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A Birkhoff theorem recently proved by Ramaswamy and Yasskin for one specific R + R ? gravity theory
with torsion is extended to include most R + R ? theories. Out of the five-parameter family of R + R 2
theories, two four-parameter families are shown to obey a Birkhoff theorem. In addition, the entire five-
parameter family is shown to obey a weakened Birkhoff theorem: If the assumption of asymptotic flatness is
added to the assumption of spherical symmetry, then the only solution is the Schwarzschild metric with

zero torsion.

I. INTRODUCTION

In a recent paper Ramaswamy and Yasskin (RY
henceforth) proved that a gravity theory based upon
the Lagrangian

L =—(c*/167G)(R + XR*

Buv

R%M) (1.1)

possesses a Birkhoff theorem.' In Eq. (1.1) x is a
constant and the curvature is computed from a
Cartan connection (which is metric compatible but
may have a nonzero torsion).?-* By a “Birkhoff
theorem” RY mean the following: When they in-
sert the spherically symmetric ansatz

ds? = 2%d? — e*MAR? — v2dP? 1.2)

into the field equations they find that the only
possible solution is the torsion tensor %, =0,
metric tensor = Schwarzschild metric. Since most
empirical tests of general relativity utilize a
spherically symmetric gravity source, any non-
standard gravity theory which obeys a Birkhoff
theorem would be very difficult to distinguish ex-
perimentally from standard gravity theory. Thus
the RY theorem raises the intriguing possibility
that torsion may exist in nature, but may have been
overlooked experimentally.

In this situation two questions come to mind.
Are there R + R? Lagrangians other than Eq. (1.1)
which possess a Birkhoff theorem? Also, if tor-
sion does not manifest itself in the spherically
symmetric sector, where does it show up? The
answer to the second question is that the source
must have unnatural parity (e.g., angular momen-
tum); we defer discussion of such sources to a
later paper. In the present paper, we focus on
spherically symmetric sources and answer the
first question in the affirmative: The most general
R+R? Lagrangian one could construct contains five
invariants of order R?, hence five parameters
rather than the single parameter x of Eq. (1.1).
For most choices of these constants, the theory
possesses a Birkhoff theorem (see Sec. II). The
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remaining choices may allow non-Schwarzschild
solutions, but even these solutions are ruled out
if one imposes the physically reasonable boundary
condition of asymptotic flatness (see Sec. III).

We wish to consider all Lagrangians of the form
R +R?, not just the special case (1.1), because the
linearized version of Lagrangian (1.1) possesses
a ghost pole in the propagator for those com-
ponents of torsion which have spin-parity J% = 2-
(Ref. 5). The ghost can be removed easily by add-
ing an additional order-R? invariant to the Lagran-
gian (1.1).°* Once this is done, however, there is
no longer anything special about the choice (1.1),
and one is obliged to consider all invariants of
order R®%. Of course, one could go on to consider
order-R®, -R*  etc., invariants; but the R + R?
Lagrangians considered here represent the sim-
plest ones which can give rise to a nontrivial tor-
sion. (If the Lagrangian contains no order-R?
terms, the field equations imply that torsion
vanishes.”)

In addition to the R + R? Lagrangians, there is
another class of simple Lagrangians which give
rise to nontrival torsion. Since the torsion Q"‘By
is a tensor rather than a connection, it could be
used by itself to construct invariants. All in-
variants linear in torsion turn out to be total de-
rivatives, but there are quadratic invariants of
the form @2 and (8Q)?. These invariants are no
more complex than the R? terms we consider
here, and they would produce a nontrivial torsion
if present in the Lagrangian. Would they also
allow a Birkhoff theorem ?

