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We numerically evolve initial data modeling gravitational wave perturbations about a background Kasner
cosmology. We examine the gravitational waves present in the initial data, and show that these
inhomogeneities on the initial slice are not merely gauge effects. The evolution of these gravitational waves

is gauge dependent, but we are able to separate the effects of the gauge terms from the true decay rate of
the perturbations.

I. INTRODUCTION

Perturbation calculations have been the sub-
ject of great interest and much work in general
relativity and cosmology for many years. Math-
ematically, perturbation techniques have been
used to solve the field equations in the hope of
gaining insight into the nature of general solu-
tions by considering small deviations from highly
symmetric spacetimes. ' Astrophysical interest in
primordial black-hole formation' and in the gravita-
tional instability theory of galaxy formation —both
of which are based on the growth of small fluctua-
tions from a spatially homogeneous spacetime —has
spurred much work with perturbations. The nu-
merical methods' developed over the past decade
for solving the Einstein equations will yield many
exciting developments for relativity as a whole
and cosmology in particular, since they allow us
to construct inhomogeneous spacetimes having
strong gravitational fields and realistic matter
sources. In this paper we will study the evolution
of perturbations within this modern context of nu-
me rical relativity.

In the case of matter-filled cosmologies, we
know that the density contrast of a perturbation
with wavelength larger than the horizon size will
grow until the horizon exceeds the wavelength. '
Afterwards, restoring forces due to the pressure
terms will cause the amplitude of the perturba-
tion to oscillate. Studies of gravitational wave
perturbations in anisotropic cosmologies' show
that similar effects arise even in the absence of
matter: 'The perturbations are oscillatory 'once
they fall within the horizon, with the curvature
providing the restoring forces. We are thus led
to consider initial data that look like perturbations
of a background Kasner model, hoping that the

.evolution of these vacuum data will provide a good
basis for further calculations in more realistic
models.

Before beginning our analysis in earnest, we
wish to make a few remarks regarding gauge

problems in general relativity. Einstein has. pro-
vided us with a beautiful and satisfying theory
which gives the physical laws in a gauge-invariant
form, but when we perform calculations using
the field equations, we are forced to choose a
specific coordinate system. These calculations
are plagued by seemingly "physical" effects which
are, in fact, merely the manifestations of a bad
choice of coordinates. Clearly, the evolution of
galaxies or primordial black holes will have
physical meaning only if it is possible to separate
the gauge terms from the true growth rate. In
this work we will be vigilant in our search for
such coordinate effects and will take care to eluc-
idate their contribution to the evolution of pertur-
bations.

II. INITIAL DATA FOR VACUUM PERTURBATIONS

+ (t/t )"2dy2+ (t!t,)'"d~'

where to and P, are constants, and

P], +P2+P3

P~'+P2'+P3'= &-

'To set the initial data we choose

(2.1)

(2.2a)

(2.2b)

Numerical relativists solve the field equations
by considering general relativity from the point
of view of its Cauchy problem. Within this frame-
work our first task in evolving perturbations of
vacuum cosmologies is thus to set up an approp. -
riate initial slice by specifying values for the
three-metric y,.& and the extrinsic curvature E'&
that satisfy the constraint equations. Centrella
and Matzner' have shown how to set initial data
that resemble a different Kasner model at each
value z on an initial hypersurface. We will adopt
their method in setting up our initial slice.

We therefore write the Kasner metric in the
form

dg2= dt2+ (t/t )2~1~2
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and generalize t, and the anisotropy parameters
p,. to be functions of z. We are free to specify
this function t,(z), which gives the age of the Kas-
ner model at each vatue of z at the match epoch.
Choosing

t,(z) =A sin(kz)+B, (2.3)

where the constant 7&0 can be chosen freely.
From this relation we see that these universes
also have smoothly varying anisotropy parameters.
We thus interpret these initial data as perturba-
tions around a background Kasner universe with
age and anisotropy pa.rameter given by

(2.5a)

(2.5b)

where ( ) denotes an average over z.
Notice that this choice of data does not lead to

simple sinusoidal perturbations in E
&

on the in-
itial slice. For instance,

p, (z) VA sin(kz)+ (VB+ 1)
t,(z) A sin(kz)+ B (2.6)

which c1early shows that nonlinear terms appear
in K', . The other components of the extrinsic
curvature are even more complicated, with terms
such as sin'(kz) appearing in. the numerator. We
will make the assumption later that the wave
number k dominates the dynamics, but we should
keep in mind that these initial data are more com-
plex than the monochromatic plane waves used
in the linearized treatment of perturbations.
However, these data do satisfy the constraint
equations exactly (i.e. , to the round-off error in
the computer), in contrast to the analytic results
which only satisfy the field equations to first or-
der in the perturbation amplitude.

