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Scalar-field theory with a XP self-interaction is studied in space-times with a non-Minkowskian topology.
An application of the effective potential to symmetry breaking is discussed. In addition, expressions for the
vacuum energy density and topological mass to order A, are obtained for a theory which is massless at the
tree-graph level. One of the cases which is considered is the scalar-field version of the Casimir effect. In this
case we also obtain the one-loop vacuum energy density for the massive scalar field and discuss its
renormalization.

I. INTRODUCTION

In the past few years there has been a large num-
ber of papers dealing with quantum field theory on
a fixed, curved background space-time. ' Until
quite recently only free quantum fields have been
considered, although the effects of interactions
have now begun to be examined. 2 In addition to the
effects of curvature, the role of the topological
structure of the space-time manifold has received
some attention.

Ford' and Ford and Yoshimura' have examined
the effect of a XP' self.-interaction on the vacuum

energy and the self-energy of a scalar field in sev-
eral space-times which are topologically distinct
from Minkowski space-time. It was found that as
a consequence of both the Xps self-interaction and

the nontrivial topology, a field which was massless
at the tree-graph level could develop a mass at the
one-loop level which depended upon the topology.

his phenomenon may be called topological mass
generation. The method which was used in the cal-
culations of Refs. 3 and 4 was first-order perturb-
ation theory, where any divergences were regular-
ized away using g-f unction regularization. No re-
normalization was performed using this procedure.
It has been emphasized by Kay' that this will not
work if the fields are massive. In Ref. 5, Kay pro-
posed a new method for regularizing and renormal-
izing the energy-momentum tensor which can deal
with the massive case. In a previous paper, ~ the
author discussed the analogy between field theory
in a flat space-time which is given the topology of
S' &Rs by making a periodic identification in one of
the spatial coordinates, and field theory at a finite
temperature; this analogy, which holds regardless
of whether the fields are massive or not, was then
used to deduce the Casimir effect' and to derive the
topological mass. 'The method described in the

. present paper could also be applied to the massive
case and is perhaps a more familiar approach than
that described in Ref. 5.

Another role of topology in quantum field theory
has been discussed by Isham, ' where a non-Mink-
owskian topology can lead to what he refers to as
twisted fields. These fields are realized as cross
sections of nontrivial (i.e., nonproduct) vector
bundles, where the number of such twisted fields is
determined by the space-time topology. Ford' has
considered the vacuum polarization for quantum
electrodynamics in a flat space-time with the topo-
logy 8'&& S'. Twisted as well as untwisted spinor
fields are allowed, and Ford finds that untwisted
(i.e., standard) spinor fields lead to noncausal ef-
fects, whereas twisted spinor fields give rise to
causal effects. 'These results indicate that twisted
fields are of more than just academic interest. In
Ref. 6 the renormalization of a twisted scalar field
with a Xg self-interaction in a flat space-time with
the topology R' && S' was discussed. 'The renormal-
ization counterterms in the Lagrangian were found
to be identical to those for an ordinary scalar field
in Minkowski space-time. The regularization of
the energy-momentum tensor for free twisted
fieMs in various cases has beeri discussed by
DeWitt, Hart, and Isham. '

'The effective potential has received a great deal
of attention after being brought to prominence by
several authors, ""mainly because it allows one
to study spontaneous symmetry breaking beyond the
tree-graph level. The minima of the effective po-
tential give the ground states of the theory. " An-
other feature of the effective potential P(P) which
we shall find useful is that V(g) gives the energy
density of the state for which the expectation value
of the field" is p.

Since one cannot evaluate the effective potential
exactly, the usual approach is to resort to a loop
expansion. "" We prefer the functional methods
described by Jackiw' because all of the graphs
contributing to the one-loop effective potential are
automatically summed, in contrast to Ref. 11.
'Two- and higher-loop contributions to the effective
potential are reduced to an evaluation of a finite
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number of graphs. For example, Fig. 1 depicts
the two graphs which contribute to the two-loop ef-
fective potential.

Because the one- and higher-loop contributions
to the effective potential are divergent, one must
adopt a regularization procedure and then remove
the divergences by renormalization. Hawking's"
version of g-function regularization seems to be
particularly well suited to the regularization of the
determinant which arises from performing a Gaus-
sian functiona1 integration to obtain the one-loop
effect." This has been used by Ghika and Visin-
escu" to obtain the one-loop effective potential at
a finite temperature for a few models of interest.
For the evaluation of the higher-loop contributions
dimensional regularization" is probably the most
convenient. One could of course use it for the one-
loop contribution as well. The contribution of the
two-loop effects to the vacuum energy density may
be obtained without a full calculation of the two-
loop effective potential since it arises solely from
Fig. 1(a). The complete expression for the two-
loop effective potential appears to be difficult to
obtain, and requires an evaluation of Fig. 1(b).