The only sure way to answer this question is to
add such invariants, one by one, and work out
their consequences in detail. However, one can
make a strong case that adding these invariants
will destroy the Birkhoff theorem, and at the same
time achieve considerable insight into what makes
R +R? theories so unique, by studying the linear-
ized limit of the R + R? field equations. This we
have done in a recent paper (hereafter referred

2770 © 1980 The American Physical Society



21 BIRKHOFF THEOREMS FOR R+R2 GRAVITY THEORIES... 2771

to as I), where we worked out the propagator
(Green’s function) for the linearized theory.’ If
the exact theory has a Birkhoff theorem, one would
expect the linearized theory to have a propagator
with 1/7 behavior, as does the linearized limit of
standard general relativity; if the exact theory
has no Birkhoff theorem, one would expect a less
standard propagator containing Yukawa terms
e™""/v in addition to the Newtonian terms 1/7.
Naively, one would expect Yukawa terms to be
present in R + R? theory, because the R term, when
expanded in vierbein fields and ’s, contains a
Q? term which will give rise to mass terms in the
linearized field equations for the torsion. Such
“mass” terms are indeed present, but in most of
the field equations they have a very unorthodox
form which forbids a Yukawa solution. Let us
sketch a proof of this statement. (Full details of
the straightforward but rather lengthy calculation
are given in I.) Since there are 24 independent
Q%g, components and they are coupled by the field
equations in a complex way, the first step is to
choose a more natural basis, one not so strongly
coupled by the linearized equations. Such a basis
is constructed in I, and we denote its members
by @,,Q,,* **,Q,,. Use of this basis enormously
simplifies the linearized field equations: Each
@, is coupled to at most one other Q,, or to at
most one member of the corresponding vierbein
basis V,. Let @, and @, be a pair coupled by the
linearized field equations. Then the Lagrangian
for @, and Q, is also simple:

L= AB"’(QI +Q2)au(Q1+ Qz)
+(a/8ﬂG)(Q1+Q2)(Q1_Q2)+'“, (1'3)

where A is a coupling parameter appearing in the
order-R? terms, a is a constant of order unity,
and the dots indicate terms which do not contribute
to the linearized field equations for @, and Q,.

Already at this point we see that the field equa-
tions for @, and @, are going to be unorthodox:
There is no “kinetic” term in L for the Q,-9Q,
combination; and the mass term in L is indefinite.
This unorthodoxy is our “punishment” for insisting
that all @ and 9Q terms in the Lagrangian occur
only as part of a Cartan curvature tensor R, and
not independently. If we allowed @ and (8Q)? terms
in the Lagrangian, not just R + R? terms, we would
approximately triple the number of allowed in-
variants. Since such a wide choice of invariants
is not available, it should not be surprising that
the linearized Lagrangian (1.3) turns out to be a
bit unusual.

The rest of the proof is elementary. From Eq.
(1.3) we can derive the linearized field equations
and write them in a matrix notation

[Akz_a/B'n'G AR? }[Ql]zo, (1.4)
AR? AR +a/81G

2

where we have shifted to 2 space. The propagator-~
in & space is the inverse of the matrix (1.4):

P=[z\k2+a/8nc ~AR? ][g@]z. (1.5)

-AR*  ARP-a/81GJIL“

Despite the presence of mass terms in Eq. (1.3),
this propagator will have no Yukawa terms in con-
figuration space because there are no (k% +m?2)-!
poles in & space. Q.E.D.

Indeed, this propagator has no poles of any type.
The term “propagator” is a misnomer here, be-
cause @, and @, do not propagate; they are non-
zero only inside matter. (The propagators for
some of the @, do have 1/k? poles and propagate
in Newtonian fashion. There are also @; with
Yukawa propagators; but these @, also have un-
natural parity and therefore are irrelevant to
Birkhoff’s theorem.)

One motivation for adding @2 and (9Q)? terms is
that a pure R + R? theory probably will not be re-
normalized when quantized. Lack of (2% +m?)*
poles in & space implies poor high-energy behavior
of the theory. Once Q* and (9Q)? terms are added,
the theory should be much easier to renormalize,
since the high-energy behavior of propagators and
vertices is no worse than that of standard (tor-
sion-free) R + R? theory, which is renormalizable.®
Of course, once Q2+ (9Q)? terms are added, we
would also expect the Birkhoff theorem to dis-
appear.