Before proceeding further with our analysis of
vacuum perturbations, we will pause to ask the
following question:- Are the inhomogeneities we
have introduced merely gauge effects, brought
about by our choice of coordinate system? Our
perturbation initial data consist of Kasner mo-
dels that vary smoothly around the background
universe, and we need to ask whether this in-
homogeneous slice is in fact simply a distorted
slice through a Kasner model. If it is, data which
are explicitly of Kasner models can be evolved
to the inhomogeneous slice in a small time inter-

we then have a set of Kasner models with smoothly
varying ages. The momentum constraint gives
the condition

p, (z) = Vt, (z)+ 1 = VA sin(kz)+ (VB+ 1), (2.4)

val 6t using a general lapse function and shift
vector. In Appendix A we show that it is not, in
general, possible to carry out this procedure, so
we can be assured that our initial data really
represent a slice from a spatially inhomogeneous
cosmology.

III. GRAVITATIONAL O'AVES IN THE INITIAL DATA
I

We will now look more closely at our initial
data set to gain a better understanding of the
physical scenario it represents. As it stands,
the initial data

~i&= ~u

K'z = K'&(z ) diagonal

(3.la)

(3.1b}

tell us only that our intrinsically flat initial slice
is curved in the full four-dimensional spacetime.
Physically, there is gravitational-wave energy
in the extrinsic curvature which bends the slice;
the waves ca,rrying this energy will manifest
themselves in the three-metric as the data are
evolved. There are, however, many difficulties
inherent in defining gravitational waves in general
spacetimes, as discussed at great length in the
literature. ' Followng the general consensus, we
will take the point of view that the gravitational
wave modes lie in the transverse-tracless (TT}
parts of the metric.

To get an idea, of the gravitational waves stored
on the initial surface, we will look at the gravita-
tional wave modes in the time derivative of the
three-metric at the initial time. 'The trick used to
solve the initial-value constraint equations, y, &

= 5,.&, led us to put. the perturbations on the initial
slice irito the extrinsic curvature. However, this
condition also leads to a description of the gra-
vitational waves induced in y,&

by these perturba-
tions in terms of the linearized theory of gravity.

We shall use the evolution equations for y,-& in
the form given in Appendix A. Using a zero-shift
vector and' a lapse a = 1 in Eq. (A4), we have

t~ i) i S

Expanding the time derivative in a Taylor series
and keeping only first-order terms, we see that

y,(z, t, +5t) = „5-2 5tK( tz, )=. & „+k, , (3.2.)

where 5t is a small parameter and ti is the initial
time. Since we can always arrange

)k, (
= 25t (K,(,t, ) )

«1,
the expression (3.2) for y,&(z, t, + 5t) looks like
that given by linearized theory, and so we will
say that the gravitational waves at a time 5t to the
future of the initial slice are in the TT part of
h,&. We stress, however, that the background
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&t4pT K„„E (3.3a)

et et (3.3b)

with all other components zero. This result may
be obtained from an explicit calculation of the TT
pieces of h, & by using the York decomposition pro-
cedure' which is done in Appendix B.

For the perturbation initial data,

K = — (cos8+ M3sin8+ 1) = -~p
St

(3.4a)

tf = (cos8 —43 sin8+ 1) = —~1 — . p
0 0

(3.4b)

where cos8= -2Vto —1. These perturbations thus
induce a gravitational wave

2 sin9 p, -p,
Bt v3 t, t, (3.5)

at t=t, .
As a specific example, take t,(z) as given by

(2.3) with A = 0.5 and B= 4. Choosing V = —6, we
aotice that the horizon size in the background cos-
mology defined by tp ls

z„, ,= -1/V= 6.
For the background, then,

(3.6)

= -0;288 68. (3.7)

%e wish to compare this result to the average of
the same quantity in the perturbed spacetime:

TT TT

spacetime is the Kasner model and not Minkowski
space; in fact, the background itself has a nonzero
TT time derivative.

