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Quantum effects in the early universe. III. Dissipation of anisotropy
by scalar particle production
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The dissipation of small amounts of anisotropy by particle production in homogeneous, spatially flat
cosmologies is studied using the effective-action method. As a particular model we consider the production
of conformally invariant scalar particles in a universe which also contains some classical radiation, We find
that there is significant dissipation of anisotropy near the singularity. Calculations of the classical geometry,
the particle production and vacuum persistence amplitudes, the spectrum of produced particles and their
back reaction on the geometry are all discussed to lowest nonvanishing order in the deviation from isotropy.

I. INTRODUCTION

ds' = a'[- d7i'+ (e' );;dx*~'] . (1.2)

Here P;, is a traceless 3x 3 matrix, and both it
and the scale factor a are functions of g alone.
The universe is assumed to contain radiation de-
scribed classically Bnd whose pressure P„and
energy density p„are related by the equation of
state P„=&p„. The basic simplifying assumption
of the model is that the anisotropy is small. Cal-
culations of particle production probabilities, the

Anisotropy in the very early universe will be
dissipated by the quantum-mechanical production
of elementary particle pairs in the strongly time-
dependent geometry of the big bang. Since the
first suggestion of this mechanism by Zel'dovich, '
the efficiency of this process has been demon-
strated in homogeneous, but anisotropic model
cosmologies by the calculations of Zel'dovich
and Starobinsky" and Hu and Parker. ' Since
these calculations have been carried out in the
test-field approximation, or for other reasons,
they have been restricted to spacetime regions
which do not include the initial singularity. In
this paper we shall continue the study begun in
two earlier papers" of a model calculation of
anisotropy damping which can be carried out over
the whole of spacetime because it includes the
quantum effects on the dynamics of the universe
in a consistent way.

The assumptions of the model and its strengths
and weaknesses have been discussed in detail in
paper II, but the major features are the follow-
ing: We consider the production of scalar parti-
cles described by the conformally invariant wave
equation

'y ——,'Ry = 0

in a homogeneous spatially Oat classical geometry
described by the line element

vacuum persistance amplitude, and the back re-
action of the produced particles on the geometry
can therefore be developed in a perturbation ser-
ies in P;, and only the lowest nonvanishing order
discussed. To compute these lowest-order terms
we shall use the effective-action method.

The central quantity in the effective-action
method is the effective-action functional I'Q'„8].
This gives the vacuum persistence amplitude in
the presence of classical external sources'"8(x)
through the relation

(0, ~0 ) = exp(iW),

where

(1.3)

(1.4)

& = 2Im& . (1.6)

The summary of the effective-action method in
the preceding paragraph is slightly more general
than that of papers I and II, in that it explicitly
includes the possibility of an external source
throughout. The derivation of the generalization
is easily accomplished. Equations (1.3) and (1.4)
are direct consequences of Eqs. (I.2.5) and (I.2.4)
generalized to include an .external source. Equa-
tion (1.5) is Eq. (I.2.11). The generalization is not
needed here to treat the classical radiation in the
model. As before, the degrees of freedom repre-
senting that radiation will be explicitly included
in the classical action and not treated as an ex-
ternal source. Rather, it is needed to enforce
the constraint that the model contain some aniso-

and g q is the classical geometry which solves
the equation

(1 5)

Provided it is small, the total probability to pro-
duce a particle pair over the entire history of
the universe is, from Eq. (1.3),
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tropy. In the absence of such a constraint the ex-
tremum of the effective action would be an iso-
tropic geometry. This constraint may be thought
of as being maintained by sources located at the
boundary of the spacetime region under con-
sideration and in particular at the singularity.
These constraint-maintaining external sources
will thus not affect the local dynamical equations
for the, classical geometry which continue to be

(1.7)

but they will enter into the calculation of the total
probability through Eqs. (1.6) and (1.4).

In paper I Eq. (1.7) was solved and the classical
geometry was calculated in the limit of exact
isotropy —the zeroth order of the perturbation
problem described above. In this limit the quan-
tum effect on the dynamics of the classical
geometry arises from the anomalies in the trace
of the vacuum matrix element of the stress-en-
ergy tensor of the scalar field. There is a class
of physically reasonable classical geometries
which extremize the effective action. In each of
these the singularity is softer than that in the
corresponding solution of Einstein's equations
in the sense that the curvature diverges less
strongly as a function of the scale factor a.

In paper II we calculated the effective action
to second order in the anisotropy and displayed
explicitly the dynamical equations [(II.3.5) and
(II.3.8)] which determine the classical geometry
in this order. In this paper we shall discuss the
solutions of these equations. We shall find that
there is only one member of the class of isotropic
classical geometries derived in paper I which
permits a solution of the dynamical equations
which is consistent with the assumptions entering
into the derivation of the effective action in paper
II. This is the geometry referred to as the
"marginal case" in paper I for which the scale
factor varies near the singularity as a(g)- exp(constxq), p--~. This geometry has a
number of interesting properties. It is con-
formally related to a complete flat spacetime.
(For this reason we shall also refer to it as the
"conformally complete" case. ) It has no cosmo-
logical particle horizons. Finally, the production
of massive particles in a model cosmology whose
scale factor behaves at all times as exp(constxq)
yields a thermal distribution of produced pairs
at high energies. '

Our main result, obtained in Sec. II, is that
for this conformally complete geometry the
softening of the singularity which arises from
the trace anomalies in zeroth order is already
sufficient to make the particle production ampli-
tudes finite to second order in the anisotropy

without the inclusion of further back-reaction
effects. In Sec. III we will display a crude calcu-
lation of the total particle production probability
which omits the nonlocal parts of the dynamical
equation. In Sec. IV the calculation of the spec-
trum of produced particles will be discussed.
Section V contains a brief discussion of the back
reaction.

II. PARTICLE PRODUCTION TO SECOND ORDER IN
THE ANISOTROPY

eI
Ga

(2.2a)

and

(2.2b)

where the external sources 7" [combinations of
the &" in Eq. (1.5)] that fix the amount of the
anisotropy in the model vanish everywhere ex-
cept on the boundaries of the spacetime region
under considerati on.

