u’)zdx

and

fu/umdxz_f(ur/)zdx.

The coefficients @ and 8 are then determined to be
a@=2, B=% by calculating C,=0 with the help of the
KdV equation. The higher conservation laws can
be obtained analogously at the cost of increased
computational labor.

2. Method using pseudo-differential operators

Consider objects ¢(x, &) of the form

b 0= 3 a8 (a1)

1=~ .
Here x may be thought of as a real variable defined
over an appropriate domain, and the a,(x) are suit-
able well-behaved functions. As we shall see, £
will behave like —i8/8x. The value of N may
change from ¢ to ¢. We define the product of two
¢’s as

ch = SO (=) 9, 379,
(o} ¢2=2 1 agvl FY

This can be proved to be associative and distribu-
tive, but is not commutative. In fact, if we con-
sider first ¢, =&, ¢,=a(x), and then ¢,=a(x), ¢,
=£, we find

tra-a*t==ia’,

which is consistent with our interpretation of &.
The crucial step is now to define the trace of ¢
as

Tro= fmdx a_(x). ‘ (A2)

However,

It can be proved’ that this trace has the essential
cyclic property

Tro, ¢,=Tro,* ¢,. (A3)

This is all that is necessary to generate conserved
quantities; we let

L(x, &)= +ulx).

Because of Eqs. (A3) and (2), the trace of L to any
power will be conserved. Of course, L to an inte-
gral power will have vanishing trace by the de-
finition Eq. (A2). However, each of the objects

Onlx, £)=[E2+u ()] V172, N=1,2,...

has a power-series expansion of the defining form
Eq. (A1), and the quantities

Cy=Troy

will yield well-def ined nontrivial conservation
laws. In fact, they are exactly the conserved
quantities derived by method 1, the first four of
which are listed in Egs. (6). In practice, the
amount of labor needed to calculate C, explicitly
by this method exceeds that of method 1, but it
has the advantage of being well-defined at every
step.

We now show, as promised in Sec. III, that the
Qy are always real. We consider

dlx, £)=E2~L(v')2 + 3iv”

‘and observe that it can be written

d=(E+30") (E=30).
The @y are given by
QNZTI'((}'))QN'I)/Z,

Their complex conjugates Q% are obtained by re-
placing ¢ with

”

X=E-Lto2 - 3

=(E=3v') (E+30).

[(8 = 307) - (£ 43001722 (5 = 30) [+ 307) (= 3]0/ (6= o),

as can easily be checked by squaring both sides. Hence, using the cyclic property of the trace, we have

immediately
QY= Qy

as required.
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