Since we are dealing with gravitational waves of
one polarization and a diagonal metric, we find
that the time derivative of the transverse-trace-
less parts of h,-z are

Notice, however, that this number is larger in
magnitude than the background value (3.7); i.e. ,
the waves contribute a direct-current(DC) piece by

themselves. Since a single monochromatic wave
in the metric would average to the background
value, this result is indicative of the fact that the
perturbations are a superposition of such modes.
We attribute this DC piece to the homogeneous,
k =0 mode perturbation, which corresponds to
changing the background Kasner universe" (i.e.,
changing the values of the p,.).

IV. REVIEW OF ANALYTIC PERTURBATION STUDIES

e will now look at the numerical evolution of
the initial data

ds'= -dt'+ o«(5' + d' )dx'dx~ (4.1)

where o,.&
is the diagonal three-metric for Bianchi

type-I cosmologies. For our purposes we will
further require d'& to be diagonal, with d'z
=d'&(z, t) only. Writirig the wave vector v=(0, 0, k),
we perform a Fourier decomposition of the metric
perturbations to write

t, =A sin(kz)+B

set up in Sec. II. Since we are using the computer
to build a spacetime that is "unknown" in the
sense that there is no analytic expression for the
metric g„„to compare with our computed values,
we look to other perturbation studies to see the
kinds of behavior we might encounter. 'The an-
alytic treatments of perturbations in anisotropic
cosmologies"" deal with monochromatic plane
waves in the metric; as discussed in Secs. II and
III, our perturbations are manifestly more com-
plicated than this, but we shall assume that the
wave number 4 dominates the dynamics in order
to compare our results with the single-mode be-
havior derived analytically.

As a prelude to confronting our calculations
with those derived using linearized perturbation
equations, we will briefly review the analytic
results, following for the most part the notation
of Perko, Matzner, and Shepley. ' The perturbed
metric takes the form

-1 " sin8(z)
M3w, t,(z)

(3.8) d', (z, t) = t4', (t)e'4'.

Next, we focus attention on the quantities

(4.2)

= -0.289 81 . (3.9)

~e evaluate the integral in (3.8) numerically,
using the extended Simpson's rule on an evenly
spaced mesh. " Considering both long-(k= 1) and
short- (k= 10) wavelength perturbations, we find
that to the accuracy of 10 ', they yield the same
average value for O'T'T,

p, =try, )= p (4.3)

(4.4)

The. function p is mainly of interest in the study
of galaxy formation in dust-filled Bianchi type-I
universes, since Perko et al. have shown that in
this case it is possible to choose a gauge in which
the density contrast A= 5w/sv (where m is the en-
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ergy density of the matter) satisfies

4 = -& p, + constant . (4.5)

(y,.&) as the background metric on each slice,
where ( ) denotes an average over z. The general-
ization of d'~ is therefore

For the case of gravitational-wave perturbations
in the axisymmetric vacuum Kasner. model p
=(—', ,

—', , ——', ), Hu" has shown that

ytg computed(Z) (ytg(Z))
(yt, (z)&

(5.4)

+(f) c f t c f5/5 (4.6)

where c, and c, are constants. We thus expect
our calculations to show p, growing as we evolve
forward in time.

A physically more interesting quantity is g,
which is a gravitational wave mode coupled to p, .
As such, g is the TT part of the metric perturba-
tion and satisfies a wave equation; in the case of
dust, it is also coupled to the density contrast 4.
Studies' have shown that q will oscillate as long
as kH» 1, where H is the horizon size in the di-
rection of propagation of the perturbation, and the
amplitude of these oscillations decreases in time.

V. EVOLUTION OF THE PERTURBATIONS

Qfe are now ready to put this perturbation initia1.
data into a computer program" that will construct
a four-dimensional vacuum spacetime by solving
the evolution equations numerically. Since most
studies of spatially homogeneous cosmologies use
geodesic slic ng we shall do likewise and choose

lapse a=1,
shift P'=0.

(5.1)

(5.2)

In addition, we impose periodic boundary condi-
tions on the z axis; this is particularly convenient
numerically, for it eliminates the possibility of
any disturbance on the boundary propagating in-
ward and affecting the evolution of the perturba-
tions.