For notational purposes, as well as for complete-
ness, in Sec. II we repeat some of the formalism
leading to the effective potential' and present a
short summary of Hawking's version of g-function
regularization. In Sec. III we examine scalar fields
with a Xp self-interaction in space-times which
are flat, but which have a non-Minkowskian topo-
logy. As an example where the manifold has a rion-

zero curvature as well as a non-Minkowskian topo-
logy, the one-loop effective potential in the static
Einstein universe is obtained in Sec. IV. In Sec. V
the main results of the paper are summarized and
some comments are made. An appendix to the pa-
per is provided where some of the properties of the
series which arise in the calculations are pre-
sented.

II. THE EFFECTIVE POTENTIAL AND |'-FUNCTION
REGULARIZATION

Since we shall use a functional integral approach
to discuss the effective potential, ' it proves con-
venient to work with Euclidean field theory. The
Euclidean manifold, M is obtained by making the
t- -ig substitution 2' If the manifold has an infinite
volume it is convenient to first compactify it by
adding appropriate boundaries, and then to take the
infinite-volume limit after the effective potential
has been found. In particular, it is convenient in
the functional integral to sum over fields which are
periodic in Euclidean time with period P. If this
calculation could be fully carried out, we would
have results which were valid at a finite tempera-
ture" '4; however, we shall take the limit P -~
and so our results will be those of quantum field
theory at zero temperature.

The classical Euclidean action is taken to be

I [Qj = JZ (x)dv, ,

where dv„=&gd4x is the invariant volume element
on M, and

FIG. 1. The graphs which contribute to the two-loop
effective potential.

is the Lagrangian density. The subscript E is to
remind us that this is Euclidean field theory. The
term in~»Rp', whererf is the scalar curvature,
is the usual one for a conformally coupled scalar
field; with this term, in the case U(p) =0, the the-
ory is conformally invariant. In the examples
which are discussed in Sec. III, the metric is the
Minkowski metric, so that the conformal term in
Eq. (2) vanishes identically. In the static Einstein
universe which is discussed in Sec. IV, g = 6/a',
where a gives the radius of the spatial sections and
so the conformal term in Eq. (2) is just like having
a massive scalar field." From now on we shall
treat A as a constant, although if this is not true,
then it may not be possible in general to obtain ex-
plicitly some of the results described below.

We are interested in massless X/4 theory and so
we shall take U(p) to be given by

(3)
I

There is nothing to stop us from adding a mass
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W, [J] =elnZ, [g]. (5)

Functional differentiation of Eq. (5) with respect to
J gives rise to the connected Green's functions.

The Legendre transform of Wz[J'], called the ef-
fective action, is defined by

term to Eq. (3), although the calculation would

prove slightly more difficult. In principle, there
could also be a counter-term for the conformal
term in Eq. (2), although in the examples discus-
sed below we shall see that this is not necessary.

he generating functional expressed as a func-
tional integral is

X [d] =.f d[P ] exn
p

I [P] +
p d(x)P(x)dv I,

1 1

(4)
where Z(x) is a scalar source which is kept in so
that the Green's functions may be obtained by func-
tional differentiation of Eq. (4) with respect to
Z(x). In Eq. (4) we shall sum over all fields which
are periodic in Euclidean time with period P, and

which satisfy certain other boundary conditions
which depend upon the mani. fold M, which is chosen
as well as the nature of the field. Zz[g=O] is also
called the partition function. 'The generating func-
tional for connected graphs, Wx[g], is given in
terms of Zs[P] by

Expansion of I'@[4)] in position space about 4) =con-
stant gives

p [ej = fde, [-p(e)ererme in en].

By setting 4p =(I), where p is a constant field, we

then select out

v(y) = v&'&(j)+nv&'&(j)

+n 'v&'&(j )+ o (}I'). (10)

T he first term in the expansion is just the tree-
graph contribu. ion to the effective potential, which
in our case is

v&"(j) = —,', z j'+
4,

j'. (11)

If we define an operator A(x, y} by

V(4) =
vol(M) I'z[R

which is called the effective potential. Here,
vol(M) = f„&fv„denote s the volume of the manifold
M.

In order to evaluate I's[g], and hence V(p), it is
necessary to resort to the loop expansion. The
loop expansion may be shown" "to be equivalent
to an expansion in powers of S. We may define

r, [e] w[d] f=d(,.)e(-.)d;

where

5'I [tl
5y(x)ey(y), =

(12)

5W&&[Z]
( )

5Z(x)

then the one-loop contribution to the effective po-
tential arises from performing the following Gaus-
sian functional integral:

V'n(d) =
i M

in d[d] exp = dv, fdv&r(x)d(xp)p(p)(~) - -1 1

vol M N N

In our case, Eq. (12) leads to

(., )=d(—', Pp. —:d-,)P(.—p),

and one can then do the &f&&, integration which appears in Eq. (13) leaving

1V"&(g) = ln d[p] exp —
2 dv„p(x) 2

@7+~A —,) (I&(x)
)

(13}

(14)

(15)

The operator —,']],P + +g —,will be elliptic and
self-adjoint with an unbounded, positive spectrum
of eigenvalues in the examples dealt with below.
We may evaluate the functional integration in Eq.
(15) following Hawking. '~

