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Particle production by white holes
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A white hole is the time reverse of a spacetime in which gravitational collapse has occurred to form a
black hole. We find that in quantum field theory in a white-hole background, for any initial state of the
field which is a product of a state on the horizon with a state at past null infinity, an infinite particle and

energy flux occurs at future null infinity when the white-hole horizon is seen to terminate. This may be
interpreted as a quantum version of the classical white-hole instability discussed by Eardley. Consequently,

there appear to be considerable difficulties in incorporating white holes into a consistent picture of a
thermodynamic self-gravitating quantum system. This provides evidence that the laws of quantum gravity

may not be time-reversal invariant.

I. INTRODUCTION

It is by now well known that calculations in the
framework of quantum field theory in curved
spacetime yield the result" that a Schwarzschild
black hole radiates particles with a thermal spec-
trum. The process can be thought of as arising
from the production of pairs of particles near the
event horizon of the black hole. One might ask
what effects are predicted by a similar calculation
when the background spacetime is that of a white
hole. By a white hole we mean simply the time
reverse of a spacetime in which gravitational col-
lapse to a black hole occurs. A conformal dia-
gram for the classical white-hole geometry we
shall consider is given in Fig. 1 below.

Our reason for investigating particle creation by
white holes is the following: One of the most in-
triguing aspects of the theory of black holes, both
classical and quantum (semiclassical), is the very
close analogy between the laws of black-hole
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FIG. 1. A conformal diagram for a white-hole space-
time, showing the locations on 8' of the wave packets
Zjnlm, Zjnlm Used in the calculation.

physics and the laws of thermodynamics. It has
been argued' that "black-hole thermodynamics" is
plausibly just ordinary thermodynamics applied to
a quantum self-gravitating system. However, "or-
dinary" thermodynamic systems satisfy time-re-
versible laws of physics; the time reverse of any
dynamical motion is also a possible dynamical mo-
tion. If the standard views on quantum black-hole
dynamics are correct, then in a closed self-gra-
vitating system, black holes can form and evapo-
rate. Hence, if such a system also displays time-
reversible behavior, it should be possible for
white holes to form and disappear. It is therefore
of interest to examine the particle-creation effects
of white holes to see if they can be consistently in-
corporated into the picture of a quantum self-gra-
vitating thermodynamic system. Remarkably, al-
though neither general relativity nor the theory of
quantum fields in curved spacetime display any
manifest time-reversal noninvariance, we shall
see that there are substantial difficulties in doing
so.

In the theory of particle creation, both by black
holes and by white holes, an ambiguity. arises con-
cerning the definition of "horizon states" —i.e. ,
particles which go into the black hole or come out
of the white hole —as this requires a notion of
"positive frequency, " which does not arise natu-
rally on the horizon. In the black-hole case, it
turns out that this ambiguity does not affect the
calculation of the density matrix describing ob-
servations at@', i.e. , what adistant observer wouM
see at late times. However, in the case of a white
hole, the definition of "positive frequency" as well
as the choice of initial white-hole state once this
definition has been made affect significantly the
state of the field at g'. Hence, in the white-hole
case, a definite prediction of what a distant ob-
server would see cannot be made without some
rather arbitrary choices. Therefore, it might be
thought that no meaningful predictions can be made
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at all. However, we shall show that under only the
assumption that the initial "in" state is a product
of a state at g with a horizon state, a lower bound
can be derived for the particle and energy flux
which reaches 9' at a time near the "disappear-
ance time" u, of the white hole (see Fig. 1).
This bound depends neither on the definition of
"positive frequency" on the past horizon, nor on
the choice of the particular horizon and 8 states
constituting the "in'* product state. Since obser-
vation of the initial state at g should prepare the
system as a product state, consideration by such
product states should be of physical relevance if
white holes exist.

Our calculations show a larger and larger flux
of particles at higher and higher energies reach-
ing p' as u-u, . Estimating the energy flux as-
sociated with this particle flux, we shall obtain
in Sec. II the lower bound

dE 10 4
du (u-u, )' '

Thus, neglecting back-reaction effects, an infinite
burst of energy would be seen at the time of dis-
appearance of the white hole. We also have reason
to believe that the expectation value of the stress-
energy tensor is singular on the white-hole hori-
zon.