The classical geometry which solves Eqs. (2.2)
can itself be formally expanded in powers of the
anisotropy in the model. For the solution for the
scale factor we write

a(R) = ao(R) +a, (0) + ~ (2.3)

Here a, is one of the scale factors for an exactly
isotropic universe, determined in paper I as an
extremum of I', [a]. The quantity a, represents
the corrections to the scale factor which are quad-
ratic in the anisotropy, including the back re-
action of the produced particles. Since the action
contains no terms linear in P;~, this is the lowest
order in the anisotropy in which corrections to the
scale factor occur.

The solutions of Eq. (2.2b) have a similar ex-
pansion in powers of the anisotropy. The lowest
order is linear in the anisotropy and is deter-
mined by the linear part of Eq. (2.2b). In the in-
terior of the spacetime region under considera-
tion, it reads

(2.4)

The effective-action functional I' for argument
geometries of the form in Eq. (1.2) is a functional
of a and P;, alone. We write its expansion in
powers of P;, as

(2.1)

where the first two terms are constant and quad-
ratic in P;, , respectively, and were calculated
in papers I and II [Eqs. (II.2.13) and (11.2.29)].
The classical geometry is the solution of the
dynamical equations
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As this is the only order we shall need to calcu-
late in subsequent calculations, we shall hence-
forth understand by P, &

this solution which is linear
in the anisotropy without additional notational
devices.

The total particle production probability P is
given by Eq. (1.6). Making use of Eqs. (2.1) and
(2.3), the contribution of the effective action
evaluated at the classical geometry may be ex-
panded in powers of the anisotropy in the model.
To quadratic order one has

r[g„sl =r, [a,]+ dn 5' a2n

+r, [a„p]+~ ~ ~ . (2.5)

The second term vanishes because a, is an ex-
tremum of I',. As far as its functional dependence
on P;, is concerned, I', has the general quadratic
form

4'x dx';, x 6" ', x' p, x', 2.6

where the form of the operator G" ' is given in
Eq. (II.2.19). Equation (2.2b) then reads

Jl
d'x' G""'(x x')P (x') = —~' (x) (2.7)

It is then an elementary calculation to verify from
Eqs. (2.7), (2.6), (2.5), and (1.4) that the func-
tional ~ at the constrained extremum of the ef-
fective action is

P = —2 Iml"2[ao, P], (2.9)

where the effective action is understood to be
evaluated at the solution of Eq. (2.4) for P;, . Thus,
only ao and this solution for P;& are required to
calculate P to quadratic order in the anisotropy.

The class of physically reasonable a, has al-
ready been determined in paper I. Each member

(('=~.(o.)-l f8 j&' '));,k)G""(, ')v, ( ').
(2.8)

The total probability P to produce a pair over the
history of the universe is thus, through Eqs. (1.6),
(2.8), and (2.6),

represents a universe which starts from a singu-
larity where a =0 and evolves to a Friedmann so-
lution at late times with

a.()7)
- (P./6)'"I)7, il-

where l = (16)TG)'~' and p„ is the constant giving
the density of classical radiation according to

(2.10a)

p„=p„/a()'. (2.10b)

a, (il) =IP„' 'b(X),

ii=6"p '"x yx=-
(2.11a)

(2.11b)

where y is here defined to be 6'~'/p„'~'. With

K;, = dl3;, /dg then one has

The expansions of a, P... and I' in powers of
the model's anisotropy have a purely formal
status until the finiteness of the coefficients in
the expansion can be demonstrated. This is not
merely a technical issue. The question is whether
or not the back reaction of the produced particle
pairs is a significant correction to the classical
geometry for arbitrarily small anisotropy. If,
for example, Eq. (2.9) yields an infinite answer
when evaluated with a„ then it is clear that a,
is not a reasonable approximation to a(ii), and
that back-reaction effects must give rise to sig-
nificant corrections to a, near the singularity.
In this case neither Eq. (2.3) nor (2.5) would be
valid, and it would be necessary to solve the
dynamical equations (2.2) without making an ex-
pansion in powers of the initial anisotropy. The
central result of this paper is that for the con-
formally complete ao(q) calculated in paper I, the
total particle production probability given by Eq.
(2.9) is finite and the back reaction to the classical
geometry can be calculated as a perturbation on
the isotropic classical geometry.

To demonstrate the finiteness of the total parti-
cle production probability in Eq. (2.9), we must
solve Eq. (2.4) for P;;. Expressions for I', and
for a first integral of Eq. (2.4) have been given
in paper II in Eqs. (II.2.29) and (II.3.5), respec-
tively. A more convenient set of working variables
than a and g are the scale-invariant combinations
6 and X defined as in paper I by

I', =y 'V~ t dX 6b' —X ——A.
b

K K +3A. —+In(P,b) K K —3)LK ~KK
00

(2.12)

Here A. = (2880w') ', p, is the regularization scale,
V is the spatial volume under consideration,
K,', =dK;, /dX, and, as before, b'=db/dX The.
nonlocal operator K acting on a function f is de- dx ~""f(x), (2.13a)

I

fined in terms of the Fourier transform of f
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I', [a, p] =y 'V[(&7,&R«)+i(«, S«)].

2759

(2.20)

Kf(&&) = (2') '
Jl do e i™~Inlo I f (v) . (2.13b) From Eq. (2.17) it follows that

(&&,&R«) + i(&&,s&&) = y'(&&, c) (2.21)
An explicit expression for Kf in terms of f(x) is'

Kf(&&) =Cf(x) -k dx'e(x -&&')»Ix -x'I
d&&

and

(&&,&R&&) +i(&&,gx) = y'(&&, c) . (2.22)

(2.14)

where C is the Euler's constant and e (x) = 1,
x & 0 and e( x) = —1, x & 0.