The computer evolution (the evolution equations
are written out explicitly in Appendix A) gives
the values of the metric components y,.&(z) on each
time slice, which we write as

t =~5[v(z ) —i (z...)l,
n= ala(z ) n(z -t.)f

(5.5)

(5.6)

on each slice to get the amplitudes for compari-
son with perturbation theory.

A.s an example, take the initial data (2.3) with
A = 0.5, 6 = 7, V = ~, and k = 10. These values
lead to a perturbation amplitude on the initial
slice of

~A', (z.,„)-SCt, (z.„)
~

-10- . (5.7)

The results of the evolution to give p, (t) and tl(t)
are shown in Figs. 1 and 2. We note here that
it, (t) grows in time, and that ti(t) oscillates and
decays.

In order to discuss the numerical errors that
enter our calculations, we must keep in mind that
we are interested in relative errors. For any
quantity G, the relative error z is given by

G=G„(ld:a),
where 6„,is the value given by tI. e computer
code. Studies" of the vacuum code lead us to
expect relative errors e of order hatt/t, „~„d. The
relative error in the constraints, which should
equal zero in these vacuum spacetimes, is com-

with no sum on i or j. We. are using a diagonal
metric, and will consider only diagonal perturba-
tions so (5.4) holds for i =j. Thus, choosing

g ~= peak,

z „=trough

of a cycle of the initial perturbations, we form
the quantities

gly;,(z)=y fbggd++ fylgbk 'd( t+ (5.3)

where P,.&
represents the perturbation. A prob-

lem arises in choosing which values to use for
the background metric. As outlined above, the
k = 0 mode present in our initial data means that
the background defined by the average of the waves
is not the same as that given by the average Kas-
ner age to»~=6. Our computer calculations
show that this situation gets worse as the evolution
proceeds, with the background metric defined by
the average age t,b„~ completely separating from
the computed inhomogeneous metric. Motivated
by the desire to make our results look as much
like the perturbation picture as possible, we take

.l2

, IO

.08
pc, (t)

,04

.02

l0

FIG. 1. jn this graph p is plotted as a function of
time t . The evolution runs fromm =t Obk~&=7 tot =13.
For this case, A =0.5, V =Q, andk =10. Here and
elsewhere, the time t is measured in arbitrary units.
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monochromatic waves as in Perko's analysis but
rather more complicated functions. Thinking in
terms of reshaping Perko's initial surface to look
like ours, we see that we need to introduce the
function f, defined in (6.7) above, and thus we have
a gauge term coupled to q. This term decays like

e' =t/t0 (6.10)

for a background Kasner model written in the
form (2.1).

Furthermore, our technique of choosing initial
data means that "perturbations" of different amp-
litudes have differing amounts of the gauge terms
corresponding to fo and f'. This is because our
initial surface differs, by terms of the same or-
der as the perturbations, from the v = constant
slices on which perturbations are usually imposed.
Our system is definitely within the perturbation
scheme when the initial data are close to a
Kasner model; for gauge-dependent quantities
such as q and p, , however, the gauge terms inter-
vene to prevent comparison between our scheme
and the usual perturbation formalism.

The result of these effects is that we are left
not knowing how much of the decay we see in our
computer evolutions of q is due to the gauge term
and how much is due to real damping of the gra-
vitational waves. All hope is not lost, however,
since Perko's' analysis includes a treatment of a
"free" gravitational wave g&, which comes from
off-diagonal metric perturbations

or

and represents the other polarization state for
gravitational waves. Important facts to realize
about gf are that it is not coupled to the dust'
source terms nor is it coupled to other perturba-
tion modes such as p. ', ; it is also gauge indepen-
dent once we have imposed the condition (6.1).

Perko has shown that this free wave oscillates
and decays once its wavelength is smaller than
the horizon size, in the same manner as g. For
the oscillatory regime, we may write"

qy~ J (kH),

where J is the Bessel function of order m and
m is a constant that depends on the anisotropy
of the model. Using the asymptotic form as KFI
-~, we find

x (oscillatory terms),1
H

so that the envelope of g& falls off as
"gP3 & -X/2

o
~S env 1 *

.004

.002 '«e«0«t«i

—.002 IIO
—.004 I I I I

8 l2

FIG. 4. This graph is the same as Fig. 2, with the
decay curves for the gauge term and the free wave
plotted in addition to g(t). The dashed line marks a
curve proportional to the envelope of the free wave n&,
while the dotted and dashed line shows a curve propor-
tional to the decay of the gauge-dependent term e
Note that g(t) falls off like the free wave, which tells
us that the effect of the gauge term in g(t) is small.

