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Spin-zero mass spectrum in the one-loop approximation in a linear SU(4) cr model
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We investigate the spin-zero mass spectrum and the leptonic decay constants in a linear SU{4) meson o.
model with {4,4~) e {4~,4) chira1-symmetry breaking. Calculations are carried out in the one-loop
approximation. A number of solutions are presented.

I. INTRODUCTION

A large number of numerical studies have been
undertaken with the SU(2)" and SU(3)e ' o models.
The SU(3) model in particular gives an accurate
description of low-energy meson phenomenology.
%'ith the advent of charm', and perhaps additional
flavors, ' it is interesting to consider the model at
the SU(4) level.

Several investigations have been carried out us-
ing the SU(4) model with mesons in the tree ap-
proximation. ' " Reasonable agreement with the
experimental mass spectrum has been obtained,
although experimental evidence for several mem-
bers of the SU(4) meson 16-piete is scarce.

Numerical calculations in the one-loop approxi-
mation provide a much more stringent test of the
model and the theoretical ideas it incorporates.
In general, in the spirit of perturbation theory,
we require that the values calculated in the one-
loop approximation be within 10-20% of their phys-
ical values. In addition, the difference between
the values in the tree and one-loop approxima-
tions should also be within this limit. These con-
ditions impose highly nonirivial constraints on

the model solutions.
In this paper we employ the SU(4) linear. o model

with mesons incorporating both spontaneous sym-
metry breaking" and explicit symmetry-breaking
terms linear in the fields. The symmetric La-
grangian contains the most general nonderivative
chiral-invariant couplings. The currents obey the
SU(4) current algebra. The axial-vector current
divergences obey operator PCAC (partial conser-
vation of axial-vector current). This model has
been demonstrated to be renormalizable in the
one-loop approximation. "

%'e will be primarily concerned with the mass

spectrum and the leptonic decay constants. The
masses are obtained for all particles using the
two-point function. These quantities have been
investigated in the SU(3) model in the one-loop ap-
proximation for many solutions, with good results
being obtained. "%e are interested in how easily
the transition can be made to the SU(4) model.

The SU(4) model has essentially one more pa-
rameter than the SU(3) model, but it has six addi-
tional masses and a much larger mass splitting
to accommodate. This problem is reflected in our
SU(4)-model solutions. The calculated high and
low masses approximate their experimental values
less well than those midrange in the mass spec-
trum. However, overall the solutions adhere to
the perturbation-theory criteria a stated above.

Our solutions also reflect the inherent SU(2)
x SU(2} Lagrangian symmetry. The small SU(2)
x SU(2)-symmetry breaking supports the conjec-
ture that chiral SU(2) x SU(2) symmetry is almost
as good a symmetry as isospin, with corrections
to it being of the order of 5 10% "-We a. lso find
that chiral SU(3) x SU(3) is as good a Lagrangian
symmetry as SU(3), although neither approach the
success of SU(2) xSU(2).

It has been suggested" that the leptonic decay
constants of the charmed pseudoscalar mesons
are larger than that of the pion by a factor of about
6. %e find a much more moderate enhancement
in our solutions, with F~ usually less than 200
MeV.

The paper is organized as follows: Sec. II pre-
sents a brief description of the linear SU(4) me-
son g model. Sections III and IV outline the cal-
culations in the tree and one-loop approximations,
respectively. Our numerical inputs and results
are discussed in Sec. V, where five solutions are
presented. Finally, our conclusions are sum-
marized in Sec. VI.

II. THE SU(4) LINEAR o MODEL

(2.1)

The SU(4) linear o model is a straightforward extension of the SU(3) modeL The most general, renor-
malimable, chiral-SU(4) x SU(4)-invariant Lagrangian density is

2c = -, Tr(8,MS "Mr) --,' p' Tr(MMr) +f, [Tr(MMt) ]'+f,Tr(MMtMMt) + g(detM+ detMt} .
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All terms but the last one are invariant under U(4) x U(4).
M and Mt are the 4 x 4 matrices of fields that transform as the (4, 4*) and (4*,4) representations of

chiral SU(4} x SU(4), respectively. M can be expressed as

M = (1/W2)zi(o, .+ fy,.), (2.2)

where o, and p,. represent 16-plets of scalar (c, li, D„E„o,cr', o,) and pseudoscalar (tr, K, D, E, q, q', q, )
mesons, respectively, and the X' are the usual 4 x 4 SU(4) matrices with X'= (1/v 2) I adjoined. Repeated
Latin indices are summed from 0 to 15.