The first integral of the dynamical equation
which results from varying Eq. (2.12) with respect
top;, is

3a———+In(pP) ' +Kd I L7T 'dK&q dK&q

(b II

+ 6b' —&&,
——&&.

I

—«;& =y'c, , (2.15)

The integration constant c;& sets the magnitude
and orientation of the anisotropy. This equation
is to be solved for P;, .

Two boundary conditions are necessary to
single out the physically relevant solution for
&&,, from Eq. (2.15). At large times when the
universe becomes large we require that it behave
classically. Then a, is given by Eq. (2.10), and
in these regions the classical behavior for K;,.

is

y';;/(6b') y';;/(6&&') ~ (2.16)

It is not difficult to verify that this asymptotic
behavior is consistent with Eq. (2.15).

At the singularity we must consider the pos-
sibilities. We shall show that, if it exists, there
is a unique solution of Eq. (2.15) with the correct
behavior at large && [Eq. (2.16)] and which gives
a finite total particle production probability
through Eq (2.9). T. o begin we write Eq. (2.15)
in the general form

(&R+ i&&)«;& = y'c;&, (2.17)

where S and & are differential operators with
real coefficients. In particular,

3m'. d2

2 dX'
' (2.18)

(f, b) = J" dXf" (X)b;, (X). (2.19)

In this notation the second-order contribution to
the effective action can be written as

Both R and 4 are Hermitian in the space of square-
integrable 3& 3 matrices with the natural scalar
product

The total particle production probability can be
written using the first equality and Eq. (2.9) as

P = 2yVc;, dX - Im v" (2.24)

More importantly, using the last equality and a
single integration by parts we can write

960m ~ „dx dX
(2.25)

or equivalently, using Eqs. (II.B.10) and (2.11),

d4~ g x/2~ ~0&8')&() (2.26)

where this expression is understood to hold to
second order in P;, . Equations (2.25) and (2.26)
show that the probability is manifestly positive
and covariant under real coordinate transforma-
tions. Equation (2.26) agrees with that indepen-
dently and previously derived for this pro-
cess by Zel'dovich and Starobinsky' in the test-
field approximation when the geometry is real.

Suppose that there were two solutions K]g and
«& j of Eqs. (2.15) or (2.17), both of which give a
finite total particle production probability ac-
cording to Eq. (2.25). The difference between the
bvo solutions,

g&."&= I('[&) g&.2~
$J (2.27)

must satisfy the homogeneous equation corres-
ponding to (2.17):

(&8+ is)«&,",'= 0. (2.28)

From Eq. (2.27) and the triangle inequality we
have, writing generically P = d«/d&&,

(P&"& P&"&)'I' ~ l(P&'& 0&'&)'&'+ (P&'& P&'&)'i'I (0 29)

Both the integrals on the right-hand side of Eq.
(2.29) must exist in order that the two solutions
yield finite particle production probabilities. The
integral (P ",P&"&) inust therefore also be finite.
This can be computed, however, by constructing
the scalar product of Eq. (2.28) with &&&"& and taking

The matrix c;, must be real in order that the so-
lution become classical at late times according
to Eq. (2.6). It then follows that

(yV) Iml'z = 1m(&&, c) = —Im(&&, c) = —y (K,SK) .
(2.23)
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the imaginary part. One finds after an allowed
integration by parts

(p(3) p(3)) 0 (2.30)

b (X)
- const&& exp[(6/A)'~'Xj, (2.31)

In the remaining cases the singularity occurs at
a finite value X, of the coordinate X, and the be-
havior of b (X) near this point is

Therefore, dK;"; /dX = 0 and, since a constant is
clearly not a solution of Eq. (2.15), 831)= 0. Thus,
the solution to Eq. (2.15) is unique, if it exists,
and yields a finite total pair production prob-
ability.

We as yet do not have a rigorous proof that
solutions to Eq. (2.15) exist. We can, however,
investigate whether there are asymptotic be-
haviors of P;, near the singularity which are con-
sistent both with the equation and with a finite
pair production probability. Two cases can be
distinguished. There is the conformally complete
case in which the scale factor b(X) has the be-
ha,vior

further, it is useful to introduce two quantities:
The anisotropy energy density, defined by
Misner' as the square of the shear o;; =((;,/a:

pe=I 3c;,o" =((;;)("/(la) 3,

and the magnitude of the square of the Weyl
tensor given by

(2.37)

y'a' dX dx
' (2.38)

For the conformally complete case in Eq. (2.36)
the anisotropy energy becomes infinite as the
singularity is approached. It becomes infinite,
however, less rapidly than predicted by the clas-
sica1. theory. In the classical limit a'p& = const.
Here a'p&- 0 as the singularity is approa, ched-
specifically, a'p&- const. The square of the Weyl
tensor becomes infinite but (-g)'~'E remains
finite so that the integral in Eq. (2.25) giving the
total particle production proba. bility is finite.

In the test-field approximation to this problem,
b and x,, would solve Einstein's equations and
would be given by

((x)-const&&(x-x.) ", x-x. . (2.32) ~(X)=X, ((;, =r'c;, /(6X'). (2.39)

[Equations (2.31) and (2.32) are (I.4.15) and
(I.4.13), respectively, restricted to the trace-
anomaly parameters of the scalar field o. =P
=X=(28807(3) ', so thats=6 '~3.

) We shall now
consider these two cases separately.

In the conformally complete case the structure
of the integrodifferential equation (2.15) in the
limit X--~ is of interest. The nonlocal term
gives rise to the following asymptotic behavior
for a general function f:

tr. —"--const(", " ), —=o(—,),

K—- const~ —.. .=0df I 1 d'f 1
dX (X dX

(2.33)

(2.34)

From Eq. (2.31) the asymptotic form of the equa-
tion is

y' const
U i1 2(6x)1/3 3

This behavior lea.ds to a finite particle production
probability through Eq. (2.25).