~ -1/2
0 3Qf ( ]+3)"'f n 1 *

which is always decaying since =, & p3& 1. Note
that p3= 1 corresponds to flat space and is ex-
cluded, ' and that the gauge term e ' falls off
more rapidly than the time-dependent term
(e' ) "~"~' in the envelope of the free wave.

For the evolution shown in Fig. 2, we find, us-
ing (2.5b),

1
P3 bkgnd 6

on the initial slice. Thus, the free wave decays
like t ' "in this background cosmology. Figure
4 shows this decay plotted on top of the actual
wave evolution, where we have chosen the normal-
ization so that the curve passes through the first
peak of the oscillation. Also shown is a curve
proportional to e ', normalized in the same fash-
ion. Our wave g decays like the free wave initially
from the starting time t„and so the decay seen
in the computer evolution gives the actual physi-
cal behavior. The constants multiplying the
gauge-dependent term in (6.9) must be small.

To further elucidate the nature of the gauge
transformation that gets us from Perko's per-
turbed initial slice to ours, we would have to con-
sider the transformation laws for the perturba-
tions 5g,„and 5K,„, where K~„ is the four-dimen-
sion'al extrinsic curvature tensor. '"The fact that $'
(and hence f,) corresponds to a reshaping of a
v'= constant hypersurface tells us that we need to
consider the effects of the gauge transformation
(6.2) not only on the metric but also on the ex-
trinsic properties of the slice, due to its embed-
ding in a four-dimensional spacetime. Such a
"3+1" formulation of the perturbed Einstein equa-
tions has not yet been carried out.
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'This gauge problem with q serves to highlight
the difficulties encountered in trying to compare
analytical and computational results: 'The gauges
and initial data convenient for one approach can
easily lead to complications in the other. For ex-
ample, since Perko's perturbed three-metric, by
design, only satisfies the constraint equations to
first order in the perturbation size, we could not
have used it as initial data for the vacuum code
since the smaller we make the perturbation to
decrease this error, the more difficult it is to
"see" the perturbation admidst the numerical
errors. The finite-difference truncation error
in the evolution equations would only worsen mat-
ters, and make the constraints wholly unsatis-
factory on later slices. We do recognize the im-
portance of comparing our results with analytic
calculations as a touchstone as we venture forth
into unknown spacetimes. We also feel, however,
that it is even more important to develop methods
of treating astrophysically interesting problems
such as galaxy formation within the conceptual
framework of numerical relativity. The radiation
gauge for general relativity proposed by Smarr
and York' may prove to be useful in this endeavor
and we are investigating its importance in cosmol-
ogy. Much work remains to be done in this area.
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and

y,.&(t„+5t) = C, = constant, diagonal

K,&(t~+ 6t).=K,&(z), diagonal.

(Ala)

(A1b)

Using the lapse and shift

n = n(x, y, z),
P'=P'(x, y, z},

(A2a)

(A2b)

we proceed to look for contradictions among the
evolution equations to show that this distortion
process cannot be carried out.

Consider the evolution equations in the form"

(B, —Zqk)y, q= -2nK, ),
(B, —Z,u)K, = -2nK, K, + nKK„

(A3)

where the covariant derivative, indicated by a
vertical bar, and the Ricci tensor "'R,

&
are cal-

culated using the three-metric y&&. Szk is the
three-dimensional Lie derivative along P . Since
we are interested only in infinitesimal differ-
ences, we take

yig(tA+ 5t) y(f(tA)
t~fga t=tg (A5)

and drop higher-order terms. Since the three-
metric is constant at t = t» "'8,

&
= 0 and P ~,

=P~,. on the initial slice. The evolution equations
thus become

APPENDIX A' ARE THE INHOMOGENEITIES IN THE
INITIAL DATA JUST GAUGE EFFECTS?