1. BIRKHOFF THEOREMS

The most general R +R? Lagrangian was written
down in 1.5° The F%, curvature of I differs from
the R*,, curvature used in RY only by some vier-
bein fields:

RWuv= .V:ngbv' (2.1)

(We have set the Yang-Mills coupling g of I equal
to unity.) Therefore, we can rewrite the Lagran-
gian in I as (k= 87G)

(detV)e =5R*® R, -R/2k, (2.2)
where R depends on six parameters Ay
Ro,=2X,(83 08)R +4x,(54R°, — 53R, )

+20gR% o + 40, (O3 R, — B5R,)
+ 20, R, 7 + 40 (R%,” — RP,,°) = (@~ B). (2.3)

The RY case is 2,#0, all other A;=0. The A, term
will not contribute because the field equations (3')
below will predict R =0 in empty space.

Even in cases where the A, invariant does not
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vanish, the field equations derived from Lagran-
gian (2.2) will depend on five parameters only,

not on six. As pointed out in the concluding re-
marks of I, one linear combination of the A;, A,
and A, terms is a total derivative because of a
Bianchi identity and therefore may be dropped. We
shall not eliminate this combination from Eq. (2.2)
because its presence serves as a check on the
algebra. All final answers should depend on the
combinations A, +X,, A,+2A,, never on the com-
bination A, — 2X, + ;.

Next, we obtain the field equations. We apply
the usual Euler-Lagrange technique to Eq. (2.2).
Following RY, we choose the connection I'*;, and
vierbein VJ as our independent variables, and we
introduce the abbreviation B%;, for the torsion-
dependent difference I'*;, — {"‘B,}, where {"‘BY} is the
Christoffel connection.’® We get

%Rasuqﬁuuaﬂ_éguvRaBapﬁume_Guu/K=0’ (31)
Vo R a5 = (2/K) (0, B (g5 = 3Bty + B 1ag) =0,  (4")

which are readily seen to be generalizations of
RY’s field equations (3) and (4). As in RY, we use
tildes over an index to signify that covariant diffe-
rentiation of that index is to be carried out using
the Christoffel connection. Similarly, carets
over an index signify use of the Cartan connection.
As advertised earlier, Eq. (3’) implies R=0 in
free space. We shall refer to Egqs. (3’) and (4’) as
the Einstein and Cartan field equations, respec-
tively.

Next we specialize Eqs. (3’) and (4’) to the case
of spherical symmetry with metric (1.2). RY use
symmetry plus metric compatibility to show that
there are only five independent nonzero Cartan
connection components. Four of these have non-
zero torsion: I'Tp,. T%, TT.. T7,. Following
RY, we denote these V, W, X, and Y, respective—l
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ly; and we denote their torsion-dependent parts
%, —{“B.,} by f, g, h, and k, respectively. Also,
the independent nonvanishing components of the
Cartan curvature are RT g1z, Ryr0, RTpr0, R% 10,
R®yre, R%,4,, denoted by =4, =C, +D, -G, +H,
and +L, respectively. Using this notation, we find
that Eq. (3’) implies the following generalizations
of RY’s Einstein field equations (43)-(47):

(D-G)[1+(C-H)2a-4a)]=0, 43)
D+G-[8X(CD-GH)-2a(C-H)(D+G)
—4a(C+H)(D-G)]=0, (44")
C+H -[(dx-2a)(C?-H?)
+4(x =) (D*-G?)]=0, (45")
(A-L)+2(C-H)=0, (46’)
(A+L)[1+(C-H)@x-4a)]=0. 41

The single parameter X of RY is replaced by three
parameters X, @, @ which are related to the
Lagrangian parameters A; of I as follows:

X= K20, + 20+ X, + 225+ Xg) , (2.4)
a=kM,+25), (2.5)
A=K+ A5+ 2g) . (2.6)

Similarly, the RY Cartan field equations (35)-(38)
generalize to

—2(W+e v /v)+ 4(e /) r3[xA + a(C-H) ]}
-8Y[(x - @)G +aD]+8W[xC - a(C -H)/2]=0,
(35")
—2(Y = e°¥/7r) = 4(e=® /r){r2[xA + a(C - H)]}
-8Y[xH + a(C -H)/2]+8W[(x - @)D +aG]=0,
(36')

—[X+Y = (e®2/r)rer) | =4(e®t/rre[(x — @)D + TGV —4(e=*2/r){ret[XC - a(C - H)/2]}
‘ —4V[(x-@)G +aD] - 4x[xH + a(C = H)/2] - 4Y[XL - a(C -H)]=0, (37')

~[W=V+(e®2/7)re®) ] —4(e®2/v){re®(xH + a(C -H)/2]} = 4(e®2/r){re*[(x - @)G +aD]}
—4V[xC - a(C ;H)/z] —4x[(x-a)D+aG]—4W[XL -~ a(C -H)]=0. (38’)

The primes and dots denote derivatives with re-
spect to R and ¢, respectively.!?