In order to interpret the behavior in Eq. (2.36)

(2.36)

3A. ——
i X

" +K " —2(6A.) ((;, =r c,,
dK jj GK&j

dx A, ) dx dX

(2.35)

From Eqs. (2.33) and (2.34) it is not difficult to
verify that the following is a consistent asymp-
totic behavior for a solution of Eq. (2.35) as

QO

At the singularity (X =0), the integral in Eq. (2.25)
diverges and the total particle production proba-
bility per unit volume is infinite in the test-field
approximation. Equation (2.36) shows that in the
conformally complete case the softening of the
singularity following from the trace anomalies
is sufficient to yield a finite particle production
amplitude per unit volume without the inclusion
of the back-reaction effects arising from the
anisotropy itself. This is our main result. In
particular, it justifies self-consistently the ex-
pansion of the classical geometry and effective
action in powers of the anisotropy.

For the remaining cases in which isotropic
scale factor has the behavior in Eq. (2.32), it is
not possible to find solutions of Eq. (2.15) which
are consistent with the assumptions invoked in
evaluating the effective action in paper II. There
the propagator of a conformally related field in a
conformally flat spacetime was chosen to be con-
formally related to the flat-space Feynman propa-
gator. This choice leads, for example, to a
vanishing production rate of conformally invariant
particles in conformally flat spacetimes and in
other ways seems to be a natural one. The in-
tegrals over products of propagators necessary
to evaluate the effective action were transformed
into integrals of Feynman propagators over. the
whole of the conformally related flat spacetime.
It seems clear, however, that in the cases repre-
sented by Eq. (2.32), where the conformally re-
lated flat spacetime is incomplete and restricted
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to X ~ X„ the calculation should be restricted to
the same domain. Such a restriction would be
consistent with the assumptions employed in
evaluating the effective action if there mere a so-
lution of the dynamical equation [Eq. (2.15)] with
K;', =0 for g~ &0. The nonretarded nature of the
nonlocal term, however, shows that no such so-
lution is possible. Whether there are other
boundary conditions for calculating the effective
action for these geometries which are physically
reasonable and which do lead to consistent solu-
tions for small anisotropies is an open question.

III. AN APPROXIMATION TO THE CLASSICAL
GEOMETRY

To find the classical geometry for a given initial
anisotropy the integrodifferential equation (2.15)
must be solved for P;;(X). For a particular matrix
c;~ the problem can always be written in terms of
a single function h(x) by the definition

expb X'/[2A. In(p, x)]'~')

at large positive X and linear combinations of
solutions behaving as

(-X) "exp[*5(-X)'"]

(3.6)

(3.7)

at large negative X where 5'= (~3)(6/X)'~'. There
are no solutions of the homogeneous equation sat-
isfying the boundary conditions at q-~~. The
demonstration is the same as that already given
for Eq. (2.15). There is thus a unique solution
to Eq. (3.5). This satisfies

I(X)=x/(2X ).o(x- ), x--
&(x) = —(»/8)'"

(3.8a)

nonlocal term in the original equation.
The solution to Eq. (3.5) is determined by the

boundary conditions implicit in Eqs. (2.16) and
(2.36). The solutions to the homogeneous equation
corresponding to Eq. (3.5) are a linear combina-
tion of solutions behaving as

~;~(x) = (r'/»)c;~&(x) .
The equation for h is then

(3.1)
+o&(-X) "exp[-5(-X)"]), X---.

(3.8b)
d & dh d dh

iA —+Bh= 1 ——K —,
dX ( dX dX dx

(3.2)

gjj
A = - —-In(p 5)

2 1 (3.3)

where the operator K is defined as before and the
functions' andB are

The approach of h to a constant value is thus
faster in the local truncation than in the case
where the nonlocal term is included [cf. Eq.
(2.36)].

The function k in the local truncation is shown
in Fig. 1 for p, = 1. (A discussion of the numeri-

(3.4) Io h

+Bh= l. (3.5)

In this section we will investigate this crude ap-
proximation to h. We shall call it the "local
truncation" since it results from omitting the

Several methods suggest themselves for solving
Eq. (3.2). It could be differenced and solved by
matrix inversion. It can be converted into a
linear integral equation by inverting the differen-
tial operator on the right-hand side, applying it to
both sides of the equation, and integrating by
parts all of the remaining derivatives of h. A
unique inverse of the differential operator can be
shown to exist. The kernel of the resulting inte-
gral equation, however, is singular, so that the
usual Fredholm methods are not directly ap-
plicable. An approximation to the solution could
be obtained by iterating the integral equation, al-
though there is no guarantee that the series thus
generated would converge. The first term in the
iteration would be the solution to the local differ-
ential equation

O.oooi
I

O.OOI O.OI 0.02 o.o6 O. i

FIG. 1. The function h which measures the aniso-
tropic part of the classical geometry calculated in the
local truncation with the regularization scale p& =1.
The bottom scale measures the cosmic proper time
from the singularity in units of the Planck time. The
function h approaches a real constant as X

—-~ and
vanishes as y +~. The imaginary part, which is a
consequence of the particle production, is significant
between y=-3x&0 ' and y=3x10 '. The evolution is
essentially classical after y = 0.35 or v'= j.0 'E with h

decaying as (real const)/p2 and a negligible imaginary
part.
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/L(= lQ

--3

producing a particle pair in a given comoving
volume V may now be expressed as an integral
of the dimensionless scale-invariant function h

and the magnitude of the anisotropy. In epochs
where the geometry evolves according to classical
laws a. convenient measure of the anisotropy is
the parameter 6 defined in terms of the shear
o,, =~;,/a by

ij
2 Oa~o

P„
(3.9)

0.0001
I

0.001 0.01 0.02 0.06 0.1

The quantity 6 is dimensionless, scale invariant,
and constant in time in classical regimes. It may
be written in the alternative forms

FIG. 2. The function h calculated in the local trunca-
tion for p&

=10-3. The curve does not differ substantially
from that computed with p, =1 in Fig. 1 either in quali-
tative form or in magnitude of the real and imaginary
parts.

cal solution is in the Appendix. ) The imaginary
part is significant in the range —3&& 10
&3&& 10 . The upper end of this range corres-
ponds to a proper time away from the singularity
of about 10 'l. After this, the geometry is nearly
real and the anisotropy decays according to the
classical law h= const/X', appropriate for a radia-
tion-dominated universe'. Figures 2 and 3 show h

computed in the local truncation for p, = 10 ' and
p' y

10+ respectively. The qualitative features
of the function h. are the same throughout the
range bounded by these two cases. The quantita-
tive values also do not differ greatly over this
range, reflecting in part the fact that g, enters
the dynamical equation only through the logarithm.