Let g„(x) denote an eigenfunction of the operator
—,
'

A&t)'+ —', B — „, with an eigenvalue of a„. Assume
that the eigenfunctions form a complete set and ex-

pand the field in terms of the P (x) as

y(x) = PC„y„(x)

for some expansion coefficients Q~. Define

&f[4&] =] [( )
dc
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where p, represents some sort of measure on the
space of functions. A straightforward calculation
of Eq. (15) leads to

(18)

which is divergent. To regularize the expression
in Eq. (18), define a generalized g function by

g(s) =pa„',
which will converge in some region of the complex
s plane. Since g(s) is analytic" at s=0, we may
define the regularized expression in Eq. (18) by"

V"'(y)=
2 l I [g'(0)+f(0)1 P']. (20)

The term in lnp' is to be removed by renormaliza-
tion.

The renormalization counterterms may also be
expanded in powers of S. 'The complete, unrenor-
malized, one-loop effective potential follows from
Eqs. (10), (11), and (20) as

V(P)= —R&t& + 4,

[g'(0)+g(0) in''] . (21)

Vfe shall see in Secs. III A and IV that the divergent
term [—1/2 vol(M)]g(0) in'' is proportional to &P

and is independent of the parameters which are as-
sociated with the nontrivial topology of the mani-
fold. As a result, the counterterm 5g will be the
same as that for the theory in Minkoswski space-
time. We may then impose a renormalization con-
dition in Mnkowski space-time by adopting

d'V(@)
&&'=«

(22)

where M is an arbitrary number with the dimen-
sions of mass. " This condition fixes 5g in terms
of M and p, , and we shall see that the lng' term in
Eq. (21) disappears.

Qnce we have calculated the effective potential to
a given order in the loop expansion, we can exam-
ine the stability of the state P =0. To see if sym-
metry breaking occurs, one may examine

dV '.
d&&!& g „

for any nonzero values of v which minimize V(&t&).

To see if the fields develop a topological mass we
just need to calculate

d V(&&&&)

&fqP

(24)

where I, (&t&) and I, (&t&) are expressions containing a
summation over the propagators corresponding to
internal lines arising from Figs. 1(a) and 1(b), re-
spectively. The exact expressions for I, («&&) and

I, (P) depend upon the manifold. Because of the
non-Minkowskian topology which is adopted, the
Feynman rules are similar to those for field theory
at a finite temperature. The analogy between
field theory at a finite temperature and the exam-
ples in Secs. IIIA and III 8 has been discussed pre-
viously. The rules in Secs. III C and IV follow in
a similar manner.

Although it is not possible to obtain a simple re-
sult for I, («&&), and hence to find an analytic expres-
sion for V' '(&t&), it is possible to calculate the two-
loop contribution to the vacuum energy density. As
a result of the renormalizability discussed in Ref.
6, the divergent parts of V&2'(&f&) can involve P only
as «&&4. Assuming that / =0 gives the vacuum state,
the two-loop contribution to the vacuum energy
density is finite and given by

V&'&(P=o)= 8I,(&=0). (28)

In order to calculate the two-loop contribution of
the effective potential to the vacuum energy density
it is not necessary to go through the complete re-
normalization calculation, which would prove to be
extremely difficult.

III. APPLICATION TO FLAT SPACE-TIMES WITH
A NON-MINKOWSKIAN TOPOLOGY

A. An untwisted scalar field in periodically identified
flat space-time

Consider ordinary flat space-time which is given
a topology of S' & S' & S' && S' by making a periodic
identification in each of the coordinates. Take the
periodicity in the time coordinate to be P, and in
the spatial coordinates to be L,„J„I.,; then the
volume of the manifold is vol(M) =pI„I„I, In the
functional integral, Eq. (4), we sum over all fields
with the above periods. The eigenvalues a„which
enter into the generalized g function in Eq. (19) are
given by

Higher-loop effects in the effective potential may
be obtained, as discussed by Jackiw. " For X/4
theory there is an effective interaction of —(X/3! )p&t&'
—(y/4!)y4 in the Lagrangian. There are two graphs
which contribute to the two-loop effective potential
shown in Fig. 1. We have as the two-loop contribu-
tion to the effective potential
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(2,) (2lrn )' (2 n, l ~(2

)
(26)

where N stands for the set (N„g, N„n~), with each
member of this set taking on all integral values.
From now on we shall drop the caret which appears
over p in Sec. II.