The symmetry-breaking Lagrangian density is chosen to transform as the (4, 4*)Q+(4*, 4) representation
of SU(4) x SU(4). The simplest choice is then

'4s koilo ks+8 elsilzk .
The complete Lagrangian can be rewritten in the 16-component form as

1- p, 1 p, 1 1Z=&8 o', 6 "il, + —6 ),5 "p,.-&p'(ap, +)lit, )+ 3E,,»(o pjako, +'pipjQkQl)+2Fjj klo'iQjQkQl 6;ill, .

where
1 1 i 1 1

Eijkt = k~+. jjkl+ (f.+ dk~ i jkt+ k(f k
- k d ~ ijkl ~

3 1 r i 2
jj,kl k + ijkl f& jj kl kf & ijkl &+( ijkl ijkl} 1

jl,jk, = 85«5j,5«5« —2(5«5»5kl+ five symmetric terms)+ v 2( 5«d jk, +three symmetric terms),

~'gg. i= &gg&ns+ &gn&gr+ &&i&ga y

2~.&xi= ~Vm~~a~+ ~e~~m)~+ ~&~m~~)»
3
ijkl dijmdmkl f ikmf mjl f ilmf mjk &

and

~gonzo+ ~ge~s+ ~y.5&15 ~

(2 8)

(2.4)

(2.5)

(2.6)

(2.'l)

(2.8)

(2.9}

(2.10)

(2.11)

Using

we define new scalar fields S, with vanishing vacuum expectation values, where

&o(&, ~o&= g, .
Introducing this translation into the Lagrangian gives

1 p, 1 1 82 1 2 1
l i Si+k l~i &~i 0'i kjliijSi j kjiiij4'iitjj+— ijkl( i j k l+itliiIjjitlA'l)

+ 2Fij k,SiSjlk4'i+ Gjjk$iSjSk-SGij kgigjSk- EiS

where
S2

m, j = & 5,j 4Eijk, &k-

Q
2

mij = N 5ij 4Eij, kl&-k&l

8 4Gijk= &Eijkl&l ~

A

Gijsk k ij, kiril &

(2.12)

(2.13)

.(2.14)

(2.15)

(2.16)

(2.1V)

(2.18)

i l ~i k Eijkl~ j~k~l '

This Lagrangian is not normal-ordered, owing to difficulties inherent in the translation.
Perturbation theory is defined as an expansion in powers of X, which is introduced via

Z(M, X) = (1/X') Z(uS) .

(2.19)

(2.20)

X is employed solely for power counting and is set to unity at the end of the calculation. This is, in ef-
fect, an expansion in the number of closed loops for a given process. The symmetry properties of the
Lagrangian are preserved order by order in this expansion. "
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The Lagrangian to second order with A. factors and counterterms is

+ ~@X (E+ X 5E) )~~)(S)S,SqS )+ (f) )Q &f&~Q)) + 2A. (E+AGE). () q)S)SPqg)

+ X{G+~'ra),',„S,.S,S, —3~(G+ X'SG) , ,y,yP, --(Z+ X'VZ),S„ (2.21)

where the second-order cgunterterms are denoted
by 5. As demonstrated in I, these counterterms
can be separated into divergent (D) and finite (4)
components, i.e. „

(2.22)

in a well-defined manner. The divergent parts of
the counterterms are used to cancel the divergent
parts of the integrals, and the physical quantities
are finite. The Feynman-diagram rules for this
Lagrangian are given in Fig. 1.

When the second-order counterterms are intro-
duced, one must keep terms to only second order
in 5 to ensure the correct symmetry properties.
To enforce this the $,. must be considered sepa-
rately. For example, for the scalar-field vaccum
expectation value one has

l

and

respectively. Their divergences are

' P';=«;a'A
9 A, ~= d„~e-qp~. (i e0)

Following Hu, ' we define

W3~,
'

(2.25)

(2.26)

(2.2't)

(2.28)

(2.29)

5E,=E,(5ij.', 5f„6f„fIe)+mf, 5$, .

The vector and axial-vector currents after
translation are

(2.23)

15

v3),
' (2.31)

io'[2]„

i o&[k']..

//

k

g)

k

6IGijk

BiFijkl

T'a = ' fax(SF'S~+ &~8'&~)+f~~ &~'S~ (2.24)

2"= 2U ]m ],.U~g=ypg (2.32)

The Lagrangian is invariant under SU(3), SU(2)
x SU(2), and SU(3) x SU(3) when g = 0, 1+g+ f) = 0,
and g = 0 with b = -1, respectively. Similar state-
ments apply for c and d and the vacuum.

Finally we consider three-particle mixing. It is
convenient to define a new basis such that the
fields are orthogonal and the mass matrix diag-
onal in the tree approximation. Second-order
calculations are simplified if we use this new basis
for the internal lines in diagrams, allowing us to
treat all internal lines on the same footing. Con-
sequently, the orthogonal matrix U, ~ is defined
such that

i
fi /k/

'ss /'

X
Js'

j/
ii k

j i

B'Fijkl

A

BiFij ki R(8) = R(8„,8„,8,) = R( 8,)R(8„)R(8,), (2.33)

where 8„8», and 8, are the 15-0, G-8, and 8-15
mixing angles, respectively, and

where Latin indices are used to denote the original
basis and Greek indices the new.