In the local truncation the total probability for

1 hH 1 p8
6 H )2p 1!2 )2p 3/2 (3.10)

Here H is the average and 4H the rms difference
of the three principal Hubble constants defined
as the eigenvalues of (a'/a')6;, +g;, . Thus if we
denote these eigenvalues by H„H„H, we can
put, following Misner, '

H= H~+H2+H3, (3.11)

a' = (216) 'y'c;, c" . (3.13)

Reexpressing Eq. (2.26) in terms of h and b, ,
one finds for the total probability to produce a
pair of scalar particles in a comoving volume V

3 (b,H )' = (H, —H, )'+ (H, -H,)'+ (H, —H,)' . (3.12)

%e will characterize the magnitude of the aniso-
tropy in the classical geometry by the parameter
6 evaluated in the late-time classical regime.
From Eqs. (3.1) and (3.9), 6 is related to the in-
tegration constant c;& by

72m V'l 2
"'" dhdx--

A. y] (3.14)

p. ,
= lo

IO Pl

-.2

A natural comoving volume in which to evaluate
this probability is the volume V„occupied by one
of the classical radiation quanta. This is

3/'4

(
(3.15)

-0.2 0.3 X where K (3) = 1.202 is the Riemann r function at
argument 3. The total probability I'„ to produce
a pair in the volume occupied by one classical
radiation quantum is then

dh
dX

dX
(3.16)

FIG. 3. The function h calculated for p, &
=10'3. The

deviations from the p& =1 case of Fig. 1 are more sub-
stantial than those of the p&

——10 case in Fig. 2, but
still commensurate. with the large change in the renor-
malization scale.

I'„=6.2 X10 & . (3.17)

In considering this final result for the particle

For the. function h calculated in the local truncation
with p, = 1 we find
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production probability it is important to recall
three facts. First, the calculation has been car-
ried out in the local truncation so that the nu-
merical coefficient in Eq. (3.1V) can only be an
order-of-magnitude approximation to the exact
value. Second, the value of the constant depends
on the regularization scale p, . Third, the calcu-
latl. on has been carried out assuming small
anisotropy. In particular, it is restricted to
those values of 6 for which I'„ is a small number.
We display the result in Eq. (3.17) chiefly in the
spirit of showing that a calculation of the particle
production probability can be consistently carried
out, beginning at the cosmological singularity,
and yield a finite result.

We shall conclude this section with some brief
remarks on the local properties of the classical
geometry. Two convenient measures of the local
anisotropy were introduced in Sec. II: The mag-
nitude of the squared Acyl tensor and the aniso-
tropy energy —[Eqs. (2.3V) and (2.38)]. They are
related to h and 6 as follows:

(3.18)

4-

o 2"
O

-I
0 0.02 0.04 0.08 O. IO

FIG. 4. The function 8'~ which measures the magni-
tude of the square of the Weyl tensor plotted against the
cosmic proper time from the singularity v. The curve
shown here was calculated in the local truncation with
p f 1 By this measure the univer se is arbitrarily
anisotropic at the singularity, but the anisotropy de-
creases rapidly away from the singularity.

where

2 ~dhlW2=-b' dx,
(3.19)

tween the singularity and several hundredths of a
Planck time later.

IV. THE SPECTRUM OF PRODUCED PARTICLES
and

p8 = 4n. 'R8/(x'f'), (3.20)

where

(3.21)

Figures 4 and 5 show curves of the magnitudes
of the dimensionless, scale-invariant functions
W' and Asas a function of 7, the proper time away
from the singularity. Both measures of the
anisotropy are infinite at the singularity but de-
cay very rapidly away from it.

The classical geometry by itself is not simply
related to the local rate of particle production.
However, since the total particle production
probability [Eq. (3.14)] is expressed as an inte-
gral over time, the integrand can be viewed as a
crude measure of the rate. If we write

In this section we shall derive an expression for
the spectrum of produced particles to lowest
order in the anisotropy. To do this we calculate
the amplitude A&k that a pair of conformally in-
variant scalar particles with wave vectors k and
k is produced from the initial vacuum. A defini-

K
0

0

I'= d7p r,
0

(3.22)

0.02 0.04 0.06 O.IO

where d~=&6bdX, then Eqs. (3.14) and (3.19) show
that P is proportional to W'O'. A graph of this
quantity is shown in Fig. 6. W'b' approaches in-
finity at the singularity but slowly enough so that
the total probability integral [Eq. (3.22)] con-
verges. The major contribution to -the total
probability comes in the proper time interval be-

FIG. 5. The function R& which measures the magni-
tude of the anisotropy energy plotted against cosmic
proper time from the singularity 7. The curve shown
here was calculated in the local truncation with p&

= 1.
By this measure the universe is arbitrarQy anisotropic
at the singularity, but the anisotropy decreases rapidly
away from the singularity.
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0.05

0.04

0.03

0.02

ik.x'"" .(n)(2 V)"" (4.3)

where &))),
= IkI and V is the spatial volume under

consideration.
To first order in P;, the action for the conformal-

ly invariant scalar field is the sum of Eqs. (11.2.6)
and (II.2.7). Making a conformal transformation
of the scalar field

0.01

q = j/a(n),
this action can be written as

(4.4)

0
0 0.02 0.04 0.06 0.08 O. IO

s~[a ))]= —-' f d'x]q Ipssp"—2)3"s,.ja;q). (4.5)

FIG. 6. The function W~b3 whose integral is propor-
tional to the total particle production probability per
unit comoving volume plotted as a function of the cosmic
proper time from the singularity v. The curve shown
here was calculated in the local truncation with IL(,

&
= 1.