In order to find an explicit result for the g func-
tion, we shall assume that p, L„L,»L, . After the
effective potential has been found, we may let
P, L„L,-~ so that we are working in a flat space-.
time where one of the spatial coordinates has been
given a periodic identification; the relevant topo-
logy is then B' && S'. With this assumption the g
function in Eq. (19) is

This is exactly the result which would have been
obtained by applying the methods of Sec. II to xp»
theory in Minkowski space-time from the start.
The renormalization condition, Eq. (22), fixes 6A.

by

(32)

Substitution of Eq. (32) back into Eq. (30) gives the
renormalized one-loop effective potential to be

his expression may be evaluated to give

2~2 g2 ~ 2~/
—3L, D, (2; v) —

256 ~ ~'ln
32 '

(33)

(27)

where v' = (&L,'/8w )Q', and the function D(s ——,', v),
given in Ref. 18, is discussed in the Appendix.
Utilizing results from the Appendix, from Eq. (27)
we have

By letting L, -~ in Eq. (33.) [or else by substituting
Eq. (32) into Eq. (31)], we obtain the Coleman-
Weinberg" result.

We next wish to examine the stability of the state

P =0, which is the ground state at the tree-graph
level. The energy density of the state P =0 may be
computed from Eq. (33) using Eqs. (A12) and (A19)
to be given by

g(0) —P 1 2 3 g2y»
128@~ (28)

1r2
I (y =0) =-

90L,,4
' (34)

4 2

l'(0) = ' ' D (2; ~)3J
16@ 3g g

3 L,' 512@»

(29)
From Eq. (21), the unrenormalized one-loop ef-

fective potential is, using Eqs. (28) and (29),

4+ &~ 4
~' 4 a

~' 4

4! 4! 256m' ~ 96w'

This result may be recognized as just the Casimir
result' for a real scalar field which satisfies peri-
odic boundary conditions on two parallel plates,
rather than vanishing boundary conditions. " One
may easily show that p =0 is a solution to dV/dp
=0. A computation of the mass term in Eq. (23)
will tell us whether p =0 is a local maximum or a
local minimum. Using Eqs. (A19) and (A12) one
has

+ 256, p» ln ~
—

» Do(2; &) ~ (30)
16m' 2n'

256m L,, 3L,, 24& ~ (35)

The only divergent term in Eq. (30) is proportional
to Q» and is independent of L, ; thus, we may im-
pose the renormalization condition, Eq. (22), in

Minkowski space-time. Letting L, -~ in Eq. (30)
and using Eqs. (A13) and (A19), we have

3X A,

I'(4) — 0'+ —4'—-
4 t 4 t 512m 256m

'
256 &'" 2& ~

so that p =0 is a local minimum. The topological
mass derived in Eq. (35) agrees with the result of
Ford and Yoshimura. 4 Because of the analogy be-
tween this case and field theory at a finite temper-
ature, which was discussed in Ref. 6, we could al-
so have obtained Eq. (35) from Ref. 28. In order to
determine whether or not the state @ =0 remains
the ground state of the theory, we must know
whether or not it is a global minimum of the effec-
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and a similar expression for I2(p) which need not
be given here since it is very difficult to evaluate,
and it is not needed in order to compute the vacu-
um energy density. It would, however, be needed
in order to evaluate the two-loop contribution to
the topological mass.

I, (P) is divergent and needs to be regularized.
Ne shall choose dimensional regularization' and

turn f d'0/(2v)' into f d 0/(2v) . I,(P) will then
be defined by analytic continuation back to ~ =3.
Performing this procedure leads to

1
144L 4 )

1

where Eqs. (A14) and (A16) have been used. The
contribution of the two-loop effects to the energy
density of the state (I) =0 follows from Eq. (25) as

A.

1152L1

Combining this result with Eq. (34), we see that
the total energy density of the state P = 0 to order
/is

90L,~ 1152I„~ ' (37)

which is in agreement with Ford. '
In order to calculate the energy density to the

next order in p, we would require an evaluation of
some of the three-loop vacuum bubbles which con-
tribute to the effective potential. They would be
expected to make contributions of order ~2 and
higher to the effective potentia1. 'This is seen to
be quite unlike the situation in Minkoswski space-
time, "where the gth loop makes a contribution to
the effective potential which is of order ~"+'. The
argument given in Ref. 11 does not work here be-
cause one of the components of the momentum has
discrete values and is summed over rather than
integrated over.

If we now expand the effective potential in pow-
ers of ~, which is equivalent to an expansion in
powers of p about p =0, using results from the

tive potential. Because of the complicated form of
V((Ic)), this is not a straightforward question to ans-
wer and we shall return to it after a discussion of
the two-loop effects.

The contribution of the two-loop graphs to the ef-
fective potential is given in Eq. (24), where I, ((()))

is computed from Fig. 1(a), and I2($) is computed
from Fig. 1(b). As a result of the discussion of the
Feynman rules in Ref. 6, we have

I. J(2w) ' ('") 2' I
(36)

Appendix we obtain

w A. A, 4
90I. ' ' 1152L, ' ' 4( ~

+, y' —
~y ~'+P(g). (38)48I.,' 24 wL,

The terms which are designated by P(X') arise
both from further terms in the expansion of Eq.
(33) and higher-loop contributions which we have
not evaluated. We are justified in neglecting these
terms provided that ~ «1, and provided that we
restrict ourselves to a region where the neglected
terms remain smaller than those which have been
retained. " We may easily verify from Eq. (38)
that P = 0 gives the only solution to d V/dP = 0. Thus
to the order in which we may consistently work,
we may conclude that P = 0 remains as the stable
ground state. The result in Eq. (37) then repre-
sents the vacuum energy density to order A. .