The following are sufficient conditions for the
theory defined by the above field equations to
possess a Birkhoff theorem:

either
@=YX, «=anything ) 2.7)
or

2a@=qa, X=anything. (2.8)

!l"he proof in each case is identical to that given in
RY, except for the substitution of primed Eqs.
(35')-(38’) and (43")-(47’) for the corresponding
unprimed equations of RY.

III. NON-SCHWARZSCHILD SOLUTIONS

Since we have been able to prove a Birkhoff
theorem only for some choices of the parameters
X, &, @, we must consider the possibility that
for other choices of the parameters a non-Sch-
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warzschild solution may exist. Indeed we shall
construct such a solution explicitly below. The
following theorem, however, implies that all such
solutions may be ruled out by imposing the bound-
ary condition of asymptotic flatness at R —-w: If
the combination of curvature components -C+H
=R7Ty 1+ R%yp, equals zero (or any nonconstant
function of R and T), then the solution is the
Schwarzschild metric with zero torsion. Note,
asymptotic flatness guarantees that the assump-
tions of the theorem will be satisfied (because
curvature must fall off to zero as R - ).

We outline the proof of this theorem. From the
assumptions of the theorem and Eqs. (43’) and
47),

A+L=D-G=0. (3.1)
Equations (44’) and (45’) then predict
G=D=C+H=0. (3.2)

From this result plus Eq. (46’), all the assump-
tions of RY’s case III are satisfied. The rest of
the proof is identical to that used by RY to prove
a Birkhoff theorem for case IIL

We now construct a specific solution which vio-
lates Birkhoff’s theorem. From the theorem just
proven, we must pick —C +H =nonzero constant.
We choose

-C+H=(8x-4a)'#0 (3.3)
so that Eq. (47’) is satisfied. We substitute Eq.
(3.3) into Eqgs. (35’) and (36’) and use the following
two Bianchi identities to simplify the resulting
equations:

—(e-*/7*)(#*L)" +2YD - 2WH =0, (39)

(e /7*)(r?L) +2YC - 2WG =0. (40)
Equations (35’) and (36’) then collapse to the
following two equations:

-3W-8Y(@-x)(D-G)=0, (3.4)

-3Y -8W(@— X)(D-G)=0. (3.5)
We must avoid the solution W=Y =0, which would
lead to C —H =0, contradicting Eq. (3.3). [See RY
Eqgs. (19)-(24), which express the curvature com-

ponents C, H, D, G, in terms of the connection
components V, W, X, Y.] Hence, we choose

W=xY¥, (3.6)
A =-x#0. (3.7)

We do not need to impose D -G # 0 because, if we
use RY Egs. (19)-(24) expressing curvature in
terms of connection, we find from W=+Y that

D=+H, G=xC. (3.8)

Hence, Eq. (3.3) guarantees D—-G#0. If we eli-
minate D - G from Egs. (3.4) and (3.5), using Eqgs.
(3.6) and (3.8) we find

4x+2a=3a. (3.9)

From this constraint plus Eq. (3.8), we find that
all the Einstein equations except (46’) are satisfied.
The remaining two Cartan equations (37’) and (38’)
collapse to one equation

V=(e®/v)re®) [(e®2/7)(re®) —x]=0. (3.10)

Let us summarize. The Cartan field equations
have collapsed to the two equations (3.6) and
(3.10); provided the parameters obey Eq. (3.9),
the Einstein equations collapse to the two equa-~
tions (46’) and (3.3). We therefore have four field
equations to be satisfied by seven unknowns V,

W, X, Y, ¢, A, v. (The V,W,.--are linear func-
tions of torsion f, g, - - - and are therefore inde-
pendent of the metric parameters.) Obviously
there will be an infinity of solutions. We write
down one such solution. Let the solution be static
with =R and

e”;e‘“:co[v/(4x—2a)+ 1/7]+1. (3.11)