Since the integral of 8'2bs is proportional to the total
probability of producing a particle pair in a given co-
moving volume over the whole history of the universe,
W2b3 itself may be thought of as a rough measure of the
particle production rate. The rate becomes infinite at
the singularity, but slowly enough so that the integral
starting from the singularity is finite. There is struc-
ture in the curve near v = 0.001, which would look less
severe if plotted against p. The rate then decays to
zero with increasing time.

tion of initial and final particle states was im-
plicit in our evaluation of the functional integral
for the vacuum persistence amplitude. The defi-
nition can be recovered through the relation

This is the action for a free scalar field p in
Minkowski space with an additional derivative
interaction proportional to P". Both the Green's
functions and the asymptotic states of this flat-
space field theory are identical to those of the
curved-space theory to first order in P,, It fol-
lows that to first order in P;, those amplitudes
which do not involve the counteraction are identi-
cal to those of this conformally related flat-
space field theory. This is true, in particular,
for the amplitude to produce a pair of particles
from the vacuum calculated to first order in P;, .
Using standard Feynman rules derived from Eq.
(4.5), we may thus immediately write down the
amplitude Akr, to first order in P;; as

-ik x -ik xe e
A] k I —— Q X yy/2 I,g(2 2&ipgp e 4e6

Carrying out the spatial integration, this can be
written as

G(x, x') =i(O, IT(]]'(x)]p(x'))Io &/(O, IO & (4.1)

p(x) = g [f (x)~-+f-(x)~-], (4.2)

and the decomposition of the field into annihilation
and creation operators of the appropriate vac-
uums. For example, write the field as

Arr --5r, -r~a '&~&,P '(2~~),

where P'(&u) is

))"(~)= J one'"))"]n).

(4.7)

(4.8)

where the az annihilate the final vacuum and
f-„(x) are the solutions of the conformally in-
variant wave equation corresponding to the final
particle states. The functions f-„(x) can then be
found from Eq. (4.1) and a knowledge of G(x, x')
at late times. For the purpose of evaluating the
particle production amplitudes to lowest order
in P;, , the functions fr(x) need only be known in
the limit of exact isotropy. There, since the
propagator was assumed to be conformally re-
lated to the flat-space Feynman propagator [Eq.
(II.2.14)], the functions. f-„(x) are conformally
related to the positive-frequency solutions of the
flat-space wave equation. One has P(~) =

20,2~'0;;(2~)P" (2~) . (4.9)

The 5 function in the wave vectors in Eq. (4.7)
is a reflection of the homogeneity of the spatial
geometry and the consequent conservation of
spatial momentum.

From Eq. (4.7) the frequency spectrum of pro-
duced pairs can be determined. The probability
p(~)d~ of producing a pair, each member of which
has frequency ~ in the range des, is found by
multiplying IArr, I' by the number of states with
wave vector k in this range, dn = ~'d&u dQ-„[V/
(2]))'], summing over all directions of k and di-
viding by 2 since the particles in the final state
are identical. The result is
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0
O

This gives the spectrum. As a check one can
calculate the total probability P to produce a pair
by integrating over all frequencies. The result
is just Eq. (2.25).

The probability P(&u)d~ can be expressed in
terms of the scale-invariant function h intro-
duced in Eq. (3.1). Defining o =ye and writing

g(~)= „ dX
' (4.10)

one has

FIG. 7. The spectrum. If a real pair is produced
from the vacuum in a spatially homogeneous cosmology,
each member must have the same frequency because
their spatial momenta are equal and opposite. The
function )g(2o) [

~ do. is proportional to the probability of
producing a pair in a given comoving volume over the
whole history of the universe, each member of which
has a frequency in the range o to o+ do. The energy
of the produced pair differs from 2o by a factor of a '(q)
so that the energy red shifts with the expansion in the
usual way. Owing to the limitations of the numerical
integration, the range of o has been limited to values
which are somewhat smaller than those characterizing
the typical oscillations in Figs. 1-3. In this range the
spectrum varies nearly exponentially with o.

& I' [a, P]/5a = 0 (5.1)

is the simplest relation to employ to determine
the quadratic corrections a, (q) to the scale factor
[cf. Eq. (3.1)j. This equation yields the relation

8, = —(I'/2)T, (5 2)

where T is the trace anomaly. This equation was
written out in Eq. (II.3.8). Linearized in a, about
the isotropic scale factor a„ this relation will
give a linear, fourth-order, local differential
equation for a, . In the expansion of I" in powers
of P;&, only &I',/5a will involve a, when linearized;
the term 51',/5a is already quadratic in P;, and
will give the driving term in the differential equa-
tion. A little computation gives the following re-
sult:

a2 +P3a2' +P,a2 +P yap +Ppa, = d

where

(5.3)

0
(5.4)

(5.5)

it is instructive to consider them both to com-
plete the discussion of the classical geometry
to quadratic order in the anisotropy and to demon-
strate in this order that the back reaction is
finite. %e shall confine our attention to the case
discussed extensively in the preceding sections
for which the geometry is conformally complete
in the limit of exact isotropy. Since we have nu-
merically calculated the first-order corrections
only in the local approximation, we shall not
actually calculate the quadratic corrections, but
we shall at least display the equation which de-
termines them and remark on its properties.

The equation

p(~)&~= 20 .~.( . &'Ig(2o)l'.20&' (4.11)
(5.6)

In the local truncation f(x) was calculated in Sec.
III. Figure 7 shows the resulting factor lg(2o)l'.
A thermal spectrum of produced particles would
be characterized by a P(~) which decreased ex-
ponentially with co. The behavior displayed in
Fig. 7 is close to an exponential decrease, but
in view of the approximate nature of the calcula-
tion no firm significance can be attached to this
fact.