B. A twisted scalar field in periodically identified
flat space-time

A manifold with a topology of g ~ S' admits a
twisted scalar field' "in addition to an untwisted
field. For the twisted field one sums in the func-
tional integral, Eq. (4), over fields which are anti-
periodic in the g' coordinate, where this coordinate
has been peri. odically identified with period L,

An interesting problem now arises if one at=
tempts to apply the formalism of Sec. II to the
twisted field. In order to select out the effective
potential from the effective action, one relies on
the device of expanding the effective action about
a constant field; however, in the case of a twisted
scalar field the only constant field which is allowed
is P =0. As a result, the twisted scalar field can
never develop a vacuum expectation value. One
can use the effective potential to give only the en-

.ergy density of the state P =0, and one cannot cal-
culate the topological mass as in Sec. IIIA or dis-
cuss the stability of the state p =0 by use of the ef-
fective potential.

Keeping in mind the above remarks, the general-
ized g function in this case is

+ ~ 2 $

x Q d k k'+ —(2n+1)
ggw w 4Q .Li

Using Eq. (A21), this may be evaluated to give

(39)
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,(0)
Vv pL~L~
360I.,' (40b)

Using Eqs. (40a) and (40b) in Eq. (21), the vacuum
energy density to the one-loop level is

7i2"'(y =o) =
720L,,' ' (41)

This result agrees with that of Ref. 10, where it is
remarked that the twist has increased the energy
of the vacuum.

Note that since g(0) =0, no renormalization needs
to be performed. We shall comment on this fact
after discussing the two-loop contribution to the
vacuum energy density. This contribution follows
from Eq. (25), where

Using dimensional regularization, and results con-
tained in the Appendix, we have after a short cal-
culation

It is not actually necessary to use results given in
the Appendix, since for the massless case consid-
ered here, the resulting series may be expressed
in terms of Riemann g functions. From Eq. (39),
one has

(40a)

are found to be independent of I,„and so one may
impose the renormalization in Minkowski space-
time by taking the limit I., -~. In particular, the
constant counterterm is fixed by demanding that as

the re no rm al iz ed vacuum energy density
should vanish. On dimensional grounds this con-
stant counterterm is proportional to m~', where m~
is the renormalized mass. (This may also be ver-
ified by a direct calculation similar to that which
we show in Sec. III C.) If we now go to the massless
limit, both this counterterm and the mass counter-
term will vanish. Furthermore, because we are
only working above to order ~, the field renormal-
ization and the coupling-constant counterterm may
be ignored since they are at least of order &'. With
these remarks in mind, it is certainly no surprise
that we have obtained results which are finite with-
out performing renormalization. We emphasize,
in agreement with Kay, that this would no longer
be true if the field theory were massive. Also, we
remark that it would not be true if we were working
to order A,

' even with a massless theory, since
graphs with coupling-constant counterterms would
have to be included in order to cancel L,,-dependent
divergences in the energy density. Finally, one
should note that there is no problem in taking the
massless limit of a massive theory since twisted
scalar field theory is not infrared divergent.

'The topological mass has already been calculated
in Ref. 6, and here we merely quote the result of

48L,,' ' (45)

The two-loop contribution to the energy density of
the state $=0 is then

(43)

Combining results in Eqs. (41) and (43), the energy
density of the state g =0 to order x is then

Vw

V20Li 4608Li
(44)

Again this result has been obtained without renor-
malization.

To understand why we have obtained finite results
without the necessity of renormalization, consider
the case of a massive twisted field with a Ap4 self-
interaction. If one proceeds to calculate the one-
and two-loop contributions to the energy density as
above it will be found that there are divergences,
and so a renormalization is necessary. The mass
and coupling-constant counterterms, and the field
renormalization factor were discussed for this the-
ory in Ref. 6. In addition, in order to renormalize
the vacuum energy density one must include a con-
stant counterterm in the Lagrangian. Divergences

Since this result is negative it would be tempting
to conclude that the state p =0 is unstable; how-

ever, we must be careful since it does not make
sense to talk about the effective potential away
from P =0 for this theory. We are presently in-
vestigating this problem and we hope to report on
it at a later time.

C. A scalar field in flat space-time with

parallel conducting plates

Consider a box whose sides are of lengths
I,„I.„J,and are made of a perfectly conducting
material. In the functional integral, Eq. (4), we
will sum over all fields which are periodic in
Euclidean time with period P, and which vanish on
the walls of the box. This is to be regarded as the
scalar-field version of the Casimir effect.