The nontrivial component of U consists of

-iam@"2
lj

FIG. 1. Feynman-diagram rules for the Lagrangian of
Eq. (2.21). Solid lines represent scalar fields and
dashed lines pseudoscalar fields.

i 0 0

))(0.)= 0 nose, sine,

0 -ssn88 cos8

(2.34)
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I

0 -sin8„
R(8„)= 0 1 0

l sin8„0 cos8
J

cos 8p sin8p 0

R(8,)= ~ -sin8, cos8, 0

0 0 1)
This gives, for example,

(2.36)

(2.36)

m»'$0(1 —c —d) = -eo(1 —a —b) . (3.6)

These linear equations can easily be solved for
the e's and $'s.

Using the expressions given in Table I for three
of the above masses, the values of p,

' —2f, t,'(I
+3c'+ 6d'), f„andy can be obtained from linear
equations. Finally, one of the I= 0 neutral-scalar-
meson masses must be input. This will give a
linear constraint to fix p2 and f,. By construction
the translated scalar fields have vanishing vacuum
expectation values. This affords the condition

(2.37) E]=0 (3.S)

III. TREE-APPROXIMATION CALCULATIONS

The tree-approximation Lagrangian contains ten
parameters. We fix various masses and leptonic
decay constants to determine these parameters.
Naturally, it would be convenient to input the
better-known quantities (e.g. , m„m», m„, m„, ) for
this evaluation. However, the resulting equations
are highly nonlinear, especially when mixed
fields are involved.

To circumvent this, we first evaluate the non-
zero e, and g, using F„E», m„m», m~, and

m~; then the remaining parameters can be easily
evaluated. The values of m~ and m~ are adjusted
somewhat to achieve acceptable values for m„and
m„., which cannot be input directly.

The leptonic decay constants for the pseudo-
scalar fields are defined via

which provides a useful check of the parameter
evaluations.

With the Lagrangian parameters fixed, the re-
maining masses may be found using Table I. For
the mixed fields this requires finding the eigen-
values of the 3 x 3 mass matrix. The triplets of
mixing angles 8& and 8, for the pseudoscalar and
scalar cases, respectively, can be found from the
eigenvectors of the mass matrices.

The remaining leptonic'decay constants can be
computed. F~ and F~ are available directly from
Eq. (3.2). For mixed fields in the tree approxi-
mation, Eq. (3.1) reduces to

Eg„=U ~dry (3.10)

For scalar fields the decay constants are de-
fined by

[(2v)'2&@ ]'~'(0~ V,"(0)~S&(p))=ip"E, . (3.11)

In the tree approximation with Eq. (2.24) this gives

[(2»)'2(u ]'~'(0~A,"(0)
~ y (P))=iP "F'„. (3.1) Eli f kjk~k ' (3.12)

E'o= drys

We need

E,=—&,(I+ c+ d)
1

W2
'

(3 2)

(3.3)

E» = — $,(1 —2 c+ d) .1 (3.4)

Multiplying Eq. (3.1) by p„, evaluating on mass
shell in the tree approximation using Eq. (2.27),
and substituting for F', one obtains

m, ']0(1+c+ d) = -&0(l+ a+ b),

m» )o(l —c/2+ d) = -co(l. —a/2+ b),

m~'(, (1+c/2 —d) =-e,(l+ a/2 —b),

(3.6)

(3.6)

(3.7)

For the unmixed particles in the tree approxima-
tion this gives [Eq. (2.25)]

IV. ONE-LOOP APPROXIMATION CALCULATIONS

This model. has been demonstrated to be renor-
malizable in the one-loop approximation in I. It
was shown that only the parameters of the sym-
metric Lagrangian (p', f„f„and g) acquire
divergent second-order parts. However, all pa-
rameters may acquire finite corrections. In this
section we consider the calculation of the mass
spectrum and the leptonic decay constants to sec-
ond order using one- and two-point vertices.

First consider the evaluation of the finite sec-
ond-order corrections to the Lagrangian param-
eters. Ten constraints are necessary to fix these
corrections. As all equations must be linear in
the second-order terms, this evaluation is nu-
merically easier than the first-order case.

The vacuum expectation values of the scalar
fields vanish by construction to second order.
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TABLE I. The expressions for the nonvanishing pseudoscalar and scalar tree-approxima-
tion masses squared. From Eqs. (2.15) and (2.16)

ij=P' &i& —2ff(p Aij ~g$p Aij zg(p Aij

A;f A2 A3.
ld

K
D

188

~op

~08

]Sfs

2+ SC2+ 6d~

2+ 3c~+ 6d~

+ Sc2+ 6d2

+ Sc2 + 6d2

- 2+ Sc2+ 6d~

(1+ c+ d)2

1 —c+ 2d —cd+ 7c + d
1+c-2d+ 5cd+ c + 13d
1-2(c+d) —10cd+4c +13d
1 —2(c —d + cd) + Sc2 + d2