3a0
s'il'

+—a -', (x8', ~'")+2 -' (~,,~")'
a0

(5.7)

V. CORRECTIONS TO THE SCALE FACTOR

The lowest-order corrections to the scale fac-
tor a(q) are quadratic in the initial-anisotropy.
While these were not needed to compute the vac-
uum persistence amplitude to quadratic order,

l

,'(~;,K")"+ 2l
~--
a, (5.8)

In these relations a, is the scale factor in the
limit of exact isotropy and z;, is the solution for
dP;, /dq discussed in Sec. II.
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a,(tt} Ay+8-+C/q+D/tt'+ (5 9)

where A. is arbitrary and proportional to the per-
turbation in p„, 8 is arbitrary and proportional
to the perturbation in the origin of g, and the co-
efficients C, D, . . . are determined in terms of

A. and B. The remaining two linearly independent
solutions have the large-g behavior

a,(ti)- K,ti"' exp[+ tt'/(2Xy')'~'] (5.10)

for arbitrary constants K, and exponents n, de-
termined by the equation. The solutions corres-
ponding to changes in p„and the origin of g are
trivial and may be excluded without loss of
generality. The growing solution in Eq. (5.10)
must be excluded if a, is to be a small correc-
tion to ap. There is thus only one linearly in-
dependent solution at large q which is a small
correction to ap.

The behavior of the homogeneous solutions to
Eq. (5.3) as tt ~ may be analyzed with the help
of Eq. (2.31) giving the small-tt behavior of a,
and therefore of the coefficients P;. As g--~
these coefficients become constants and the four
linearly independent solutions are each of the
form

a,- const && ti' exp [r(6/A)'~4(rt/y)], .

where x is a root of

(5.11)

If the expansion of the classical geometry in
powers of the anisotropy is to make sense, then
the quadratic correction to the scale factor a,
should be a small correction to ap for sufficiently
small anisotropy. We shall show that there is a
unique solution to Eq. (5.3) for which this is in-
deed the case.

If a solution to Eq. (5.3) exists which is a small
correction to ap, it will be unique provided there
is no solution to the homogeneous equation which
meets these criteria. To decide whether or not
this is the case, it is sufficient to look at the
possible asymptotic behaviors of the solutions to
the homogeneous equation as X -~~. Ir. each limit
there should be four linearly independent be-
haviors since the equation is of fourth order.

For large X there is a two-parameter family of
solutions which correspond to perturbations in
P„and the origin of the coordinate q. These so-
lutions have the large-g behavior

perturbation vanishes. A perturbation in the ori-
gin of the coordinate g gives rise to a solution of
the form (1, 0). Of the remaining solutions, (3, 0)
is consistent with the requirement that a, be a
small correction to a, as '0 --~, while (-1,0) is
not.

Up to an overall normalization there is only one
nontrivial solution of the homogeneous equation at
g=+~ which is a small correction to ap. Inte-
grated backwards this solution will in general be a
linear combination of all four possible behaviors
at p = -~. There is thus very probably no solution
of the homogeneous equation for which a, is a
small correction to ap for all g. If it exists, a
solution to the inhomogeneous equation which sat-
isfies this criteria would then be unique.

It is worth remarking that this demonstration
is contained in a less rigorous form in our analy-
sis in paper I of the nonlinear equation A = (- I'/2)T
in the isotropic limit. The homogeneous part of
Eq. (5.3) is the linearization of that equation.
For the nonlinear case we identified a one-pa-
rameter family of physically acceptable solutions
at infinity [Eq. (I.A1)], a one-parameter family
of conformally complete solutions at the singu-
larity [Eqs. (I.AV)] up to choices in the origin of

g, and a unique conformally complete geometry
which joined the two.

It is not difficult to demonstrate the existence
of a solution to Eq. (5.3) for which a, is a small
correction to ap. We have found one nontrivial
solution of the homoge'neous equation consistent
with this criterion at g =+~ and one at g = —~.
Both solutions decrease exponentially —from them
the Green's function for Eq. (5.3) can be con-
structed. Equation (2.16), together with Eqs.
(2.31) and (2.36), shows that the driving term d
in Eq. (5.3) decreases as O(exp[(6/A)'~'(q/y)])
as tt--~ and O(ti ') as q-+~. These behaviors,
and those of the homogeneous solutions making
up the Green's function, are sufficient to show
that the inhomogeneous solution constructed by
integrating the Green's function over the driving
term exists and leads to an a, with the asymptotic
behaviors a, =O(ti ') as ti-+~ and a, =O(exp[(6/
A)'~~(7i/y)]) as tl -~. Both behaviors are small
corrections to ap for suitably small anisotropy.
The finiteness of the back reaction to quadratic
order in the anisotropy is thus demonstrated.

~' —4~'+S'+4~ -3=0. (5.12) ACKNOWLEDGMENTS
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APPENDIX: ASYMPTOTIC SOLUTIONS TO THE
EQUATION FOR THE ANISOTROPY

q, = —(&6/4) ~'/'.

For (, we have to solve

(A6)

Ne present in this appendix asymptotic ex-
pansions of the solutions to the anisotropy equa-
tion in the local truncation [Eq. (3.5)] both at the
singularity and at late times. These asymptotic
expansions are useful to start numerical inte-
grations of Eq. (3.5) forward and backward in
time. For b(X) we shall consider only the con-
formally complete case behaving near the singu-
larity as in Eq. (2.31).

1. Singularity

To obtain an expansion of the solution of Eq.
(3.5) near the singularity we expand the coef-
ficients A and 8, making use of the expansion of
b(X) obtained in paper I, Eq. (I.A6). For this
purpose it is convenient to follow paper I and in-
troduce some new variables defined by

d g )dg, A. '/'
6 41 4~6 (fl 3gl)

where in the notation of Eq. (I.A6) and (I.AV)

1 2, , ag, '!