Some of our conclusions have been obtained in-
dependently in unpublished work by Schutz and
Sorkin. Similar effects have been considered pre-
viously by Eardley4 and by Zel'dovich, Novikov,
and Starobinski, ' who investigated the possible
existence of astrophysical white holes arising as
"delayed pieces of the big bang. " Although Eard-
ley's analysis was purely classical, a,nd the quan-
tum analysis of Zel'dovich et al. was carried out
before the tools used in Hawking's black-hole cal-
culation were available, their conclusion that white
holes are unstable is fully consistent with our re-
sults. Indeed, the infinite energy flux we find at
g' at time u, doubtless arises from the "blue-
sheet" instability of the white hole discussed by
Eardley. Our conclusions strengthen Eardley's
classical result by showing that the instability oc-
curs for any incoming state whatsoever at J (in-
cluding no incoming particles at all), provided
only that the total state vector be a product of this
state with a horizon state. If there are no incom-
ing particles, spontaneous particle creation by the
white hole is sufficient to induce the instability.

II. CALCULATION OF PARTICLE CREATION

In this section we shall derive a lower bound on
the particle and energy Qux emerging from a white
hole as seen from @'. For simplicity, we shall

treat only a massless Klein-Gordon scalar field,
but similar results should apply to all other fieMs.
In addition, we shall take as our model of a white-
hole spacetime simply the time reverse of a
spherically symmetric spacetime describing gra-
vitational collapse to a black hole (see Fig. 1).
Thus, the white hole is assumed to have mass M
(and surface gravity ~ =1/41M) in the asymptotic
past and the horizon of the white hole is assumed
to terminate at retarded time u=u, . For con-
venience we take u, =0. Natural units G= c=5=1
are used throughout.

As already mentioned in the Introduction, the
particle creation one calculates as emerging from
the white hole depends on the definition of positive
frequency on the past horizon 8 of the white hole,
a.nd the choice of initial white-hole state, as well,
of course, as the incoming state from g . Without
some restriction on the incoming state at H and

9, any result could be obtained. Indeed by choos-
ing the time reverse of the state arising from
spontaneous particle creation by a black hole, we
could produce an incoming state for the white-hole
spacetime which would result in no particles
reaching 9'. However, such an incoming state has
an enormously high degree of initial correlation
between P and J . It appears physically unnatu-
ral to consider such incoming states. Indeed, if
one stations an observer at g to measure the in-
coming particles, then by the usual interpretive
rules of quantum mechanics, he would "knock" the
incoming state C into a product of a state C~ at
g with a horizon state C ~-:

(2)

Thus, it appears most physically relevant to con-
sider incoming states of the form Etl. (2). It is
for incoming states of this form that we shall de-
rive our lower bound on the outgoing particle and

energy flux. Note that the product form of C - is
preserved under changes of the definition of posi. -
tive freque'ncy at H .

The number operator for particles in the out-
going sta.te v. is

where b(r) is the "out" annihilation operator for
the state v. As discussed more fully elsewhere, '
the "out" annihilation and creation operators 6, b~

are related to the corresponding "in" operators
a, a~by

(4)

Here A.v- denotes the "in" state obtained by prop-
agating the "out" wave packet associated with 7

into the past and taking its positive-frequency part
there, while J37. is the "in" state associated with
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its negative-frequency part. Further properties
of A and B a,s well as the role of Eq. (4) in deriving
the S matrix are described in Ref. 6.

For any given "in" state the expected number
(N(~)& of "out" particles in the state 7 can be cal-
culated directly from Eqs. (3) and (4). Our aim is
to obtain a lower bound on (N(T)) for appropriate
choices of ~. We begin by deriving the following
general result.

I.enema. Suppose the one-particle "in" Hilbert
space II. is the direct sum of two subspaces H,
and H„a.nd hence that the "in" Fock space T(H ).

(N(~)& - IIP. II'- ll~ill' (5)

To prove Eq. (5), we calculate (N(v)& using Eq.
(4). We find

is the tensor product of F(H, ) with F(H,). Let T

be a one-particle "out" state. Let a, denote the
projection of AT onto Hy and let n, be its projec-
tion onto H, . Similarly, let P, and P, be the pro-
jections of B7 onto H, and H„respectively. Then
for all "in" states of a product form 0 =+~(3C„a
lower bound on (N(r)& is

('@IN(r) I4'& =(4~S O',
I
[at(o.', ) + at(o. ,) —a(P, ) —a(P, ) ][a(o.,) + a(n, ) —at(P, ) —a~(P, ) ]I4, CSI 42&

=&+|I[a'(o', ) —a(P, ) l[a(~,) —a'(P, )]l+,&+(~.i[a'(~.) —a(P.)][a(o.) a'(P, )-]i~2

+ 2 Re(4',
I
a (o.,) —a (P, ) I

4',& (8, I a(o.,) —a (P,) I
C g .