1 —4d+2C +7d

1+ pc +3d

v 6c(1+d-&c)

2v3(d+ —c2 —d )

v 2c(1+d-2c)

1 —2(c+ d) + 6cd-Sd2
1+ c-2d-Scd —3d2
1 —c+ 2d —cd-2C2+ d2

(1+c+ d)2

1 + 2(c —d) —6cd - 3d2

1+4d —2C2+ Sd2

1 2-3(1-2c —d )

v 6c(1 —d+ &c)

2v 3(d- —e2+ d2)

-v 2c(1+ Sd+2c)

K

Ds

+88

2+ 3c2
2+Sc
2+Sc
2+3c
2+ gc~

+ 6d2

+ 6d~

+ 6d2
+ 6d2

+ 6d2

3(1+c+ d)2

3(1—c+ 2d- cd+ c + d )

3 + Sc—6d —cd+ c + 7d
3 —6c-6d+ 2ed+ 4c2+ Vd2

3(1-2c+2d —2cd+ Sc + d )

-(1—2c —2d + 6cd 3d2)
-(1+ c —2d —Scd —3d2)
-(1—c+ 2d —cd-2c + d~)
-(1+cy d)2

(1+2c -2d —6cd -3d2)

Ooo

Ooe

Opfs

6+ 3c2+ 6d~

2v 6c

4vYd

6v 2cd

of )f5 2 + 3C2 + 18d2 3 —12d+ ze + 21d

+ p c2+ gd2
2

Sv 6c(1+d —~c)

6v 3(d+ 4c'+ d')

Sv 2c(1+d-2c)

-(1+4d-2c + 3d )

3(1-2c -d )

-v 6c(1-d+ &c)

3(d ~~c2+ d2)

W2C(1+ 3d+ 2c)

This provides three constraints. From Fig. 2

E,+ X'6E, + A.
' (loop contribution) = 0.

As E& vanishes in the tree approximation, only the second-order contribution need be considered.
Evaluating the diagrams of Fig. 2 one finds

(4.1)

(27/)4 (P m@2) m «if (2p)4 (f2 O2)
~ n a

(4.2)

The divergent part of this expression may be isolated using the prescription of I. The remaining equation
for the finite part is

hE, —3 P G~» (m~ —v')B(0, m~, v')+3+ G~ (m~ —v')B(0, m v') =0 (4.3)

where

& )
—B(p' ~' &') B(0, v', v') (Ref. 19),

1
(2m)' [(l p)' —x'] [l' —y']

(4.4)

(4.5)

and v' is arbitrary.
Employing Eq. (2.23), hE, can be rewritten as

&E =E (&W, &fx~&f2~+g~+&g)+mo

The b, $, term is written separately as it can only appear linearly in the exPressions to second order.
Three useful constraints are then Provided by combining Eas. (4 3) and (4 6) for ~ = 0 8 and 15

We choose to input several masses. From Figs. 3 and 4, respectively, the finite second-order mass
corrections to the pseudoscalar and scalar masses are

(4.6)
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g4'(s) = m)~(ap', af„hf„bg)+ 6Gf) ~b $~

—4 Q E,q„(ma —v')B(0, ma, v') —4 Q E,q, „(m —v')&(0, m, , v')

(4.7)

and

Z &&(s) = m, &(&p', ~f„4f„hg) —6G(~„ht'~

- 4 Q P, „(m' - v')B( O, m', , v') - 4 Q E, „(m' - v')B( 0, m', v')

2
(4.8)

Each unmixed mass provides a constraint via

Re[D ',q(M')] = 0, (4.9)

where the unrenormalized propagator is given by

(4.15)D„(s)= B„,(8„)D,&(s)R '~ (8„).

For stable particles the wave-function renormal-
ization constant is

D '„(s)= s5„™u—Z~,(s) (4.10)
TrD ')(M ')

(d/ds) DetD '(M, ') '

and M denotes the mass to second order. For
stable particles the wave-function renormaliza-
tion constant is given by

Z, = 1+Z',(M, '), (4.11)

Re[DetD '(M ')] =0.
The propagator is given by

(4.12)

where the prime denotes differentiation with re-
spect to s.

In second order we can also input mixed masses
using

Then, for example, the renormalized g field is

(4.1'f )

= D"»~~'~ fr~(ol r&~l{0)yi~~AIo)8-'~*,

ri'=Z -'~'Z (8)y
The mixed states are no longer orthogonal owing
to the s dependence of Z(s).

We input M„M~, M„, M„„M~, and M, . The
latter mass is input to determine b, p' and bf,.

Finally we input E,. Setting

r'„"(p)= p "r'„(p')

Dias(s)
DetD '(s) '

Owing to the s dependence of D~&(s), D(s) cannot
be diagonalized, in general, for all masses with
a single set of angles e. That is possible only in
the tree approximation. In this case we require
three sets of angles 8 such that

one has

S'„=v Z,r'„(M') .
Thus

F,= vZ, I", (M, ') .