'The effective potential can be used in this case,
as in Sec. III B, only to give us the vacuum energy
density, since the only scalar field which is con-
stant and which vanishes on the boundaries is p =0.
We cannot define the effective potential away from

P =0. Just as with the twisted scalar field, we can-
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Qg + +, + + PIER (46)

where N stands for the set (n„n„n„n~), with

($3 1, 2, 3, . . . and g4 = 0, ~1, a2, . . . . Here
m„denotes the re'normalized mass. We shall take
the limit of P, 1.„1., »i., sothat our results will
hold for infinite parallel conducting plates. In this
limit the generalized & function is

Using Eq. (Al) this may be evaluated to give

PI L, 3 r(s ——,') my (, L,
4v' 2 r(s)

(4 f)

From results contained in the Appendix one obtains

~(0) pL, L2L3
3»g2 (48a)

g'(0) P ', ' ~, ~26Z„3 '
~

'
w

(48b)

In the massless limit, these two equations reduce
to

g(0) =0, (49a)

not expect the scalar field in the Casimir case to
develop a vacuum expectation value, since this
would not be consistent with the boundary condi-
tions imposed on the field. We shall use the meth-
ods of Sec. II to obtain the vacuum energy density,
and then calculate the topological mass as in Ref.
6.

In order to show how the vacuum energy density
calculation proceeds in a case where renormaliza-
tion needs to be performed, we shall calculate the
energy density for a massive theory at the one-
loop level. [We just add a mass term, its counter-
term, and a constant counterterm in Eq. (3), and

proceed as before. ] The eigenvalues a„, which
enter into the generalized g function in Eq. (19),
are given by

+1~R—)2~4+0» )( ~ (51)

using Eqs. (48a) and (48b). Since the coefficient of
the divergent term is independent of L„we may
fix 5C by taking the limit L, -~ in Eq. (51}, and
then impose the usual requirement that y&')((t) =0)
vanishes in Minkowski space-time. Using Eq.
(A13), we find that this fixes 5C as

3m' m'
5C 128. +

64 (52)

and hence, the renormalized energy density fol-
lows from Eq. (51) as

2

) ((, =0)=- ' ). 2 '")
1

384 2 64 2 L 2m 2 (53)

One can easily verify that by letting rnR -0 in this
expression, the previous result found for the
massless theory in E q. (50), which was obtained
without renormalization, is obtained.

We may continue to calculate the two-loop vacu-
um energy density for a massive theory, where
now one needs to include a one-loop bubble with a
mass counterterm as well as the constant counter-
term 5C. Because the finite part of the expression
turns out to be rather intractable, we shall return
again to the massless theory, where not surpris-
ingly we obtain a result without renormalization.

The two-loop contribution follows from Eq. (25),
where

i, ((=0)=Ig f ",', a"('"')
I

. ()4)

which is the well-known Casimir result for. a real
scalar field." This result has followed without re-
normalization for the same reasons as discussed in
Sec. III B.

Returning now to the massive case, from Eq.
(21) with the addition of a, constant counterterm
6C, the energy density of the state (j) =0 at the one-
loop level follows as

4 4m2V("(y=O)=6C- ", —-ln
3

2
~,(0)

v PL,L,
720L,,' (49b)

After dimensional regularization is performed,
and use is made of Eq. (A14), we have

which has been given in Ref. 16 for the free,
charged scalar field. Using Eq. (21), the vacuum
energy density at the one-loop level for the mass-
less theory is

1
23O4 1

The two-loop contributi. on to the vacuum energy
density is then

72

1440L,' (50}
A.~"'(~='}= »432L ~ (55)
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m A,V(4=0)=-
1440K

'
18432K (56)

We may calculate the lowest-order contribution

This result is in disagreement with Ford, who ob-
tains an infinite result. The total vacuum energy
density to order g is then

to the topological mass as discussed in Ref. 6 by
evaluating the one-particle-irreducible self-energy
part to order X. This shall be done here for the
massive theory to show that the mass counterterm
which is required is the same as that for a scalar
field theory in ordinary Minkowski space-time.
'The self-energy to order ~ is

oe
did ly 2

(5I)

using Eq. (A1). Expanding about the simple pole at
(d=4, we have

Sec. III A.
The static Einstein universe has the line element

ds'= dt' +a'[ d)'&+si ny( &fg' +sin sgd&'t)]. (61)

pm~' w
+ o 2 —y- ln32r' )

(58)

If we work initially at a finite temperature, then
the manifold has a topology of S'&& S', and a volume
of

We then choose the mass counterterm to be given
by

Xm'5m'=- " (&o-4) '
16'~ (58)

as in Ref. 6.
The topological mass follows for massless A, p'

theory by taking the limit m„- 0 in the renormal-
ized expression for Z"'. Because of the way in
which Z'" has been defined, the topological
(mass)' is the negative of this limit. Thus, we
have

96L

as the topological mass. This result is in dis-
agreement with that obtained by Ford and
Yoshimura4 who claim a result which is both neg-
ative and spatially dependent.