We rewrite the first term as

(4, I
[at(o.,) —a(P, )][a(n, ) —a"(P,) ]I%',& = (4, I [a(o.,) —at(P, ) ][at(n, ) —a(P, ) ] I 0,&

&++il[ a(~i)~ &&ai)]I~i&+(+.I I &Pai) a'&P.)] I
~i&

= ll[a'(~i) -a(P, )l+, II'- Il~. ll'+ IIPill' ~

(6)

(8)

and we can similarly bound the factor involving C,. Thus, we obtain

I

The third term in Eq. (6) cannot be less than minus its absolute value. By the Schwarz inequality we can
bound the absolute value of the first factor by

l(~ l[a'(~ ) -a(P )]I+&I ~ll[a'(~, ) -a(P, )]+,II

(N(T)& - IIP, II'- ll„ll'+ ll [a'&~,) —a&P,) 1+,II'+ ll [a&~.) —a'&P.)1+.II'

—2ll[a'(a ) —a&P )]~.llll[a&~. ) —a'(P )]+.II
- IIP. II'- ll~ill', (9)

since the last three terms are a perfect square Equat. ion (9) is the desired result.
We shall apply this result to the white-hole case by taking 8, to be the one-particle states at J, while

II, is the space of "horizon states. " The next step is to find appropriate out states 7. for which the lower
bound [Eq. (9)] is nonzero. Fortunately, most of the work required for that purpose has already been car-
ried out in the analysis of particle production by black holes. '" In the black-hole case, wave packets I',-„„„
were constructed at 8' centered about retarded time u = 2nn/e with a small frequency spread e about ~,.
= &j+ —,')e and with angular dependence l', . Propagation of this wave packet back into the past produced a
highly blue-shifted wave packet Z&„, at 8 which as n-~becomes more and more concentrated near the
advanced time v, at 8 corresponding to the formation of the black hole. Decomposition of Z,.„, into its
positive- and negative-frequency parts at 8 yielded the results on particle creation by black holes.

The black-hole analysis suggests that in the white-hole case we look for particle production in modes
related to the analogs of the Z,.„, wave packets at 8'. As shown in more detail in Ref. 2, positive-fre-
quency modes can be constructed from Z,.„, as follows: The "blue-shifted spherical waves" Z, are
given at 8' by

exp -e —1el'g/C)), e 0. (d

Q) l ol

0, @&0

where the constant& depends on the choice of origin of time at 9 . The wave packet Z,-„, constructed
from the Z, is
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e'~'(2pz~) '-~' exp[-f(j+-,')1.(u)] 1', (8, y), u&0
Zj nl ya

0, u&0

where

I (u) = (e/~) 1"
I u/C I+2'

We define Z&« to be the time reflection of Z&„, at 8 about retarded time u=0:
(12)

0, u&0
Zg«~ =

e'~'(2n(u, ) '~'exp[-i(j+-,')L(u)], u& 0.

Then, by the analysis of Appendix A of Ref. 2, it follows that Z,„,„+exp(-m~, /~)Z, „,„contains no negative-
frequency components at J'. We define

CO ( ~ 1/2

W;„& = Z,.„,„+exp n~ Z-,.„, 1 —expI-2v~
J

(14)

Then the (W,„,jare positive-frequency wave packets at g which are orthonormal in the Klein-Qordon
norm. (They are not complete, but this is not of importance since we are interested only in deriving a
lower bound on particle production. ) The energy fiux at 8' associated with the wave packet W.„, is given
by

2
a bdg .inl m dg

du " du

dQ, u&0dZ;„(~
K Au

1 —expI 2m~-'"' dA, u&0( (o. -' dz,.„,
K)„ I, K „du

eco cu
' sin'[-,' 1.(u)]

277K u I

1-expI-2n'~ . . . u&0.
[a L (u)]

(15)

We shall now compute a lower bound for parti-
cle productionin'. the mode ~= 8'~« . By the time
reverse of the analysis of the black-hole case, '
the propagation of 8'~„, into the past yields the
following: The portion, Z&nlrb& of ~g«~ with u c0
propagates directly into the white hole. A frac-
tion rz«~ of the portion, Z&«~, with u» propa-
gates back to g while the remainder gets scat-
tered into the white hole. The portion reaching

is purely negative frequency there. Thus, we
find that the norms of the positive- and negative-
frequency parts, n, and P„of the wave packet at

are

(16a)

(16b)

(I'~„,„equals the absorption coefficient of the wave
packet I',„,„in the static Schw. arzschild geometry. )

Thus, from Eq. (5) for any product "in" state we
obtain

(17)

which is a lower bound on the expected number of
W,.„, particles reaching 8'. We can use Eqs. (15)
and (17) to estimate a lower bound on the total en-
ergy flux reaching 8' near u=0. Neglecting inter-
ference effects between different modes, we find,
using the u & 0 estimate for dE,„, /du, .