(4.18)

(4.19)

(4.20)

Z(8.)D-',(M.')a-'(8. ) (4.14)

is diagonal, where B(8,) is given in Eq. (2.33).
Since its determinant vanishes, D~&(M ') has only
one nonvanishing eigenvalue, which will correspond
to the desired propagator; for example, D„(s) is
then

and

&a.~=-«a & (4.21)

(4.22)

The free-field axial-vector-current-field vertex
relations are given in Fig. 5, where

a

L 0 J

a

JL

FIG. 2. Diagrams contributing to the vacuum expecta-
tation values of the I= 0 salar fields to second order.

FIG. 3. Diagrams contributing to the second-order
pseudoscalar mass.
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a
~i 1 j

I

i i

FIG. 4. Diagrams contributing to the scalar mass to
second order.

From the Feynman diagrams of Fig. 6 one has

S21",g(P) = -P'P',
«

—6 Q P', kG«o ~R "(P,mk~, mo ),

where"

(4.23)

d4l (2f —P)'
(2v)' p»t [(f )2 2]

'

(4.24)

U t«k k «kl ~ l k«

Thus, for example, to have

[(2v)'» j"'&0
~

8 „A,"
~

7«'(p)) = E,M, ',
one must have

(4.26)

(4.27)

(4.28)

In general this will be true only if AM, ' vanishes.
Consequently, the usual expression for operator
PCAC (e.g. , s„A,"=E,M, 'p,") is valid in the one-
loop approximation only if AM' vanishes. We do
not adhere to this constraint in our model solu-
tions and, as a result, use the curreot-field ver-
tex functions to evaluate the leptonic decay con-
stants.

Qnce the Lagrangian parameters have been
fixed, the remaining masses and leptonic decay
constants can be evaluated.

k

lP Pki p k ,ij

P

lg

FIG. 5. Feynman-diagram rules for the free-field
axial-vector-current —field vertex. The vravy line repre-
sents the axial-vector current. The factors p~; and

p& &&
are given. in Eqs. (4.21) and (4.22), respectively.

For mixed fields one has

F« ——v'Z U «(M )I"i«(M'), (4.25)

where U «(M') is constructed from the appropriate
eigenvector of D~&(M'). Similar relations apply
for the scalar fields.

The Ward-Takahashi identity involving the ver-
tex of Eq. (4.18) is

a', P
I
I
I

jl

FIG. 6. Diagrams for the pseudoscalar-fieM lepton-
ic decay constant.

V. NUMERICAL ANALYSIS

As indicated above, our goat. was to approximate
the scalar and the pseudoscalar mass spectrum
and the known leptonic decay constants. The mass
spectrum has not yet been completely deter-
mined; consequently, we shall briefly consider it
before discussing our numerical results.

The SU(3) pseudoscalar octet mass spectrum is
well known. " There is some uncertainty with the
SU(4) singlet; however, the X'(958) is generally
preferred to the Z(1420) as the g' meson. The
D(1863, 1868) meson" is now reasonably well es-
tablished as the I=2, S=O, ~C~ =1 component of
the pseudoscalar 15-piet. The E meson (~C

I

= 1

~S
~

= 1) mass is expected to be near that of the D
meson. There is some evidence for the candidate
E(2030)," but this has not yet been confirmed.
Finally, the X(2830) meson" is a likely candidate
for the q, meson.

The spectrum of the scalar mesons is less well
known; however, the SU(3) octet component is
gradually taking shape. We associate the I = 1
5(980) and the I = —, a(1400)" with the e and x,
respectively. The I=0 S*(980) ' is identified with
the g. The SU(4) singlet o' is associated with the
c(1300), whose mass may be as large as 1700
MeV." Little is known about the D and E me-
sons, but their masses are expected to be large
(2-3 GeV). There are several candidates for the
0, meson in the 3400-3500-MeV region including
the X(3415), X(3510), and X(3555); however, the
X(3415) is favored. "

We also considered the leptonic decay constants.
These constraints provided additional information
for the determination. of the Lagrangian param-
eters, but. imposed severe restrictions on the
number of acceptable solutions. This will be dis-
cussed below. The known decay constants are E,
and J~. E, has been fixed at about 95 MeV. The
ratio FE/F, is 1.25 +0.03."

In both the tree and the one-loop approximation,
ten parameters must be determined. Three are
fixed in each case by requiring that the vacuum
expectation values of the I = 0 scalar fields van-
ish. The remainder in each case are determined
by inputting various masses and decay constants.

As outlined in Sec. II, in the tree approximation
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we input E„E~, m„and mx. The mixed masses
are difficult to input; consequently, we input m~
and mr and adjust these somewhat (particularly
mz) to obtain reasonable values for m„, m„, and

m„, . Finally, the 0 mass is input to determine p,

and f,. We set v'=
~

p'~ for the second-order cal-
culations.