IV. APPLICATION TO THE STATIC EINSTEIN
UNIVERSE

As an example in which both the curvature and a
non-Minkowskian topology are present, we shall
examine the static Einstein universe. It was men-
tioned in Sec. II that because this is a manifold with
a constant positive curvature, the conformal term
behaves as a mass term in the Lagrangian. This
makes it straightforward to calculate explicitly the
eigenvalues which enter into Eq. (19), and then to
proceed in a manner which is identical to that of

vol(M) = 2«'Pa' . (62)

P ~
+~ ~ 0 +&

~

&& (I +1)2 "-s
g(s)=

~

&I, g —P +, +&
=o &=o

This may be evaluated to give

~( )
p r( lj

r(s--,')
i2& r(s)

x [E(s——,'; v) —~'E(s- ', ; v)], -(65)

where v' = —,'Aa'p'. From Eq. (65) and results in
the Appendix it follows that g(0) = (Pa g/64)$, and
so no counterterm in p' is necessary.

he unrenormalized one-loop effective potential

The eigenfunctions of the operator —,'A, p'+I ja'
—U described in Sec. II may be chosen to be"

&(&„(x)ooe &"'"&8&'Y,„(e,P) sin')iC&«'&&(cosX), (63)

where Cs(x) denotes a Gegenbauer polynomial, and

~ stands for the quantum numbers (n, k, t, m) which
have the following ranges: g =0, a1, a2, . . . ; P
=0, 1, 2, . . . ; l=0, 1, 2, .. . , 0; and m=-$, -l
+1, .. . , $-1, J. The eigenvalues g„associated with
the eigenfunctions appearing in Eq. (63) are

1 t 2sn ' k(@+2)
a = —P + + +

N 2 ao ( P
o

In the large-P (i.e., low-temperature) limit, the
generalized g function is
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follows from Eq. (21) as The energy density of the state p =0 follows upon
using Eq. (A12) as

41 3 4 ~ A. 41 a2 2 2 2

ageg' & '"" 128v' & 256 2 & '"
V(@=o) =

480 2» (69)

+, , [y,(2; v) —v'P, (1;v)] .4m'a4 (66)

The only divergent term is proportional to P» and

independent of the curvature. We may then impose
the renormalization condition, Eq. (22), on V(P)
in Minkowski space-time, which gives

'This result was originally given by Ford 3' The
state P =0 is a solution to dV/dP =0. The mass
term from Eq. (25) is computed to be given by

VA'
V(4)=4i ~ '2. 4 —

384

, » ln( g I)
+ 2» [F~(2; v) —v2po(1; v)] .4w'a' (68)

4l 512m' 256w' 256m'
I

2

(67)
he renormalized one-loop effective potential is

then

in agreement with Ford and Yoshimura. 4 Since ~
is assumed to be small, we have m' &0, and so p
=0 remains a local minimum of the effective poten-
tial. By expanding Eq. (68) in powers of A. , and

keeping only terms of order less than ~' as before,
one can see that there are no other solutions to
dV/dP =0 in this range; thus, p =0 remains as the
vacuum state.

The two-loop contribution to the vacuum energy
density follows from Eq. (25), where in this case
I,(p) is given by

'" dk, ~, (k+1)'
s, (») gg p, =f, ' —,y*+, +a,* (71)

One may regularize this expression by replacing
f'„"dk»/2v with fd k/(2w) and then define l, (p)
by analytic continuation of the result to co = I. If
this is done, then one obtains upon the use of Eq.
(A14)

1
'(& = )= 2304'' ' ' (72)

The two-loop contribution to the vacuum energy
density is then

V"'(&= )= 18432v'~' ' (73)

Combining this result with Eq. (69), the vacuum
energy density to order g is

1
480w2gg» 18432m a» '

in agreement with Ford. '
(74)

V. SUMMARY AND CONCLUSIONS

In Secs. IIIA and IV, we have seen how one could
use the effective potential to discuss symmetry
breaking in space-times with a non-Minkowskian

topology. As well, we used the effective potential
to derive the energy density of the vacuum state
and the associated topological mass. We feel that
this procedure offers some advantages over other
ones because we can obtain the above-mentioned
results all from one object rather than having to
perform separate calculations for each.

In Sec. III A we found the one-loop effective po-
tential for a massless scalar field with a A. P» self-
interaction in a flat space-time in which a periodic
identification is made in one of the coordinates.
The state &f&

=0 was found to remain as the stable
vacuum state to the order at which we were able to
consistently work.

In Secs. III 8 and GI C, we have discussed why one
cannot use the effective potential to discuss sym-
metry breaking for the twisted field and in the
Casimir case. We were only able to obtain the
vacuum energy density. In the massless case it
was found that results could be obtained without
performing a renormalization, and it was dis-
cussed why this should be so. We emphasized that
this wouM not be expected to be true if we were
working to order ~'. The one-loop Casimir result
for a massive scalar field and its renormalization
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were also discussed.
)Vote added in Proof .The discussion of the re-

normalization for both twisted and untwisted X/4

theory in flat space-time with the topology 8 xA'
referred to in Ref. 6 has also been presented by
¹ D. Birrell and L. H. Ford [King's College re-
port (unpublished)]. R. Banach[Universityof Man-
chester report (unpublished)] has shown generally
that a field theory in a multiply connected space-
time will be renormalizable, and with the same
choice of counterterms, if it is renormalizable in
the covering space.
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APPENDIX

(A1)

Define for Re(s) &-,' a series F(s; v) by

F(s; v) = Q (s'+v') '.
n= j.