4 &6z 'g' ' sz)'

(AV)

(A8)

g, =z(y„+ ~~6 V6lnz). (Ao)

b c d eg=e~ a+ + + + —+ ~ ~:) (A10)

and equating the coefficients of successively lower
orders of g, one finds

The constant p„ for the conformally complete
solution is equal to -0.3V216. (See Fig. 3 of paper
I.) Writing the solution to (, as an asymptotic
series

(b t)3/2 63/Syl/2[I+g(z)]

y g 3/2 P„-3/4y 3
y

g = —lm.

(Ala)

(A1b)

(Alc)

The singularity occurs at y=z =0 or at P =~- Kith
r„as an independent variable, Eq. (3.5) becomes

~»4

dr ' df 4&6(1+ )
/' '

I

) l/2

12

3'=' "" "4'- Sm-
!

c =2b(p —~~),

d = 2[(p ——,')c+ (2p --', )b],
e =2[b(2p)+c(4p —2)+d(p-~)] .

(Alla)

(Al lb)

(Al lc)

(A11d)

(Alle)

(A2)

where

1 (2/v6)z ~,/, 4 z dg
( ) 4 (I~ )2/3 3( g) 8 (1+ )1/3 dz

(A3)

p= —+In(p &'/')1 (A4)

is a constant.
An expansion of g in powers of ~ and lnz was

obtained in Eq. (I.AV) from which follows an ex-
pansion of E(g) in powers of f and exp(-f) A.
particular solution to Eq. (A2) which decays as
the singularity is approached can be found by
expressing f in the form

f,„,= Z e.(&), (A5)
n=P

where f„(P) increases with g at most as a poly-
nomial multipled by exp(- nf). The relations
determining g„are found from Eq. (A2) by equating
terms decaying as ex(-ni;) on both sides. For g,
we have immediately

The general solution of Eq. (A2), which vanishes
at the singularity, is the sum of Eq. (A5) plus any
solution of the homogeneous equation which
vanishes there. An asymptotic expansion for this
decayirig homogeneous solution is

h„...=&K ((-')'"g) [I+O(vg e-')],
where g = (g/2 —p)'/' and A is any complex con-
stant. Here, K,(u) is the Bessel function having
the asymptotic expansion

(A12)

8
Ko(u)=~

~

e "I1——+—
(2u& ( 8u 2! (8u)' (A13)

h= — A' +/tK ((+)' g)+O(e ~) . (A14)

2. Late times

At large X, b(x) approaches the Friedmann so-
lution b =X and Eq. (3.5) becomes

d im dh 2X' 1—+In(p, g) —+ —,h= 1. (A15)
dx 2 ' @ A. 3y'

Transforming X to the variable t defined by

The most general solution of Eq (A2) whi.ch
vanishes at the singularity is thus a one-parameter
family with the asymptotic behavior
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ZESTt=
2

+in(P,X),

and defining

Eq. (A15) becomes

1 All

(
to 8 ~gq 2 8

dt t dt i( t

(A16)

(A17)

(A18)

ing coefficients of exp(nt) one finds first

(
dk, 2&

dt t

The positive square root gives an h which grows
with t and for this case

y' 2g2~ $ 3 $X 3X5
Mmt"' 4t 4X4t' 4X4X4t' ) '

(A26)

A particular solution of Eq. (A18) which decays
at large t can be found by expanding f in the form

Similarly, one obtains the following equations
for &0 and & 2 and their solutions:

hp„, =+exp(-mt)s (t), (A18)
dk, ,

( 1) (A27)

where the sum is over even m and s (t ) increase
with t, at most like a power. Comparing coef-
ficients of successively lower orders of exp( —mt)
(m = 2, 0, -2, . . . ), we obtain the following solu-
tions for s~:

y1/2
(A20a)

2y. '

du, vY t'» 1 s&
dt t', ' e" 64t 16)'

sv2t ~

32' 282~ 4t 48t 2 64t

(A28)

(A2S)

I
s,=, (3& —v5}s„s,= 0

0
(A20b)

The asymptotic expansion of the decaying solution
is found by choosing the negative root in Eq. (A25).
Writing the decaying solution h as

3s,t, 139
(A2Oc) (t ) eJ tt) (Asl)

The general solution of Eq. (A18) at large t is
then this particular solution plus any solution of
the corresponding homogeneous equations. There
are solutions of this homogeneous equation which
grow at large t and also ones which decay. While
the h(X) of interest must vamsh at large g, the
growing solution of the homogeneous equation is
also useful numerically, as will be described be-
low.

To find an asymptotic expansion of the growing
solution h', we write

and setting

j(t)=pi. (t) (A32)

j 2
= -&„j0 =&„j,= -& „etc. (Ass)

The general solution of Eq. (A18) is thus

A=he t+B h++B h, (As4)

as in Eqs. (A23) and (A24), one easily finds that

h'(t) =e "'
wherein k obeys the equation

de dk ' 1 dk 2r, 'e"

(A21}
where B' and B are arbitrary constants.

3. Numerical solution

We then expand k(t ) in the form

k(t) =P k„(t), (A2s)

where the sum ranges over &=2, 0, -2, -4, .. .,
and &„(t) has the form

C'"
(A24)

Substituting this expansion in Eq. (A22) and equat-

The two-point boundary-value problem pre-
sented by Eq. (3.5) and the condition that h vanish
at X= + ~ was solved in the following way." The
equation was integrated forward from X = -~
starting with the asymptotic expansion in Eq.
(A14) for a particular value of A. At large positive
X the coefficient B' of the growing homogeneous
solution was isolated using the expansion in Eq.
(A23). The value of A was adjusted until B' van-
ished. This is simple to do since B' is linear'.
This gives an accurate solution for small and
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moderate values of g. To find the solution for
large values, the equation was integrated backward
from X=+~ starting with Eq. (A34) with B'=0 and
the asymptotic expansion in Eq. (A32). The value

of B was adjusted until the solution thereby ob-
tained matched that found from the forward inte-
gration. In this way the curves of h(x) shown in
Figs. 1-3 were obtained.
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