In the one-loop approximation we again input E„
M„and M~. Since the d quantities must appear
linearly, we can easily input M„, M„, and M„,.
Finally, we again input M,. The quantities em-
ployed as input in the one-loop approximation were
not necessarily set equal to their tree-approxima-
tion values.

A large number of solutions were investigated.
In general, a particular tree-approximation solu-
tion will not give an acceptable second-order solu-
tion, since the second-order corrections will be
too large. Consequently, considerable care was
required in choosing solutions.

Ne present five solutions which are representa-
tive of the basic properties of the solutions found.
Tables II and III contain the masses and leptonic
decay constants, respectively, for the tree ap-
proximation solutions. Table IV contains the La-
grangian parameters for these solutions. These
solutions were not the best available in the tree
approximation, but were chosen on the basis of
the resulting solutions to second order. The
masses, decay constants and Lagrangian param-

eters for the second-order solutions are given in
Tables V, VI, and VII, respectively. The com-
plete calculations are given to enable a compari-
son between tree- and one-loop-approximation
solutions.

Naturally, we were unable to fit our proposed
mass spectrum exactly; however, the basic fea-
tures could, in general, be reproduced quite well.
Perturbation theory does not require that a given
quantity acquire its physical value to any finite
order. Nevertheless, in the spirit of the pertur-
bation approach, the percentage difference be-
tween the tree and the one-loop values of physical
quantities should on average not be too large
(10-20%). Similarly, the difference between the
second-order and physical values should, on av-
erage, be no larger than this. Finding solutions
that obeyed these criteria required considerable
effort; however, we feel that the solutions pre-
sented in the tables are acceptable in the above
context.

The first major obstacles in finding a satisfac-
tory solution were the leptonic decay constants of
the charmed particles, in particular those of E~
and E~. In the tree approximation these are gen-
erally of the order of 200-300 MeV. In second
order, however, where one inputs masses near
their physical values, these decay constants
change sign. This problem was quite difficult to
avoid. The price we had to pay was to raise the

TABLE II. Some tree-approximation solutions for the SU(4) 0. model for the masses (in
MeV) and mixing angles (in rad).

mf
mg
mn

mg&

mD

mp

n.
mg

mg

mg

mg

mD S
mp
mg

C

g4
8

gS
S

gS
0

355
533
550
828

1537
1512
1747
1012
1126
902

1257
2067
2179
3163

-0.57

-0.17

0.3.1

2.24

3.95

3.86

324
514
537
862

1689
1664
1923
1088
1199

963
1318
2281
2388
3478

-0.56

-0.15

0.09

-0.92

-0.83

0.76

390
532
551
845

1602
1583
1831
1089
1185
989

1288
2192
2284
3304

-0.56

-0.14

0.09

2.23

3.90

353
533
547
805

1463
1439
1663
974

1093
868

1231
1969
2086
3006

-0.57

-0.19

0.12

2.25

3.85

582
638
651
894

1501
1487
1682
1043
1090
980

1147
1960
2013
3031

-0.56

-0.06

0.04

2.20

3.95

3.91
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TABLE III. The leptonic decay constants (in MeV) for the tree-approximation solutions
presented in Table II.

FE
F~/F~
FD

F8n

Fsn,
Fsn

F~5n

Fi5n,
Fis~

110
128

1.16
240
257

8.26
0.56

-18.7
7.10

317
72.5

-17.7
-129
-112

121
138

1.14
263
279

8.17
0.49

-17.2
6.55

348
77.9

-16.5
-142
-125

121
135

1.12
252
266

7.09
0.45

-14.7
6.81

329
76.6

-14.1
-131
-116

105
124

1.17
227
246

8.11
0.60

-19.6
7.99

300
69.8

-18.4
-122
-104

96.2
105

1.09
212
221

5.02
0.28

-8.40
1.30

282
61.4
-8.48

-116
-107

tree-approximation value of the pion mass. %e
could then move the second-order pion mass down
near its physical value, if desired, depending on
the magnitude of the second-order shift one is
willing to accept. A shift of 150 MeV is a large
percentage shift for the pion, but this size of shift
is common for the larger masses where it rep-
resents a much smaller percentage.

The other general problems were to move the

g, and 0, masses near their physical values. M„
C

tends to be too small and M, too large. The only
C

masses that are affected individually by d p' and

hf, are M„M... and M,, [all others employ b, p'
—2', )0'(2+3c'+ Gd')]. Thus they can be adjusted
independently after the remainder of the solution
has been chosen. The values in the tables repre-
sent a compromise for the three masses.

Solution 1 is characterized by relatively small

second-order percentage corrections. Thus,
for example, m, =355 MeV and M, =323 MeV.
Similarly, M„and M„are larger than their physi-
cal values. M„„M~, M„and M,, are quite good.
M„, M„, and M, are (l5-20)% too small, whereas

~C

M, is about 25% too large. F, is about 50% too
C

large, but Fr/F, is within 10%. F~ and F~ are
both acceptable.