¢, is a constant of integration. As expected from
the theorem, the solution is not asymptotically
flat. We record also the expressions for f, g, h,
and &, the torsion-dependent parts of V, W, X,
and Y, respectively:

th=2 (D g = {TrrP) =+ (X ={"zz})
=e[r/(4x=20) = 1/r+1/c ]+ e® (' +1/7),

(3.12)
g=T%,, —{qu}EW"{Roo} )
=e®/r+cy/(dX 20 —cy)4, (3.13)
=T or = {Tret=V = {"so}
=e®/rsh, (3.14)
1k=s (T ={T D=+ (¥ ={%ssD)
=g—e®/r. (3.15)

As expected from the discussion in the Introduc-
tion, there is not a Yukawa potential anywhere.

APPENDIX: THE NEWTONIAN LIMIT

We should check to see that the theories studied
in this paper have a Newtonian limit; otherwise,
they may easily be distinguished from Einstein’s
theory, even though they possess a Birkhoff
theorem. Einstein’s theory possesses a New-
tonian limit because, when all velocities are low,
we recover the Newtonian equation of motion for
test particles X= -V¢, where ¢ obeys the usual
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field equation V?¢ = —41GT,,. By “low velocity”
we mean

GM/r=V?/c?=82« 1, (A1)

where V, M, and 7 are a typical velocity, mass,
and length characterizing the matter distribution.
Fairchild has checked the Newtonian limit for a
specific R +R? theory,? but his procedure has been
criticized. Fairchild shows that the Einstein field
equations for this theory collapse to the usual
field equations for general relativity, except for
some torsion-dependent terms added to the stress
tensor T,,. However, he does not estimate the
size of these added terms. We shall show that
these terms are zero in the Newtonian limit.
Since the present theory is more complicated
than that of Einstein, we will need two additional
assumptions to get a Newtonian limit:

§%,,=0, (A2)
0= Xiﬁlc/rzc“ «<1. (A3)

S%g, is to the Cartan field equations what T, is to
the Einstein field equations: $% is the matter
source. S%,, therefore depends on our choice of
matter Lagrangian. Fortunately, we do not have
to be too specific about this choice: In most
theories Eq. (A2) will be satisfied if the source
has no net intrinsic spin.

Equation (A3) implies that typical lengths are
greater than the Planck length times 2,}/2; this
assumption is needed to prevent the order-R?
terms (which are linear in the coupling constants
)\i) from dominating the R/k term in the Lagran-
gian. Note, assumptions (Al) and (A3) are logi-
cally independent: 7 could be of the order of the
Planck length, yet the phenomena being studied
could be nonrelativistic if M were small enough.
Also, one cannot drop the R? terms by arguing that
they are at least quadratic in the V’s, therefore
(from our experience with standard general rela-
tivity) they contribute terms at most of order p*
to the field equations. This #* is multiplied by A,
so that some assumption must be made which
limits A;. Furthermore, the leading linear in V
term contributed by R/« can also be of order 8*.

If we assume 8<< 1, we can neglect the order-R?
terms in the field equations. Once this is done,
the Newtonian limit is immediate. In fact, with-
out order-R? terms the theory collapses to
Kibble’s theory, which is identical to that of Ein-
stein for S*;, =0 (Ref. 7). The exact Cartan equa-
tions in Kibble’s theory predict that the quantity

Fuﬁr _{aﬂv}EBaBr (A4)

is identically zero.
The foregoing result suggests that the Newtonian

limit is the leading term in a double expansion

B = Z Bomma (Aba)
yar ,,,Z o (A5D)
where
Bmm=0(6mg"/v), V™™ =0(5m8" , (46)

and B°”=0. Furthermore, it is a plausible con-
jecture that “post-Newtonian” corrections may be
calculated by a double successive approximation
scheme, where results from lower-order calcu-
lations are used to linearize the equations for the
higher-order corrections, exactly as in standard
general relativity. The only sure way to verify
this conjectured scheme is to carry it out explicit-
ly. We shall not do this here, but we shall go
through a simple dimensional analysis which indi-
cates that the scheme is plausible, and that the
lowest-order post-Newtonian corrections are of
order 8 or smaller. We write the Cartan and Ein-
stein field equations in a schematic form designed
to facilitate dimensional analysis (all tensor in-
dices and powers of 8 and vierbein fields are
suppressed; all derivatives are assumed to be of
order 1/7):