We now outline a method of showing that it is
not, in general, possible to evolve initial data
which are explicitly of the Kasner model to our
inhomogeneous slice in a small time interval 5t
using a general lapse function and shift vector.
The initial surface is taken to be the slice t=t„
in the Kasner model of (2.1) and (2.3), and the
inhomogeneous slice at t=t„+ 5t is characterized
by

ro(4+6t)-rsvp(4),
2 K B pg B pg,2++zg+&age~P' +&~Icy~ ~t=t„ (A6)

and

Kgg(tg+ 5t) -Ka(tg)
Et= (-2 K„K;+~KK;~ —B;B +P BqK. )+K ~B P +A B~P ) (AV)

where B,. = B/Bx'.
At this stage, we have set up the twelve evolu-

tion equations to distort a slice of a Kasner model
to our inhomogeneous surface in a time i5t, using

an arbitrary lapse and. shift. We next look for in-
consistencies in this set of equations to show that
this process cannot be carried through. (For
details, see Ref. 12.}
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After some work, exhausting all the options,
we are led to the situation

K„„~.. .b, =X„„(z)= constant .

The set of evolution equations is thus inconsistent,
and the Kasner slice cannot be deformed to the
inhomogeneous slice in a time interval M.

Another way to see that the inhomogeneous data
are not pure gauge begins by considering gauge
transformations that preserve the translational
symmetry of the Killing vectors e„and 8„. Then
note that, for linear perturbations (6.3), the quan-
tities

where 4 = y"V Vb and R'b is the Hicci tensor
formed from y,b.

Consider the specific case of h" given in (3.2)
with y,b

= 5„. To calculate the transverse-trace-
less parts of h", begin by solving (85) for the
vector V'.

Vb(LV)' = eb(LV) = ebi/r
" .

Using (87) and the fact that R,b= 0, we have

s s Va+ 5ass (s Vs) s g
s

(88)

(89)

since we are only considering functions of z. 'The

x and y components of this equation yield, for

and

1 2P1 P
et — &g ——'6g tt

0 0
82yg

Bz
=0

while the z component gives

(810)

8 — 5g — gg

are gauge invariants. Since these quantities are
zero for the unperturbed Kasner model, but are
nonvanishing for our inhomogeneous slice, the
initial data cannot be pure gauge.

APPENDIX B: CALCULATION OF h'& USING YORK' S
PROCEDURE

e'ys 3 eg"
BZ2 4 BZ

Thus,

V'= & "dz+ c,z+ c,
and

V~=cp+c&,

(811)

(812)

(813)

In this appendix we shall outline York' s" method
for finding the TT parts of a tensor h'~. All the
tensors and covariant derivatives to be used will
be defined on a three-dimensional hypersurface
with metric y,.&. We say that a tensor T„ is trans-
verse if

f(z)=f(z+ 2v)

for any function f, we immediately see that

(8)4)

where c, and c, are constants and a=1, 2, 3. Im-
posing the periodic boundary conditions

V Teb 0b

and traceless if

Z =@~ =y @~~=0
a ec (82)

V =c~.
Our next step is to form (LV)'b using (86):

(815)

(816)

where a, b=1, 2, 3.
Following York, we consider a symmetric ten-

sor h". Its tracefree part is

h" = P"= h" —-hy"

Then gf,"~ is transverse traceless if

(LV}ab yacc Vb+ybse Va yabe Vs

Thus,

(LV )ss gss

(LV)~~=-zP", j=1,2, no sum on j
and

(817)

(818)

(819)

gab —gab —(LV )ah (84)
(LV)"= 0, a4 h . (820)

where (LV)'b is known as the longitudinal or vector
part of the tensor and satisfies the equation

We can therefore form h'~~ using (83), (84), and
(3.2) to get

(LV)ab V gab

'The longitudinal part is defined in terms of a
vector V' by the equation

(85)
h",,=0,
h'~~ = 5t(K„„-K,„),
h~~ = -h

(821)

(822)

(823)

(LV)ab VbVa+ VaVb a+abV Vc

Its covariant derivative is

Vb(LV)' =(Ai V)' = bV'+ b V'(VbV )+R'bV

(86}

(BV}

h' =0, aW b. (824)

Notice that h~~ has only one independent compon-
ent, a reflection of the fact that we are dealing
with gravitational waves having only one polar-
ization state, i.e. , one degree of freedom.
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