dE p ~ dE~(„

r,.„,. dz, „,.
e2~~ j'" —1 dujnl~ j

~

~
I',„, e u&, e""~~" sin'L/2

e" ~" —1 2va'u' e"~; ~" —1 (l./2)'
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l

dll(d(d
8 i K . CfXX 8

(e ~~~ ]) 27' (e* 1)~

~ 4
= —r(4)g(3).2r (20)

Hence

du (2v)'u' 256'' u' ' (21)

Thus, we find that the energy Qux diverges as
1/u as u- 0. Consequently, back-reaction ef-
fects must be of importance. These and other is-
sues are discussed in Sec. III.

III. DISCUSSION

The calculation of Sec. II produced the rather
pathological result of an infinite energy flux at 0'
at u= 0. The first issue we wish to address is the
physical origin of the burst of particles. Since
nothing of local geometric importance occurs near
the event marking the termination of the white-
hole horizon, it is not plausible that these particles
were created there. We believe that the correct
interpretation is that pairs of particles were pro-
duced near the white-hole horizon throughout the
history of the white hole. These particles propa-
gated along the horizon, becoming more and more
blue-shifted, until the horizon terminated and

they were free to propagate out to 9+. Additional
particles sent in from 8 add to this burst directly
as well as stimulate the production of more pairs. '

The infinite flux at u = 0 clearly means that back-
reaction effects must be important. Indeed, when

dE/du becomes greater than 1 (in geometrized
units G = c = 1), a classical propagation of the par-
ticles ba.ck into the past shows that they would have
been within their own Schwarzschild radius near
the termination of the white-hole horizon. (Since
the background spacetime is nearly Qat over this
propagation route, such a classical propagation
should be justified. ) Thus, we believe that for re-
tarded times u when dE/du&1, the results of Sec.

To evaluate this expression, we approximate
=1 for i~3~3~,.Mand F,.„, =0 for l

& 3 ~3(u,. M (the geometrical-optics approximation).
We obtain

3v3 ur&N

du ~ ~ ~, 2''u' (e'"~~ ~' —1)' (L,/2)'

2'' e(o 'e"~ /'i
2m~'u' ~0 (e" '~" —1)'

sin'[nv+ (e/2~) ln Iu/C I ]
[wr+ (e/2a) ln lu/CI P

For small e, the sum over n a,pproaches 1, while
the sum over j can be written a,s

II are valid. However, the burst of particles which
is predicted by our calculation to arrive after this
time probably collapses instead to form a black
hole, a,nd thus no further radiation should reach
9'. Thus, a black hole should form around the
termination point of the white holes, as previously
described in a classical context by Eardley. '

The back-reaction effect of black-hole forma-
tion should thereby avoid the prediction of an in-
finite flux of pa.rticles reaching g'. However, it
seems likely —particularly in view of the above
physical interpretation —that the expected stress-
tensor (T,g at the white-hole horizon will still be
infinite, and thus that back reaction will a.iso con-
vert the white-hole horizon into a naked singular-
ity. This belief is supported by a calculation of
Unruh, ' who found that for the "in" vacuum state,
(T,g is singular on the past horizon of a two-di-
mensional analog of the Schwarzschild spacetime.

In view of this pathological behavior of white
holes for "reasonable" choice of "in" state, it ap-
pears that —unlike black holes —it is very difficult
to incorporate white holes into a consistent pic-
ture of the dynamics of a self-gravitating quantum
system. Although there remain some possibilities
for doing so—for example, one could postulate
that white holes are always "born" in states with
an enormously high degree of correlation with 5
or employ nonstandard interpretations of quantum
theory such as the notion of observer-dependent
geometry' —it appears to us most likely that there
is simply a fundamental lack of time-reversal in-
variance in quantum gravity; that in quantum gra-
vity, black holes can exist but white holes cannot.
Independent arguments for time asymmetry in
quantum gravity have been given recently by Pen-
rose." Further evidence of perhaps an even
stronger nature for time asymmetry comes from
the idea that when a black hole is formed and eva-
porated, an initial pure state will evolve to a den-
sity matrix. "" To maintain time-reversal invar-
iance, one also must require an initial density
matrix to evolve to a final pure state" which(under
some minimal assumptions about the scattering)
is seeri to be impossible. " Interestingly,
a weaker, asymptotic form of time-reversal sym-
metry could still hold, so that one would have to
make measurements in strong gravitational fields
in order to detect the time asymmetry. These
ideas will be discussed more fully by one of us
in the following paper. "
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