S$=0(B/x)+0X;/7r®) +O(,;B/v*, A, B*/v,\,B*),

(A7a)
T=0(1/kr*)+OB/kr,r,/7*)
+0(B*/k, A B/v*,\; B*/v*,\; B3/7,\; B*).
(ATb)

Equations (A7a) and (A7b) are nothing more than a
catalog of every term allowed by dimensional analy-
sis [B, 1;, and k have dimension 1/length, 1, and
(length)?, respectively, in natural units] except
that the order-(1/x7) term is omitted from the
Cartan equations (A7a). Detailed examination of
those equations shows that no term of this type is
present. Thatis, the R/« term in the Lagrangian
contributes no term involving only V’s to the Car-
tan equations. Furthermore, when we wrote out
the linearized Cartan equations in detail in I, we
found that an order-B/x term is always present.
We now rediscover our earlier result that B®?=0,
together with a new result that B4+ 0 if the order-
(r;/7°) terms are nonzero. We see no reason for
A,/7® terms to be absent, except perhaps for spe-
cial values of the X,. Even if the X,/7® terms were
absent, the ansatz (A5a) would probably continue
to be satisfied, but for an uninteresting reason:
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B%,=0

[:24 .

Of course to verify the Newtonian limit one must
study the equations of motion of the sources as
well as the field equations. Yasskin has worked

out the equations of motion in his thesis.'® It
should come as no surprise that in the Newtonian
limit B®”=0, these equations collapse to the usual
ones T"%,,=0.

ISriram Ramaswamy and Philip B. Yasskin, Phys. Rev.
D19, 2264 (1979). This paper will be referred to as
RY in the text.

2For a review of the early history of gravity theories
including torsion, see Ref. 1, this reference, and the
next few references. F. W. Hehl, P. von der Heyde,
G. D. Kerlick, and J. M. Nester, Rev. Mod. Phys. 48,
393 (1976).

SE. E. Fairchild, Jr., Phys. Rev. D16, 2438 (1977).

4Yuval Ne’eman, report presented at the 1977 Bonn Con-
ference on Differential Geometry Methods in Mathe-
matical Physics, Lectuve Notes in Mathematics
(Springer, New York, 1978), Vol. 676, p. 189.

5Donald E. Neville, Phys. Rev. D18, 3535 (1978). This
paper will be referred to as I in the text.

®Equation (1.1) is the Lagrangian of Ref. 5, specialized
to the case Ay 0 and all other A\;=0. From the results
of Ref. 5, to guarantee no 2" ghost as well as no 0°
tachyon, one must set Ayj+A;=0 and Ay—2A;>0. Hence
an additional R? invariant proportional to A; must also
be present in the Lagrangian.

"T. W. B. Kibble, J. Math. Phys. 2, 212 (1961).

8K. 8. Stelle, Phys. Rev. D16, 953 (1977).

In I and at Eq. (1.2) we use a metric which has the op-
posite sign from the RY metric. However, we use the
same conventions as RY for curvature and torsion ten-
sors, so none of the field equations in Secs. II and III
are affected. :

101 the Introduction, and in Ref. 5, we used vierbein

fields and torsion as independent variables; here we
follow RY and use vierbein fields and Cartan connec-
tion. Yasskin has shown that these alternative choices
of variable lead to equivalent field equations. [Philip
B. Yasskin, Ph.D, thesis, University of Maryland,
1979 (unpublished).] Since our theory is metric com-
patible,

B%g =32 (Qaor+ Qs — Quoay)-

We use the B%g, notation of I rather than the A%, nota-
tion of RY, because in the Appendix and in I A is used
to denote a coupling parameter in the order-R? terms.

Uwe must verify that the new field equations (43’)— (47’)
and (35’)—(38’) depend only on A;+A, and Ay+Ag, as re-
quired by the Bianchi identity. This will certainly be
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