In solution 2 we keep basically the same tree-
approximation solution as case 1, but move the
second-order values of M„ME, and M„near their
physical values;, for example, nz, = 324 MeV and

M, = 161 MeV. The second-order corrections are
thus somewhat larger than in solution 1, but we
feel that the average correction is still reason-
able. The values of M„ME, M„, M„„M~, M„
M„, and M, , are quite good. M„ is a little too
small (at 2530 MeV). M, is too small and M, is

TABLE IV. The values of the Lagrangian parameters and the ratios a, b, e, and d for the
tree-approximation solutions of Tables II and IG.

$, (MeV)
$„(MeV)
g, (MeV)
p2 (GeV2)

fj
f2

~, (GeV')
~,s (GeV')
~, (GeV')
a
b

C

d

-20.4
-151

260
-0.571
-1.67

-11.1
3.34
0.026
0.667

-0.426
-0.050
-0.904
-0.064
-0.336

-19.1
-167

283
-0.656
-1.46

-11.4
3.29
0.027
0.893

-0.556
-0.040
-0.927
-0.055
-0.340

-16.3
-154

273
-0.576
-1.45

3.16
0.023
0;760

-0.484
-0.039
-0.907
-0.049
-0.325

-21.2
-142

248
-0.508
-1.68

-11.1
3.35
0.025
0.571

-0.369
-0.056
-0.894
-0.070
-0.331

-9.79
-138

224
-0.506
-2.81

-11.9
4.16
0.012
0.541

-0.368
-0.026
-0.849
-0.036
-0.357
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TABLE V. The masses (in MeV) in the one-loop ap-
proximation for the tree-approximation solutions of
Tables II-IV.

M~ 323
Mg 581
Mq 573
Mq. 975
MD 1889
Mp 1916
Mq 2457
M, 1015
M„1075
M~ 779
Mg. 1235
Mg 2290
M~ 2469
M~ 4466

C

161
506
543
953

1917
1938
2530
991

1131
822

1800
2437
2625
5019

145
495
551
951

1903
1920-
2444
984

1073
866

1271
2350
2518
4776

142
- 504
558
944

1788
1814
2288
948
946
738

1203
2114
2286
4308

145
504
628
994

1805
1792
2183
911
991
915

1141
2060
2010
4098

about 45% too large. The second-order shifts of

F~ and F~ are probably too large to be acceptable.
E, is a bit large but Er/E, is again within about
10% of its target value.

Solution 3 is probably our best solution, al-
though the second-order shift of F~ and F~ may
again be a bit large. It represents a general im-
provement over solution 2. The tree-approxima-
tion solution is near that of cases 1 and 2. The
second-order pseudoscalar mass spectrum is
quite good, however, M„ is again a bit too small.

C

The scalar mass spectrum again suffers from a
small M, and a large M, , but is otherwise ac-

C

ceptable.

Solution 4 is similar to solution 2, but the value
of M, is much better. However, the price to be
paid for this is an M, which is about 250 MeV too
small. Overall, it is probably not as good as
solution 2, except that the second-order correc-
tions to E~ and Ez are now in the region of 10%.

In solution 5 we show the effects of allowing M,
to increase to the region of 500-600 MeV, How-
ever, M, is still kept near its physical value. The
resulting mass spectrum is quite good with the
exception of M„being too large and M„and M„

C

being too small. The second-order corrections
to En and Ez are less than 20%. The I = 0 scalar
masses have improved dramatically. This solu-
tion is probably not acceptable, as the second-
order correction to the pion mass is too large.

If one allows a large pion mass in both the tree
(500-600 MeV) and the one-loop (300-400 MeV)
approximations, the whole SU(3) pseudoscalar
octet masses shift upward somewhat. The re-
maining mass spectrum improves, however. The
decay constants are also quite good. This solution
is not included in the tables as we feel the large
pion mass renders it unacceptable.

The symmetry of the Lagrangian and vacuum
are indicated by a, 5, c, and d of Eqs. (2.28)-
(2.31). The Lagrangian is symmetric under SU(3),
SU(2) x SU(2), and SU(3) x SU(3) if we have a= 0,
1+a+ b = 0, and (a = 0, b = -1), respectively. In
the tree-approximation solutions, g is small, in
the order of -0.04 to -0.05, and b is near -1 at
about -0.9. Consequently, the Lagrangian has
approximate SU(3) and SU(3) x SU(3) symmetry,

TABLE VI. The leptonic decay constants (in MeV) in the one-loop approximation for the
solutions of Table V.