'This series has been examined by Ghika and
Visinescu" and independently by Ford. It may be
summed using a summation formula due to
Plana. "' The resulting expression, which is
quoted below, may be analytically continued
throughout the complex s plane to give a function
which is analytic everywhere except at s = 2 —n,
for n=0, 1,2, . . . where simple poles occur. We
shall give the residues at these poles as well as
the finite part. A number of other useful expres-
sions are also given.

We have, "upon performing the summation in

Eq. (Al) for Re(s) &-„

r(s--'), , ', , , " (I+ig)'+v' '- [(1—ig)'+v'] '
r(s) (A2)

It is seen from this expression that the only singularities of F(s; v) are simple poles coming from the first
term in Eq. (A2) given by s = 2 —n, for n =0, 1, 2, . . . . [The last integral in Eq. (A2) may be shown to be

analytic in s following a proof given for a similar integral on p. 270 of Ref. 34.]
We may expand F(s; v) in a Laurent series about the pole at s =

&
—n as

F(s; v) = ' ', +F,(n; v)+ 0(s+n--, }.F , (n; v) 1

s+n-2
A straightforward calculation leads to

(A3)

1 fv' ~ (2n)i.F ( ) 21 4 ( l}
1 & v'}" (2n)!
21, 4&l („,).

[(1+ix)'
0

1 (p2 " 1——2 —ln~ +-,'('1+v'}" '/'- (v'+~'}" ' 'dk
k 2k —1 k4

~ V 2]+ &/2 [(1 i~)2 + v 2]+ &/2

dxe2~» 1

(A4}

(A 5)

Of particular interest are the cases n =1,2. In the case n=1, one obtains

F,(1;v) = —,
' v',

((I+i%) + v ] f(1 —zx) +v ]
Fo(1; v) ==,' v'+-,' v'ln4 ——,

' v'in[1+(1+ v')' ']+i dx ~

0 e

(As)

(A7)

Although we cannot obtain an analytic result for F,(1; v), we may obtain expansions for both large and small

For small v we may show that

F,(1; v} =-+, +-,' (y —1)v' ——,
' g„(3}v'+~eg„(5)v'+ ~ ~ ~,

where gs(s} denotes the Riemann g function, and y is the Euler constant. For large v, we have

xF,(1; v)==, v'ln
i

--, v'--, v.4)
In the case +=2, Eqs. (A4) and (A5} give

F-1(2i v} 16 v

F (2. v) =-~ v ——'(1+v )'/ + —,
' (1+v'}' '+~ v ln4

2''»
0 e 2r»

(As)

(A 9)

(A 10)

(A11)
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Again we may obtain expansions of Eo(2; v) in the
cases of large and small v. For small v we have

D(s; v) =- ' ', +Do(n; v)+0(s+yg ——,) (AIV)
D , (n; v) 1

S+6—2

E.(2; v) =+, .—8 v' +(-'r '-) -v'

g (3)v'+ ~ ~ ~ .
For large v we have

2

Fo(2 v) ——
~~ v ln~ —

~~ v —2 v

Another useful result is that

F(s=-(I+-,); v=0) = S
2(n+ 1)

(A 12)

(A 13)

for s in a neighborhood of s = —,
' —n, it is easy to

see that

D, (n; v) = 2E, (n; v),

D, (n; v) =2E, (n; v)+v'" '.
(A 18)

(A 19)

G(s; v)= Q [(2n+1)'+v'7 '.

Finally, the series arising in the case of twisted
fields in Sec. III B may also be defined in terms of
those given above. Define, for Be(s) & —,',

It is easy to see that

G(s; v) =D(s; v) —2 "D(s; —,
' v). (A21)

(A14)

where the B~„are the Bernoulli numbers. The
cases n =0, 1 of Eq. (A14) agree with results con-
tained in Ref. 18.

A related series is

Expanding about the simple pole at s = 2 —n, we
have

G(s; v}= ' ', +G, (n; v)+0(s+n--, ), (A22)G, (n; v) 1

8+ Pl —p

where

D(s; v)= g (n'+v') ',
which converges for Be(s) &-,'. In this region of the
complex s plane, from Eq. (Al) we have

G, (n; v) =D, (n; v) —4" '~'D, (n; —,
' v),

G, (n, v) =D, (n; v) - 4" ' 'D, (n; 2 v)

+4" ' D ~(n; —,
'

v) ln4.

(A 23)

(A 24)

D(s; v} =2F(s; v}+v ". (A16)

We may then analytically continue D(s; v) through-
out the complex g plane, w'here it will have the
same analytic structure as E(s; v). Writing G , (n; v) =F , (n; v) . (A 25)

Using Eqs. (A18} and (A4}, it may be seen that Eq.
(A23) may be simplified to
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