Fz
F /F,
FD

F8n

F8q i

F~sn

F„

165
215

1.37
170
253
122
-1.17
+i.91
5.20-

-162
256
+i3 11
82.1

-34.2
-il0.1
-72.0

-$83.5
-49.7

-i88.0

136
182

1.36
22.3

103
. 164

-2.17
+i.91

-26.4
16.6

282
+i3.76
114
-31.2

-i12.1
-93.0
-i99.1
-72.7

-i98.8

147
193

1.36
98.9

180
168
-2.16
+i.72

-16.0
33.0

268
+i8.29
107
-29.2
-i7.96
-83.5

-i87.8
-64.3

-i89.1

166
217

1.39
204
284
154
-1.86
+i.96
16.9

-62.1
243
+i3.06
86.3.

-42.5
-i7.92
-84.2

-i72.4
-58.5
-i71.8

140
190

1.49
187
278
160
-2.08
+i.44
-9.16

249
282
+i2.95
82.1

-10.8

-55.0
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TABLE VII. The second-order finite corrections to the Lagrangian parameters of Table IV
calculated using et=

i
pt i. The second-order values of the ratios a, b, c, and d are also pre

sented.

«, (MeV)
~$„(MeV)
~(, (Mev)

gp2 (GeV )
Af(
kf2
b,g
~~ (GeV')8

a~„(GeV )
~&0 (GeV3)
a
b

C

d

-8.12
181
-48.6

1.09
24.9
60.4
17.5
0.032
0.537

-0.345
-0.070
-0.900
-0.102

0.003

-1.30
345

-211

1.29
24.9
49.6
18.2
0.022

-0.145
0.078

-0.079
-0.908
-0.100

0.111

-7.22
249

-133

0.922
25.5
62.0
18.7
0.027
0.254

-0.148
-0.073
-0.932
-0.094

0.041

-11.1
132
-7.49

0.856
25.5
68.1
18.3
0.031
0.563

-0.343
-0.072
-0.943
-0.109
-0.035

-29.2
122
-6.03

-0.495
33.7
89.7
21.7
0.039
0.492

-0.287
-0.093
-0.957
-0.143
-0.051

TABLZ VIII. The eigenvectors for the pseudoscalar
and scalar mixed fields in the tree and one-loop approx-
imations for solution 3 of Table V. In each case the
upper row is the tree-approximation value and the sec-
ond row is the second-order correction to this value.

0.986
0.047

-0.002
-0.008
-0.165

0.158
0.493
0.028
0.008

-0.003
-0.870
-0.416

0.089
-0.123

0.848
0.113
0.522
0.044
0.463
0.733
0.844
0.025
0.270

-0.121

0.139
-0.251
-0.530

0.181
0.837
0.004
0.736

-0.480
-0.536

0.040
0.413

-0.798

but is very close to being SU(2) x SU(2) symmetric.
In the one-loop approximation g decreases to the
region -0.07 to -0.08, while b remains at about
-0.9. Thus the SU(3) and SU(3) x SU(3)-symmetry
breaking increases, whereas the SU(2) x SU(2)
symmetry improves.

The values of c and d reflect the magnitudes of
the SU(3) and the SU(4) symmetry breaking oi the
vacuum. In the tree approximation c is relatively
small at approximately -0.05 and shifts to about
-0.1 in the one-loop approximation. The value of
d is much larger in the tree approximation, in the
region of --0.3. However, this decreases to the
region 0.1 to -0.05 in the one-loop approximation.
This latter shift probably reflects our problem
with F~ and F~. In general, in the solutions where

the second-order correction to these decay con-
stants is small, the second-order value of d is
more negative.

The wave-function renormalization constants
follow the same general pattern in all five solu-
tions. For the pseudoscalar mesons for solution
3 we have Z i~2-0 814 Z ii~-0 8]y Z ii2
=0.815 Z 'i'=0VV4 Z 'i'=0. 693 andZ 'l'
= 0.754.

Finally, the eigenvectors for the mixed pseudo-
scalar and scalar fields in the tree and one-loop
approximations are presented for solution 3 in
Table VIII.

VI. CONCLUSION

The pattern of the solutions seems relatively
clear. We can approximate the overall trends in
the mass spectra and the leptonic decay constants
but not the details. Although the magnitude of the
second-order shifts are often large, they are ac-
ceptable in general.

The solutions in the SU(4) model were not nearly
as successful as those in the SU(3) version. How-
ever, as mentioned above, there is only one extra
parameter to accommodate both the much larger
mass splitting and the six additional masses. Con-
sequently, the calculated mass spectrum deviates
most from the experimental values at the high-
and the low-mass extremes.

There are three immediate remedies for this
problem. First, with such a large-mass splitting
additional bilinear symmetry-breaking terms m3y
be required. Secondly, the incorporation of other
fields, in particular the baxyons, may give a more
realistic mass spectrum. Finally, higher-order
calculations, in particular the bvo-loop approxima-
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tion, may give better results. Although we would
expect that the third-order corrections would be
at most only 20% of the second-order ones, a cal-
culation at this order would allow an adjustment
in the lower-order computations, which may per-
mit a more dramatic overall improvement.
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